1
|
Sanchez HA, Kraujaliene L, Verselis VK. A pore locus in the E1 domain differentially regulates Cx26 and Cx30 hemichannel function. J Gen Physiol 2024; 156:e202313502. [PMID: 39302316 DOI: 10.1085/jgp.202313502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Connexins (Cxs) function as gap junction (GJ) channels and hemichannels that mediate intercellular and transmembrane signaling, respectively. Here, we investigated the proximal segment of the first extracellular loop, E1, of two closely related Cxs, Cx26 and Cx30, that share widespread expression in the cochlea. Computational studies of Cx26 proposed that this segment of E1 contains a parahelix and functions in gating. The sequence of the parahelix is identical between Cx26 and Cx30 except for an Ala/Glu difference at position 49. We show through cysteine-scanning and mutational analyses that position 49 is pore-lining and interacts with the adjacent Asp50 residue to impact hemichannel functionality. When both positions 49 and 50 are charged, as occurs naturally in Cx30, the hemichannel function is dampened. Co-expression of Cx30 with Cx26(D50N), the most common mutation associated with keratitis-ichthyosis-deafness syndrome, results in robust hemichannel currents indicating that position 49-50 interactions are relevant in heteromerically assembled hemichannels. Cysteine substitution at position 49 in either Cx26 or Cx30 results in tonic inhibition of hemichannels, both through disulfide formation and high-affinity metal coordination, suggestive of a flexible region of the pore that can narrow substantially. These effects are absent in GJ channels, which exhibit wild-type functionality. Examination of postnatal cochlear explants suggests that Cx30 expression is associated with reduced propagation of Ca2+ waves. Overall, these data identify a pore locus in E1 of Cx26 and Cx30 that impacts hemichannel functionality and provide new considerations for understanding the roles of these connexins in cochlear function.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso , Valparaíso, Chile
| | - Lina Kraujaliene
- Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas, Lithuania
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Gaete PS, Kumar D, Fernandez CI, Valdez Capuccino JM, Bhatt A, Jiang W, Lin YC, Liu Y, Harris AL, Luo YL, Contreras JE. Large-pore connexin hemichannels function like molecule transporters independent of ion conduction. Proc Natl Acad Sci U S A 2024; 121:e2403903121. [PMID: 39116127 PMCID: PMC11331127 DOI: 10.1073/pnas.2403903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.
Collapse
Affiliation(s)
- Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Deepak Kumar
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Cynthia I. Fernandez
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Juan M. Valdez Capuccino
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Aashish Bhatt
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Wenjuan Jiang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Yi-Chun Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Yu Liu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Andrew L. Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Yun L. Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| |
Collapse
|
3
|
Gómez GI, García-Rodríguez C, Marillán JE, Vergara SA, Alvear TF, Farias-Pasten A, Sáez JC, Retamal MA, Rovegno M, Ortiz FC, Orellana JA. Acute activation of hemichannels by ethanol leads to Ca 2+-dependent gliotransmitter release in astrocytes. Front Cell Dev Biol 2024; 12:1422978. [PMID: 38974144 PMCID: PMC11224458 DOI: 10.3389/fcell.2024.1422978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Multiple studies have demonstrated that acute ethanol consumption alters brain function and cognition. Nevertheless, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity, and recently, the opening of hemichannels has been found to play a relevant role in this process. Hemichannels are plasma membrane channels composed of six connexins or seven pannexins, respectively, that oligomerize around a central pore. They serve as ionic and molecular exchange conduits between the cytoplasm and extracellular milieu, allowing the release of various paracrine substances, such as ATP, D-serine, and glutamate, and the entry of ions and other substances, such as Ca2+ and glucose. The persistent and exacerbated opening of hemichannels has been associated with the pathogenesis and progression of several brain diseases for at least three mechanisms. The uncontrolled activity of these channels could favor the collapse of ionic gradients and osmotic balance, the release of toxic levels of ATP or glutamate, cell swelling and plasma membrane breakdown and intracellular Ca2+ overload. Here, we evaluated whether acute ethanol exposure affects the activity of astrocyte hemichannels and the possible repercussions of this phenomenon on cytoplasmatic Ca2+ signaling and gliotransmitter release. Acute ethanol exposure triggered the rapid activation of connexin43 and pannexin1 hemichannels in astrocytes, as measured by time-lapse recordings of ethidium uptake. This heightened activity derived from a rapid rise in [Ca2+]i linked to extracellular Ca2+ influx and IP3-evoked Ca2+ release from intracellular Ca2+ stores. Relevantly, the acute ethanol-induced activation of hemichannels contributed to a persistent secondary increase in [Ca2+]i. The [Ca2+]i-dependent activation of hemichannels elicited by ethanol caused the increased release of ATP and glutamate in astroglial cultures and brain slices. Our findings offer fresh perspectives on the potential mechanisms behind acute alcohol-induced brain abnormalities and propose targeting connexin43 and pannexin1 hemichannels in astrocytes as a promising avenue to prevent deleterious consequences of alcohol consumption.
Collapse
Affiliation(s)
- Gonzalo I. Gómez
- Faculty of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jesús E. Marillán
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio A. Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cancer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Gómez GI, Alvear TF, Roa DA, Farias-Pasten A, Vergara SA, Mellado LA, Martinez-Araya CJ, Prieto-Villalobos J, García-Rodríguez C, Sánchez N, Sáez JC, Ortíz FC, Orellana JA. Cx43 hemichannels and panx1 channels contribute to ethanol-induced astrocyte dysfunction and damage. Biol Res 2024; 57:15. [PMID: 38576018 PMCID: PMC10996276 DOI: 10.1186/s40659-024-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1β and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Daniela A Roa
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Sergio A Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudio J Martinez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Fernando C Ortíz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Mechanisms of Myelin Formation and Repair Laboratory, Chacabuco 675, of. 212, Santiago, 8350347, Chile.
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile.
| |
Collapse
|
5
|
Dale N, Butler J, Dospinescu VM, Nijjar S. Channel-mediated ATP release in the nervous system. Neuropharmacology 2023; 227:109435. [PMID: 36690324 DOI: 10.1016/j.neuropharm.2023.109435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
ATP is well established as a transmitter and modulator in the peripheral and central nervous system. While conventional exocytotic release of ATP at synapses occurs, this transmitter is unusual in also being released into the extracellular space via large-pored plasma membrane channels. This review considers the channels that are known to be permeable to ATP and some of the functions of channel-mediated ATP release. While the possibility of ATP release via channels mediating volume transmission has been known for some time, localised ATP release via channels at specialised synapses made by taste cells to the afferent nerve has recently been documented in taste buds. This raises the prospect that "channel synapses" may occur in other contexts. However, volume transmission and channel synapses are not necessarily mutually exclusive. We suggest that certain glial cells in the brain stem and hypothalamus, which possess long processes and are known to release ATP, may be candidates for both modes of ATP release -channel-mediated volume transmission in the region of their somata and more localised transmission possibly via either conventional or channel synapses from their processes at distal targets. Finally, we consider the different characteristics of vesicular and channel synapses and suggest that channel synapses may be advantageous in requiring less energy than their conventional vesicular counterparts. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK.
| | - Jack Butler
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| | | | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| |
Collapse
|
6
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
7
|
Gaete PS, Lillo MA, López W, Liu Y, Jiang W, Luo Y, Harris AL, Contreras JE. A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels. J Gen Physiol 2021; 152:211474. [PMID: 33074302 PMCID: PMC7579738 DOI: 10.1085/jgp.202012607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Large-pore channels permeable to small molecules such as ATP, in addition to atomic ions, are emerging as important regulators in health and disease. Nonetheless, their mechanisms of molecular permeation and selectivity remain mostly unexplored. Combining fluorescence microscopy and electrophysiology, we developed a novel technique that allows kinetic analysis of molecular permeation through connexin and CALHM1 channels in Xenopus oocytes rendered translucent. Using this methodology, we found that (1) molecular flux through these channels saturates at low micromolar concentrations, (2) kinetic parameters of molecular transport are sensitive to modulators of channel gating, (3) molecular transport and ionic currents can be differentially affected by mutation and gating, and (4) N-terminal regions of these channels control transport kinetics and permselectivity. Our methodology allows analysis of how human disease-causing mutations affect kinetic properties and permselectivity of molecular signaling and enables the study of molecular mechanisms, including selectivity and saturability, of molecular transport in other large-pore channels.
Collapse
Affiliation(s)
- Pablo S Gaete
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William López
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Yu Liu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Yun Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
8
|
A method for assessing ionic and molecular permeation in connexin hemichannels. Methods Enzymol 2021; 654:271-293. [PMID: 34120717 DOI: 10.1016/bs.mie.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Connexin hemichannels are permeable to both atomic ions and small molecules. Yet, they have different selectivity for ions and signaling molecules critical for biological functions. Activity of connexin hemichannels in living cells is commonly evaluated by methods that include electrophysiology and fluorescence-based approaches. Although less common, luminescence and radioactivity-based uptake/release assays have been also successfully used to determine selectivity and permeability to different molecules. The current methods, however, have important technical and quantitative limitations that make them unsuitable for simultaneously evaluating ionic and molecular permeability using different stimuli that control channel gating (e.g., voltage or extracellular Ca2+). To address this, we have recently designed a novel methodology that combines two-electrode voltage clamp (TEVC) and dye uptake assays in translucent Xenopus oocytes. This method allows for the evaluation of molecular transport kinetics in connexin hemichannels, and its utility can also be extended to other large pore channels, such as those formed by pannexin and CALHM. In this article, we describe step by step the protocol to perform the TEVC/Dye uptake assay.
Collapse
|
9
|
Ilyaskin AV, Korbmacher C, Diakov A. Inhibition of the epithelial sodium channel (ENaC) by connexin 30 involves stimulation of clathrin-mediated endocytosis. J Biol Chem 2021; 296:100404. [PMID: 33577799 PMCID: PMC7973139 DOI: 10.1016/j.jbc.2021.100404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αβγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of β- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of β- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.
Collapse
Affiliation(s)
- Alexandr V Ilyaskin
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
10
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
11
|
Sáez JC, Vargas AA, Hernández DE, Ortiz FC, Giaume C, Orellana JA. Permeation of Molecules through Astroglial Connexin 43 Hemichannels Is Modulated by Cytokines with Parameters Depending on the Permeant Species. Int J Mol Sci 2020; 21:ijms21113970. [PMID: 32492823 PMCID: PMC7312936 DOI: 10.3390/ijms21113970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that connexin hemichannels do not act as freely permeable non-selective pores, but they select permeants in an isoform-specific manner with cooperative, competitive and saturable kinetics. The aim of this study was to investigate whether the treatment with a mixture of IL-1β plus TNF-α, a well-known pro-inflammatory condition that activates astroglial connexin 43 (Cx43) hemichannels, could alter their permeability to molecules. We found that IL-1β plus TNF-α left-shifted the dye uptake rate vs. dye concentration relationship for Etd and 2-NBDG, but the opposite took place for DAPI or YO-PRO-1, whereas no alterations were observed for Prd. The latter modifications were accompanied of changes in Kd (Etd, DAPI, YO-PRO-1 or 2-NBDG) and Hill coefficients (Etd and YO-PRO-1), but not in alterations of Vmax. We speculate that IL-1β plus TNF-α may distinctively affect the binding sites to permeants in astroglial Cx43 hemichannels rather than their number in the cell surface. Alternatively, IL-1β plus TNF-α could induce the production of endogenous permeants that may favor or compete for in the pore-lining residues of Cx43 hemichannels. Future studies shall elucidate whether the differential ionic/molecule permeation of Cx43 hemichannels in astrocytes could impact their communication with neurons in the normal and inflamed nervous system.
Collapse
Affiliation(s)
- Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Aníbal A. Vargas
- Instituto de Ciencias de la Salud, Universidad de O′Higgins, Rancagua 2820000, Chile;
| | - Diego E. Hernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
| | - Fernando C. Ortiz
- Mechanisms on Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France;
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Correspondence: ; Tel.: +56-2-968399128
| |
Collapse
|
12
|
Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hear Res 2020; 394:107931. [PMID: 32173115 DOI: 10.1016/j.heares.2020.107931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
Disabling hearing loss is expected to affect over 900 million people worldwide by 2050. The World Health Organization estimates that the annual economic impact of hearing loss globally is US$ 750 billion. The inability to hear may complicate effective interpersonal communication and negatively impact personal and professional relationships. Recent advances in the genetic diagnosis of inner ear disease have keenly focused attention on strategies to restore hearing and balance in individuals with defined gene mutations. Mouse models of human hearing loss serve as the primary approach to test gene therapies and pharmacotherapies. The goal of this review is to articulate the rationale for fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. The differential onset of hearing in mice and humans suggests that a prenatal window of therapeutic efficacy in humans may be optimal to restore sensory function. Mouse studies demonstrating the utility of early fetal intervention in the inner ear show promise. We focus on the modulation of gene expression through two strategies that have successfully treated deafness in animal models and have had clinical success for other conditions in humans: gene replacement and antisense oligonucleotide-mediated modulation of gene expression. The recent establishment of effective therapies targeting the juvenile and adult mouse provide informative counterexamples where intervention in the maturing and fully functional mouse inner ear may be effective. Distillation of the current literature leads to the conclusion that novel therapeutic strategies to treat genetic deafness and imbalance will soon translate to clinical trials.
Collapse
|
13
|
Lagos-Cabré R, Burgos-Bravo F, Avalos AM, Leyton L. Connexins in Astrocyte Migration. Front Pharmacol 2020; 10:1546. [PMID: 32009957 PMCID: PMC6974553 DOI: 10.3389/fphar.2019.01546] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes have long been considered the supportive cells of the central nervous system, but during the last decades, they have gained much more attention because of their active participation in the modulation of neuronal function. For example, after brain damage, astrocytes become reactive and undergo characteristic morphological and molecular changes, such as hypertrophy and increase in the expression of glial fibrillary acidic protein (GFAP), in a process known as astrogliosis. After severe damage, astrocytes migrate to the lesion site and proliferate, which leads to the formation of a glial scar. At this scar-forming stage, astrocytes secrete many factors, such as extracellular matrix proteins, cytokines, growth factors and chondroitin sulfate proteoglycans, stop migrating, and the process is irreversible. Although reactive gliosis is a normal physiological response that can protect brain cells from further damage, it also has detrimental effects on neuronal survival, by creating a hostile and non-permissive environment for axonal repair. The transformation of astrocytes from reactive to scar-forming astrocytes highlights migration as a relevant regulator of glial scar formation, and further emphasizes the importance of efficient communication between astrocytes in order to orchestrate cell migration. The coordination between astrocytes occurs mainly through Connexin (Cx) channels, in the form of direct cell-cell contact (gap junctions, GJs) or contact between the extracellular matrix and the astrocytes (hemichannels, HCs). Reactive astrocytes increase the expression levels of several proteins involved in astrocyte migration, such as αvβ3 Integrin, Syndecan-4 proteoglycan, the purinergic receptor P2X7, Pannexin1, and Cx43 HCs. Evidence has indicated that Cx43 HCs play a role in regulating astrocyte migration through the release of small molecules to the extracellular space, which then activate receptors in the same or adjacent cells to continue the signaling cascades required for astrocyte migration. In this review, we describe the communication of astrocytes through Cxs, the role of Cxs in inflammation and astrocyte migration, and discuss the molecular mechanisms that regulate Cx43 HCs, which may provide a therapeutic window of opportunity to control astrogliosis and the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Lagos-Cabré
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies on Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, Orellana JA. The Opening of Connexin 43 Hemichannels Alters Hippocampal Astrocyte Function and Neuronal Survival in Prenatally LPS-Exposed Adult Offspring. Front Cell Neurosci 2019; 13:460. [PMID: 31680871 PMCID: PMC6797550 DOI: 10.3389/fncel.2019.00460] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical evidence has revealed that children born from mothers exposed to viral and bacterial pathogens during pregnancy are more likely to suffer various neurological disorders including schizophrenia, autism bipolar disorder, major depression, epilepsy, and cerebral palsy. Despite that most research has centered on the impact of prenatal inflammation in neurons and microglia, the potential modifications of astrocytes and neuron-astrocyte communication have received less scrutiny. Here, we evaluated whether prenatally LPS-exposed offspring display alterations in the opening of astrocyte hemichannels and pannexons in the hippocampus, together with changes in neuroinflammation, intracellular Ca2+ and nitric oxide (NO) signaling, gliotransmitter release, cell arborization, and neuronal survival. Ethidium uptake recordings revealed that prenatal LPS exposure enhances the opening of astrocyte Cx43 hemichannels and Panx1 channels in the hippocampus of adult offspring mice. This enhanced channel activity occurred by a mechanism involving a microglia-dependent production of IL-1β/TNF-α and the stimulation of p38 MAP kinase/iNOS/[Ca2+]i-mediated signaling and purinergic/glutamatergic pathways. Noteworthy, the activity of Cx43 hemichannels affected the release of glutamate, [Ca2+]i handling, and morphology of astrocytes, whereas also disturbed neuronal function, including the dendritic arbor and spine density, as well as survival. We speculate that excitotoxic levels of glutamate triggered by the activation of Cx43 hemichannels may contribute to hippocampal neurotoxicity and damage in prenatally LPS-exposed offspring. Therefore, the understanding of how astrocyte-neuron crosstalk is an auspicious avenue toward the development of broad treatments for several neurological disorders observed in children born to women who had a severe infection during gestation.
Collapse
Affiliation(s)
- Carolina E Chávez
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz C Avendaño
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Nielsen BS, Zonta F, Farkas T, Litman T, Nielsen MS, MacAulay N. Structural determinants underlying permeant discrimination of the Cx43 hemichannel. J Biol Chem 2019; 294:16789-16803. [PMID: 31554662 DOI: 10.1074/jbc.ra119.007732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/24/2019] [Indexed: 02/03/2023] Open
Abstract
Connexin (Cx) gap junction channels comprise two hemichannels in neighboring cells, and their permeability is well-described, but permeabilities of the single Cx hemichannel remain largely unresolved. Moreover, determination of isoform-specific Cx hemichannel permeability is challenging because of concurrent expression of other channels with similar permeability profiles and inhibitor sensitivities. The mammalian Cx hemichannels Cx30 and Cx43 are gated by extracellular divalent cations, removal of which promotes fluorescent dye uptake in both channels but atomic ion conductance only through Cx30. To determine the molecular determinants of this difference, here we employed chimeras and mutagenesis of predicted pore-lining residues in Cx43. We expressed the mutated channels in Xenopus laevis oocytes to avoid background activity of alternative channels. Oocytes expressing a Cx43 hemichannel chimera containing the N terminus or the first extracellular loop from Cx30 displayed ethidium uptake and, unlike WT Cx43, ion conduction, an observation further supported by molecular dynamics simulations. Additional C-terminal truncation of the chimeric Cx43 hemichannel elicited an even greater ion conductance with a magnitude closer to that of Cx30. The inhibitory profile for the connexin hemichannels depended on the permeant, with conventional connexin hemichannel inhibitors having a higher potency toward the ion conductance pathway than toward fluorescent dye uptake. Our results demonstrate a permeant-dependent, isoform-specific inhibition of connexin hemichannels. They further reveal that the outer segments of the pore-lining region, including the N terminus and the first extracellular loop, together with the C terminus preclude ion conductance of the open Cx43 hemichannel.
Collapse
Affiliation(s)
- Brian Skriver Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Thomas Farkas
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Minakata T, Inagaki A, Yamamura A, Yamamura H, Sekiya S, Murakami S. Calcium-Sensing Receptor Is Functionally Expressed in the Cochlear Perilymphatic Compartment and Essential for Hearing. Front Mol Neurosci 2019; 12:175. [PMID: 31379498 PMCID: PMC6648107 DOI: 10.3389/fnmol.2019.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
Maintaining Ca2+ homeostasis in lymphatic fluids is necessary for proper hearing. Despite its significance, the mechanisms that maintain the cochlear lymphatic Ca2+ concentrations within a certain range are not fully clarified. We investigated the functional expression of calcium-sensing receptor (CaSR), which plays a pivotal role in sensing extracellular Ca2+ concentrations for feedback regulations. Western blotting for CaSR revealed an approximately 130-kDa protein expression in cochlear tissue extracts and immunohistochemical analysis revealed its expression specifically in type I fibrocytes in the spiral ligament, fibrocytes in the supralimbal and limbal regions, the epithelium of the osseous spiral lamina, and the smooth muscle cells of the spiral modiolar arteries. Ca2+ imaging demonstrated that extracellular Ca2+ increased the levels of intracellular Ca2+ in CaSR-expressing fibrocytes in the spiral ligament, and that this was suppressed by the CaSR inhibitor, NPS2143. Furthermore, hearing thresholds were moderately elevated by intracochlear application of the CaSR inhibitors NPS2143 and Calhex231, across a range of frequencies (8–32 kHz). These results demonstrate the functional expression of CaSR in the cochlear perilymphatic compartment. In addition, the elevated hearing thresholds that are achieved by inhibiting CaSR suggest this is a required mechanism for normal hearing, presumably by sensing perilymphatic Ca2+ to stabilize Ca2+ concentrations within a certain range. These results provide novel insight into the mechanisms regulating Ca2+ homeostasis in the cochlea and provide a new perspective on cochlear physiology.
Collapse
Affiliation(s)
- Toshiya Minakata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Akira Inagaki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Shingo Murakami
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| |
Collapse
|
17
|
Pannasch U, Dossi E, Ezan P, Rouach N. Astroglial Cx30 sustains neuronal population bursts independently of gap-junction mediated biochemical coupling. Glia 2019; 67:1104-1112. [PMID: 30794327 PMCID: PMC6519011 DOI: 10.1002/glia.23591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
Astroglial networks mediated by gap junction channels contribute to neurotransmission and promote neuronal coordination. Connexin 30, one of the two main astroglial gap junction forming protein, alters at the behavioral level the reactivity of mice to novel environment and at the synaptic level excitatory transmission. However, the role and function of Cx30 at the neuronal network level remain unclear. We thus investigated whether Cx30 regulates neuronal population bursts and associated convulsive behavior. We found in vivo that Cx30 is upregulated by kainate-induced seizures and that it regulates in turn the severity of associated behavioral seizures. Using electrophysiology ex vivo, we report that Cx30 regulates aberrant network activity via control of astroglial glutamate clearance independently of gap-junction mediated biochemical coupling. Altogether, our results indicate that astroglial Cx30 is an important player in orchestrating neuronal network activity.
Collapse
Affiliation(s)
- Ulrike Pannasch
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
18
|
García IE, Villanelo F, Contreras GF, Pupo A, Pinto BI, Contreras JE, Pérez-Acle T, Alvarez O, Latorre R, Martínez AD, González C. The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. J Gen Physiol 2018; 150:697-711. [PMID: 29643172 PMCID: PMC5940247 DOI: 10.1085/jgp.201711782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/13/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in connexin 26 hemichannels that cause syndromic deafness have a gain-of-function phenotype that is poorly understood. García et al. show that one such mutation impairs fast and slow gating in these hemichannels because of an interaction between the N terminus and intracellular loop. Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Laboratory of Molecular Physiology and Biophysics, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Bernardo I Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Tomás Pérez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|