1
|
Phogat P, Bansal A, Nain N, Khan S, Saso L, Kukreti S. Quest for space: Tenacity of DNA, Protein, and Lipid macromolecules in intracellular crowded environment. Biomol Concepts 2025; 16:bmc-2025-0053. [PMID: 40022308 DOI: 10.1515/bmc-2025-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
The biochemical processes in the cellular milieu involving biomacromolecular interaction usually occur in crowded and heterogeneous environments, impacting their structure, stability, and reactivity. The crowded environment in vivo is typically ignored for experimental investigations since the studies get complex due to intracellular biophysical interactions between nucleic acids, proteins, cellular membranes, and various cations/anions present in the cell. Thus, being a ubiquitous property of all cells, studying those biophysical aspects affecting biochemical processes under realistically crowded conditions is of prime importance. Crowders or crowding agents are usually exploited to mimic the in vivo conditions on interacting with such genomic species, revealing structural and functional changes resulting from excluded volume and soft interactions. In the last few years, studies including crowders of varied sizes have gained attention concerning the consequences of crowding agents on biomolecular structural transitions and stability. This review comprehensively summarizes macromolecular crowding, emphasizing the biophysical effects and contribution of soft interactions in the heterogeneous cellular environment.
Collapse
Affiliation(s)
- Priyanka Phogat
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi 110021, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Norris SJ, Brangulis K. Meta-analysis of the Vmp-like sequences of Lyme disease Borrelia: evidence for the evolution of an elaborate antigenic variation system. Front Microbiol 2024; 15:1469411. [PMID: 39450289 PMCID: PMC11499132 DOI: 10.3389/fmicb.2024.1469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
VMP-like sequence (vls) antigenic variation systems are present in every Lyme disease Borrelia strain with complete genome sequences. The linear plasmid-encoded vls system consists of a single expression site (vlsE) and contiguous array(s) of silent cassettes that have ~90% identity with the central cassette region of the cognate vlsE gene; antigenic variation occurs through random, segmental, and unidirectional recombination of vls silent cassette sequences into the vlsE expression site. Automated annotation programs do not accurately recognize vls silent cassette sequences, so these regions are not correctly annotated in most genomic sequences. In this study, the vls sequences were re-analyzed in the genomic sequences of 31 available Lyme disease Borrelia and one relapsing fever Borrelia organisms, and this information was utilized to systematically compare the vls systems in different species and strains. In general, the results confirm the conservation of the overall architecture of the vls system, such as the head-to-head arrangement of vlsE and a contiguous series of vlsS silent cassette sequences and presence of inverted repeat sequences between the two regions. However, the data also provide evidence for the divergence of the vls silent cassette arrays through point mutations, short indels, duplication events, and rearrangements. The probable occurrence of convergent evolution toward a vls system-like locus is exemplified by Borrelia turcica, a variable large protein (Vlp) expressing organism that is a member of the relapsing fever Borrelia group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kalvis Brangulis
- Department of Human Physiology and Biochemistry, Faculty of Medicine, Rīga Stradiņš University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
3
|
Li L, Di L, Akther S, Zeglis BM, Qiu W. Evolution of the vls Antigenic Variability Locus of the Lyme Disease Pathogen and Development of Recombinant Monoclonal Antibodies Targeting Conserved VlsE Epitopes. Microbiol Spectr 2022; 10:e0174322. [PMID: 36150043 PMCID: PMC9604149 DOI: 10.1128/spectrum.01743-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
VlsE (variable major protein-like sequence, expressed) is an outer surface protein of the Lyme disease pathogen (Borreliella species) responsible for its within-host antigenic variation and a key diagnostic biomarker of Lyme disease. However, the high sequence variability of VlsE poses a challenge to the development of consistent VlsE-based diagnostics and therapeutics. In addition, the standard diagnostic protocols detect immunoglobins elicited by the Lyme pathogen, not the presence of the pathogen or its derived antigens. Here, we described the development of recombinant monoclonal antibodies (rMAbs) that bound specifically to conserved epitopes on VlsE. We first quantified amino-acid sequence variability encoded by the vls genes from 13 B. burgdorferi genomes by evolutionary analyses. We showed broad inconsistencies of the sequence phylogeny with the genome phylogeny, indicating rapid gene duplications, losses, and recombination at the vls locus. To identify conserved epitopes, we synthesized peptides representing five long conserved invariant regions (IRs) on VlsE. We tested the antigenicity of these five IR peptides using sera from three mammalian host species including human patients, the natural reservoir white-footed mouse (Peromyscus leucopus), and VlsE-immunized New Zealand rabbits (Oryctolagus cuniculus). The IR4 and IR6 peptides emerged as the most antigenic and reacted strongly with both the human and rabbit sera, while all IR peptides reacted poorly with sera from natural hosts. Four rMAbs binding specifically to the IR4 and IR6 peptides were identified, cloned, and purified. Given their specific recognition of the conserved epitopes on VlsE, these IR-specific rMAbs are potential novel diagnostic and research agents for direct detection of Lyme disease pathogens regardless of strain heterogeneity. IMPORTANCE Current diagnostic protocols of Lyme disease indirectly detect the presence of antibodies produced by the patient upon infection by the bacterial pathogen, not the pathogen itself. These diagnostic tests tend to underestimate early-stage bacterial infections before the patients develop robust immune responses. Further, the indirect tests do not distinguish between active or past infections by the Lyme disease bacteria in a patient sample. Here, we described novel monoclonal antibodies that have the potential to become the basis of direct and definitive diagnostic detection of the Lyme disease pathogen, regardless of its genetic heterogeneity.
Collapse
Affiliation(s)
- Li Li
- Graduate Center, City University of New York, New York, New York, USA
| | - Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, New York, USA
| | - Brian M. Zeglis
- Graduate Center, City University of New York, New York, New York, USA
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weigang Qiu
- Graduate Center, City University of New York, New York, New York, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Pietikäinen A, Glader O, Kortela E, Kanerva M, Oksi J, Hytönen J. Borrelia burgdorferi specific serum and cerebrospinal fluid antibodies in Lyme neuroborreliosis. Diagn Microbiol Infect Dis 2022; 104:115782. [DOI: 10.1016/j.diagmicrobio.2022.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
|
5
|
Tan X, Lin YP, Pereira MJ, Castellanos M, Hahn BL, Anderson P, Coburn J, Leong JM, Chaconas G. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLoS Pathog 2022; 18:e1010511. [PMID: 35605029 PMCID: PMC9166660 DOI: 10.1371/journal.ppat.1010511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Pin Lin
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Michael J. Pereira
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mildred Castellanos
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Phillip Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jenifer Coburn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes. Pathogens 2021; 10:pathogens10030281. [PMID: 33801255 PMCID: PMC8001052 DOI: 10.3390/pathogens10030281] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments.
Collapse
|
7
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
8
|
Cole GB, Bateman TJ, Moraes TF. The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments. J Biol Chem 2021; 296:100147. [PMID: 33277359 PMCID: PMC7857515 DOI: 10.1074/jbc.rev120.008745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022] Open
Abstract
Gram-negative pathogens are enveloped by an outer membrane that serves as a double-edged sword: On the one hand, it provides a layer of protection for the bacterium from environmental insults, including other bacteria and the host immune system. On the other hand, it restricts movement of vital nutrients into the cell and provides a plethora of antigens that can be detected by host immune systems. One strategy used to overcome these limitations is the decoration of the outer surface of gram-negative bacteria with proteins tethered to the outer membrane through a lipid anchor. These surface lipoproteins (SLPs) fulfill critical roles in immune evasion and nutrient acquisition, but as more bacterial genomes are sequenced, we are beginning to discover their prevalence and their different roles and mechanisms and importantly how we can exploit them as antimicrobial targets. This review will focus on representative SLPs that gram-negative bacteria use to overcome host innate immunity, specifically the areas of nutritional immunity and complement system evasion. We elaborate on the structures of some notable SLPs required for binding target molecules in hosts and how this information can be used alongside bioinformatics to understand mechanisms of binding and in the discovery of new SLPs. This information provides a foundation for the development of therapeutics and the design of vaccine antigens.
Collapse
Affiliation(s)
- Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
10
|
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J Biol Chem 2020; 295:301-313. [PMID: 31753921 PMCID: PMC6956529 DOI: 10.1074/jbc.rev119.008583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.
Collapse
Affiliation(s)
- George Chaconas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
12
|
Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi. Mol Microbiol 2019; 111:750-763. [PMID: 30580501 DOI: 10.1111/mmi.14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
13
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Lohr B, Fingerle V, Norris DE, Hunfeld KP. Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Crit Rev Clin Lab Sci 2018; 55:219-245. [PMID: 29606016 DOI: 10.1080/10408363.2018.1450353] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review is directed at physicians and laboratory personnel in private practice and clinics who treat and diagnose Lyme borreliosis (LB) in patients as part of their daily work. A major objective of this paper is to bring together background information on Borrelia (B.) burgdorferi sensu lato (s.l.) and basic clinical knowledge of LB, which is one of the most frequently reported vector-borne diseases in the Northern Hemisphere. The goal is to provide practical guidance for clinicians and for laboratory physicians, and scientists for a better understanding of current achievements and ongoing obstacles in the laboratory diagnosis of LB, an infectious disease that still remains one of the diagnostic chameleons of modern clinical medicine. Moreover, in bringing together current scientific information from guidelines, reviews, and original papers, this review provides recommendations for selecting the appropriate tests in relation to the patient's stage of disease to achieve effective, stage-related application of current direct and indirect laboratory methods for the detection of B. burgdorferi s.l. Additionally, the review aims to discuss the current state of the art concerning the diagnostic potential and limitations of the assays and test methods currently in use to optimize LB patient management and provide insight into the possible future prospects of this rapidly changing area of laboratory medicine.
Collapse
Affiliation(s)
- Benedikt Lohr
- a Institute for Laboratory Medicine, Microbiology & Infection Control , Northwest Medical Centre, Medical Faculty, Goethe University , Frankfurt/Main , Germany
| | - Volker Fingerle
- b Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL) , Oberschleissheim , Germany
| | - Douglas E Norris
- c W. Harry Feinstone Department of Molecular Microbiology & Immunology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Klaus-Peter Hunfeld
- a Institute for Laboratory Medicine, Microbiology & Infection Control , Northwest Medical Centre, Medical Faculty, Goethe University , Frankfurt/Main , Germany
| |
Collapse
|
15
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
17
|
Weber LK, Isse A, Rentschler S, Kneusel RE, Palermo A, Hubbuch J, Nesterov-Mueller A, Breitling F, Loeffler FF. Antibody fingerprints in lyme disease deciphered with high density peptide arrays. Eng Life Sci 2017; 17:1078-1087. [PMID: 32624735 DOI: 10.1002/elsc.201700062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Lyme disease is the most common tick-borne infectious disease in Europe and North America. Previous studies discovered the immunogenic role of a surface-exposed lipoprotein (VlsE) of Borreliella burgdorferi. We employed high density peptide arrays to investigate the antibody response to the VlsE protein in VlsE-positive patients by mapping the protein as overlapping peptides and subsequent in-depth epitope substitution analyses. These investigations led to the identification of antibody fingerprints represented by a number of key residues that are indispensable for the binding of the respective antibody. This approach allows us to compare the antibody specificities of different patients to the resolution of single amino acids. Our study revealed that the sera of VlsE-positive patients recognize different epitopes on the protein. Remarkably, in those cases where the same epitope is targeted, the antibody fingerprint is almost identical. Furthermore, we could correlate two fingerprints with human autoantigens and an Epstein-Barr virus epitope; yet, the link to autoimmune disorders seems unlikely and must be investigated in further studies. The other three fingerprints are much more specific for B. burgdorferi. Since antibody fingerprints of longer sequences have proven to be highly disease specific, our findings suggest that the fingerprints could function as diagnostic markers that can reduce false positive test results.
Collapse
Affiliation(s)
- Laura K Weber
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Awale Isse
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Simone Rentschler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Andrea Palermo
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Frank Breitling
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Felix F Loeffler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany.,HEiKA-Heidelberg Karlsruhe Research Partnership Heidelberg University Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.,Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
18
|
Branda JA, Strle K, Nigrovic LE, Lantos PM, Lepore TJ, Damle NS, Ferraro MJ, Steere AC. Evaluation of Modified 2-Tiered Serodiagnostic Testing Algorithms for Early Lyme Disease. Clin Infect Dis 2017; 64:1074-1080. [PMID: 28329259 DOI: 10.1093/cid/cix043] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
Background The conventional 2-tiered serologic testing protocol for Lyme disease (LD), an enzyme immunoassay (EIA) followed by immunoglobulin M and immunoglobulin G Western blots, performs well in late-stage LD but is insensitive in patients with erythema migrans (EM), the most common manifestation of the illness. Western blots are also complex, difficult to interpret, and relatively expensive. In an effort to improve test performance and simplify testing in early LD, we evaluated several modified 2-tiered testing (MTTT) protocols, which use 2 assays designed as first-tier tests sequentially, without the need of Western blots. Methods The MTTT protocols included (1) a whole-cell sonicate (WCS) EIA followed by a C6 EIA; (2) a WCS EIA followed by a VlsE chemiluminescence immunoassay (CLIA); and (3) a variable major protein-like sequence, expressed (VlsE) CLIA followed by a C6 EIA. Sensitivity was determined using serum from 55 patients with erythema migrans; specificity was determined using serum from 50 patients with other illnesses and 1227 healthy subjects. Results Sensitivity of the various MTTT protocols in patients with acute erythema migrans ranged from 36% (95% confidence interval [CI], 25%-50%) to 54% (95% CI, 42%-67%), compared with 25% (95% CI, 16%-38%) using the conventional protocol (P = .003-0.3). Among control subjects, the 3 MTTT protocols were similarly specific (99.3%-99.5%) compared with conventional 2-tiered testing (99.5% specificity; P = .6-1.0). Conclusions Although there were minor differences in sensitivity and specificity among MTTT protocols, each provides comparable or greater sensitivity in acute EM, and similar specificity compared with conventional 2-tiered testing, obviating the need for Western blots.
Collapse
Affiliation(s)
- John A Branda
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Klemen Strle
- Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lise E Nigrovic
- Division of Emergency Medicine, Boston Children's Hospital, Massachusetts, USA
| | - Paul M Lantos
- Departments of Medicine and Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Nitin S Damle
- South County Internal Medicine, Wakefield, RI, USA.,Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Mary Jane Ferraro
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Allen C Steere
- Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Evaluation of bioMérieux's Dissociated Vidas Lyme IgM II and IgG II as a First-Tier Diagnostic Assay for Lyme Disease. J Clin Microbiol 2017; 55:1698-1706. [PMID: 28330884 DOI: 10.1128/jcm.02407-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/11/2017] [Indexed: 11/20/2022] Open
Abstract
The recommended laboratory diagnostic approach for Lyme disease is a standard two-tiered testing (STTT) algorithm where the first tier is typically an enzyme immunoassay (EIA) that if positive or equivocal is reflexed to Western immunoblotting as the second tier. bioMérieux manufactures one of the most commonly used first-tier EIAs in the United States, the combined IgM/IgG Vidas test (LYT). Recently, bioMérieux launched its dissociated first-tier tests, the Vidas Lyme IgM II (LYM) and IgG II (LYG) EIAs, which use purified recombinant test antigens and a different algorithm than STTT. The dissociated LYM/LYG EIAs were evaluated against the combined LYT EIA using samples from 471 well-characterized Lyme patients and controls. Statistical analyses were conducted to assess the performance of these EIAs as first-tier tests and when used in two-tiered algorithms, including a modified two-tiered testing (MTTT) approach where the second-tier test was a C6 EIA. Similar sensitivities and specificities were obtained for the two testing strategies (LYT versus LYM/LYG) when used as first-tier tests (sensitivity, 83 to 85%; specificity, 85 to 88%) with an observed agreement of 80%. Sensitivities of 68 to 69% and 76 to 77% and specificities of 97% and 98 to 99% resulted when the two EIA strategies were followed by Western immunoblotting and when used in an MTTT, respectively. The MTTT approach resulted in significantly higher sensitivities than did STTT. Overall, the LYM/LYG EIAs performed equivalently to the LYT EIA in test-to-test comparisons or as first-tier assays in STTT or MTTT with few exceptions.
Collapse
|
20
|
Zhou W, Brisson D. Correlation between antigenicity and variability in the vls antigenic variation system of Borrelia burgdorferi. Microbes Infect 2017; 19:267-276. [PMID: 28087455 DOI: 10.1016/j.micinf.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Many parasites have evolved antigenic variation systems that alter surface proteins in order to evade recognition by presently expressed antibodies and subsequent death. Although the amino acid positions in antigens to which antibodies most commonly target are expected to be the most variable, this assumption has not been investigated. Using the vls antigenic variation system of Borrelia burgdorferi as a model, we first investigated this assumption computationally and then developed a sensitive immunoassay to experimentally validate the computational results. There was a strong correlation between variability at an amino acid position and each of the computational metrics associated with antibody reactivity. However, empirical measures of antibody reactivity were not consistently greater at the variable amino acid positions than at the invariant amino acid positions. The inconsistent experimental support for this hypothesis suggests that the biological effect of variability at an amino acid position is obfuscated by other factors.
Collapse
Affiliation(s)
- Wei Zhou
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, United States.
| | - Dustin Brisson
- University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104, United States
| |
Collapse
|
21
|
Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun 2016; 85:IAI.00890-16. [PMID: 27799330 DOI: 10.1128/iai.00890-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires.
Collapse
|
22
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
23
|
Tilly K, Bestor A, Rosa PA. Functional Equivalence of OspA and OspB, but Not OspC, in Tick Colonization by Borrelia burgdorferi. Infect Immun 2016; 84:1565-1573. [PMID: 26953324 PMCID: PMC4862709 DOI: 10.1128/iai.00063-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023] Open
Abstract
Borrelia burgdorferi, a Lyme disease agent, makes different major outer surface lipoproteins at different stages of its mouse-tick infectious cycle. Outer surface protein A (OspA) coats the spirochetes from the time they enter ticks until they are transmitted to a mammal. OspA is required for normal tick colonization and has been shown to bind a tick midgut protein, indicating that OspA may serve as a tick midgut adhesin. Tick colonization by spirochetes lacking OspA is increased when the infecting blood meal is derived from mice that do not produce antibody, indicating that OspA may protect the spirochetes from host antibody, which will not recognize tick-specific proteins such as OspA. To further study the importance of OspA during tick colonization, we constructed a form of B. burgdorferi in which the ospA open reading frame, on lp54, was replaced with the ospC gene or the ospB gene, encoding a mammal-specific or tick-specific lipoprotein, respectively. These fusions yielded a strain that produces OspC within a tick (from the fusion gene) and during early mammalian infection (from the normal ospC locus) and a strain that produces OspB in place of OspA within ticks. Here we show that the related, tick-specific protein OspB can fully substitute for OspA, whereas the unrelated, mammal-specific protein OspC cannot. These data were derived from three different methods of infecting ticks, and they confirm and extend previous studies indicating that OspA both protects spirochetes within ticks from mammalian antibody and serves an additional role during tick colonization.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Aaron Bestor
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Patricia A Rosa
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| |
Collapse
|
24
|
vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr 2016; 2. [PMID: 26104445 DOI: 10.1128/microbiolspec.mdna3-0038-2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Spirochetes that cause Lyme borreliosis (also called Lyme disease) possess the vls locus, encoding an elaborate antigenic variation system. This locus contains the expression site vlsE as well as a contiguous array of vls silent cassettes, which contain variations of the central cassette region of vlsE. The locus is present on one of the many linear plasmids in the organism, e.g. plasmid lp28-1 in the strain Borrelia burgdorferi B31. Changes in the sequence of vlsE occur continuously during mammalian infection and consist of random, segmental, unidirectional recombination events between the silent cassettes and the cassette region of vlsE. These gene conversion events do not occur during in vitro culture or the tick portion of the infection cycle of B. burgdorferi or the other related Borrelia species that cause Lyme disease. The mechanism of recombination is largely unknown, but requires the RuvAB Holliday junction branch migrase. Other features of the vls locus also appear to be required, including cis locations of vlsE and the silent cassettes and high G+C content and GC skew. The vls system is required for long-term survival of Lyme Borrelia in infected mammals and represents an important mechanism of immune evasion. In addition to sequence variation, immune selection also results in significant heterogeneity in the sequence of the surface lipoprotein VlsE. Despite antigenic variation, VlsE generates a robust antibody response, and both full-length VlsE and the C6 peptide (corresponding to invariant region 6) are widely used in immunodiagnostic tests for Lyme disease.
Collapse
|
25
|
Bankhead T. Role of the VlsE Lipoprotein in Immune Avoidance by the Lyme Disease Spirochete Borrelia burgdorferi. ACTA ACUST UNITED AC 2016; 7:191-204. [PMID: 29876140 DOI: 10.1615/forumimmundisther.2017019625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Borrelia burgdorferi is the causative bacterial agent of Lyme disease, the most prevalent tick-borne infection in North America. The ability of B. burgdorferi to cause disease is highly dependent on its capacity to evade the immune response during infection of the mammalian host. One of the ways in which B. burgdorferi is known to evade the immune response is antigenic variation of the variable major protein (VMP)-like sequence (Vls) E lipoprotein. Past research involving the B. burgdorferi antigenic variation system has implicated a gene-conversion mechanism for vlsE recombination, analyzed the long-term dynamic changes occurring within VlsE, and established the critical importance of antigenic variation for persistent infection of the mammalian host. However, a role for the VlsE protein other than providing an antigenic disguise is currently unknown, but it has been proposed that the protein may function in other forms of immune evasion. Although a substantial number of additional proteins reside on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may use a VlsE-mediated system for immune avoidance of its surface antigens. Several recent experimental studies involving host reinfection, superinfection, and the importance of VlsE antigenic variation during the pathogen's enzootic cycle have been used to address this question. Here, the cumulative results from these studies are reviewed, and the knowledge gaps that remain regarding the role of VlsE for immune avoidance are discussed.
Collapse
Affiliation(s)
- Troy Bankhead
- Department of Veterinary Microbiology and Pathology and Paul G. Allen School of Global Animal Health, Washington State University, Pullman, Washington; Tel.: 509-335-7106
| |
Collapse
|
26
|
Jacek E, Tang KS, Komorowski L, Ajamian M, Probst C, Stevenson B, Wormser GP, Marques AR, Alaedini A. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease. THE JOURNAL OF IMMUNOLOGY 2015; 196:1036-43. [PMID: 26718339 DOI: 10.4049/jimmunol.1501861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022]
Abstract
Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms.
Collapse
Affiliation(s)
- Elzbieta Jacek
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Kevin S Tang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Lars Komorowski
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Christian Probst
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Brian Stevenson
- University of Kentucky College of Medicine, Lexington, KY 40536
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595; and
| | - Adriana R Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
27
|
Foley J. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens. Comput Struct Biotechnol J 2015; 13:407-16. [PMID: 26288700 PMCID: PMC4534519 DOI: 10.1016/j.csbj.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 12/29/2022] Open
Abstract
Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.
Collapse
Affiliation(s)
- Janet Foley
- 1320 Tupper Hall, Veterinary Medicine and Epidemiology, UC Davis, Davis, CA 95616, United States
| |
Collapse
|
28
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
29
|
Rysavy SJ, Beck DAC, Daggett V. Dynameomics: data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction. Protein Sci 2014; 23:1584-95. [PMID: 25142412 DOI: 10.1002/pro.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/30/2014] [Accepted: 08/17/2014] [Indexed: 12/26/2022]
Abstract
Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments.
Collapse
Affiliation(s)
- Steven J Rysavy
- Division of Biomedical and Health Informatics, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
30
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
31
|
Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K, Sevcik J, Urbanikova L, Myers JK, Takano K, Hebert EJ, Shirley BA, Grimsley GR. Contribution of hydrogen bonds to protein stability. Protein Sci 2014; 23:652-61. [PMID: 24591301 PMCID: PMC4005716 DOI: 10.1002/pro.2449] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 11/12/2022]
Abstract
Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.
Collapse
Affiliation(s)
- C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, Texas, 77843
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| | - Hailong Fu
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, Texas, 77843
| | - Katrina Lee Fryar
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| | - John Landua
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| | - Saul R Trevino
- Chemistry Department, Houston Baptist UniversityHouston, Texas, 77074
| | - David Schell
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, Texas, 77843
| | - Richard L Thurlkill
- Chemistry Department, The University of Louisiana at MonroeMonroe, Louisiana, 71209
| | - Satoshi Imura
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| | - J Martin Scholtz
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, Texas, 77843
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| | - Ketan Gajiwala
- Pfizer Worldwide Research and DevelopmentSan Diego, California, 92121
| | - Jozef Sevcik
- Institute of Molecular Biology, Slovak Academy of Sciences845-51 Bratislava 45, Slovak Republic
| | - Lubica Urbanikova
- Institute of Molecular Biology, Slovak Academy of Sciences845-51 Bratislava 45, Slovak Republic
| | - Jeffery K Myers
- Department of Chemistry, Davidson CollegeDavidson, North Carolina, 28035
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural UniversityKyoto, 606–8522, Japan
| | | | | | - Gerald R Grimsley
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science CenterCollege Station, Texas, 77843
| |
Collapse
|
32
|
Graves CJ, Ros VID, Stevenson B, Sniegowski PD, Brisson D. Natural selection promotes antigenic evolvability. PLoS Pathog 2013; 9:e1003766. [PMID: 24244173 PMCID: PMC3828179 DOI: 10.1371/journal.ppat.1003766] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/30/2013] [Indexed: 01/16/2023] Open
Abstract
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.
Collapse
Affiliation(s)
| | - Vera I. D. Ros
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian Stevenson
- University of Kentucky, Lexington, Kentucky, United States of America
| | - Paul D. Sniegowski
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 2013; 89:216-27. [PMID: 23692497 PMCID: PMC3713631 DOI: 10.1111/mmi.12271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 12/21/2022]
Abstract
Borrelia burgdorferi alternates between ticks and mammals, requiring variable gene expression and protein production to adapt to these diverse niches. These adaptations include shifting among the major outer surface lipoproteins OspA, OspC, and VlsE at different stages of the infectious cycle. We hypothesize that these proteins carry out a basic but essential function, and that OspC and VlsE fulfil this requirement during early and persistent stages of mammalian infection respectively. Previous work by other investigators suggested that several B. burgdorferi lipoproteins, including OspA and VlsE, could substitute for OspC at the initial stage of mouse infection, when OspC is transiently but absolutely required. In this study, we assessed whether vlsE and ospA could restore infectivity to an ospC mutant, and found that neither gene product effectively compensated for the absence of OspC during early infection. In contrast, we determined that OspC production was required by B. burgdorferi throughout SCID mouse infection if the vlsE gene were absent. Together, these results indicate that OspC can substitute for VlsE when antigenic variation is unnecessary, but that these two abundant lipoproteins are optimized for their related but specific roles during early and persistent mammalian infection by B. burgdorferi.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
34
|
Zückert WR. A call to order at the spirochaetal host-pathogen interface. Mol Microbiol 2013; 89:207-11. [PMID: 23750784 DOI: 10.1111/mmi.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 12/28/2022]
Abstract
As the Lyme disease spirochaete Borrelia burgdorferi shuttles back and forth between arthropod vector and vertebrate host, it encounters vastly different and hostile environments. Major mechanisms contributing to the success of this pathogen throughout this complex transmission cycle are phase and antigenic variation of abundant and serotype-defining surface lipoproteins. These peripherally membrane-anchored virulence factors mediate niche-specific interactions with vector/host factors and protect the spirochaete from the perils of the mammalian immune response. In this issue of Molecular Microbiology, Tilly, Bestor and Rosa redefine the roles of two lipoproteins, OspC and VlsE, during mammalian infection. Using a variety of promoter fusions in combination with a sensitive in vivo 'use it or lose it' gene complementation assay, the authors demonstrate that proper sequential expression of OspC followed by VlsE indeed matters. A previously suggested general functional redundancy between these and other lipoproteins is shown to be limited and dependent on an immunodeficient experimental setting that is arguably of diminished ecological relevance. These data reinforce the notion that OspC plays a unique role during initial infection while the antigenically variant VlsE proteins allow for persistence in the mammalian host.
Collapse
Affiliation(s)
- Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
35
|
Evaluation of RevA, a fibronectin-binding protein of Borrelia burgdorferi, as a potential vaccine candidate for lyme disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:892-9. [PMID: 23595502 DOI: 10.1128/cvi.00758-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies indicated that the Lyme disease spirochete Borrelia burgdorferi expresses the RevA outer surface protein during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA appears to be a good target for preventive therapies. RevA proteins are highly conserved across all Lyme borreliae, and antibodies against RevA protein are cross-reactive among RevA proteins from diverse strains. Mice infected with B. burgdorferi mounted a rapid IgM response to RevA, followed by a strong IgG response that generally remained elevated for more than 12 months, suggesting continued exposure of RevA protein to the immune system. RevA antibodies were bactericidal in vitro. To evaluate the RevA antigen as a potential vaccine, mice were vaccinated with recombinant RevA and challenged with B. burgdorferi by inoculation with a needle or by a tick bite. Cultured tissues from all treatment groups were positive for B. burgdorferi. Vaccinated animals also appeared to have similar levels of B. burgdorferi DNA compared to nonvaccinated controls. Despite its antigenicity, surface expression, and the production of bactericidal antibodies against it, RevA does not protect against Borrelia burgdorferi infection in a mouse model. However, passive immunization with anti-RevA antibodies did prevent infection, suggesting the possible utility of RevA-based immunotherapeutics or vaccine.
Collapse
|
36
|
Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 2012; 36:917-948. [PMID: 22212019 PMCID: PMC3334452 DOI: 10.1111/j.1574-6976.2011.00321.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022] Open
Abstract
Pathogenic microorganisms employ numerous molecular strategies in order to delay or circumvent recognition by the immune system of their host. One of the most widely used strategies of immune evasion is antigenic variation, in which immunogenic molecules expressed on the surface of a microorganism are continuously modified. As a consequence, the host is forced to constantly adapt its humoral immune response against this pathogen. An antigenic change thus provides the microorganism with an opportunity to persist and/or replicate within the host (population) for an extended period of time or to effectively infect a previously infected host. In most cases, antigenic variation is caused by genetic processes that lead to the modification of the amino acid sequence of a particular antigen or to alterations in the expression of biosynthesis genes that induce changes in the expression of a variant antigen. Here, we will review antigenic variation systems that rely on homologous DNA recombination and that are found in a wide range of cellular, human pathogens, including bacteria (such as Neisseria spp., Borrelia spp., Treponema pallidum, and Mycoplasma spp.), fungi (such as Pneumocystis carinii) and parasites (such as the African trypanosome Trypanosoma brucei). Specifically, the various DNA recombination-based antigenic variation systems will be discussed with a focus on the employed mechanisms of recombination, the DNA substrates, and the enzymatic machinery involved.
Collapse
Affiliation(s)
- Cornelis Vink
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Imperial College-South Kensington, London, UK
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 2012; 37:156-81. [PMID: 22712853 DOI: 10.1111/j.1574-6976.2012.00345.x] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Success in nature depends upon an ability to perceive and adapt to the surrounding environment. Bacteria are not an exception; they recognize and constantly adjust to changing situations by sensing environmental and self-produced signals, altering gene expression accordingly. Autoinducer-2 (AI-2) is a signal molecule produced by LuxS, an enzyme found in many bacterial species and thus proposed to enable interspecies communication. Two classes of AI-2 receptors and many layers and interactions involved in downstream signalling have been identified so far. Although AI-2 has been implicated in the regulation of numerous niche-specific behaviours across the bacterial kingdom, interpretation of these results is complicated by the dual role of LuxS in signalling and the activated methyl cycle, a crucial central metabolic pathway. In this article, we present a comprehensive review of the discovery and early characterization of AI-2, current developments in signal detection, transduction and regulation, and the major studies investigating the phenotypes regulated by this molecule. The development of novel tools should help to resolve many of the remaining questions in the field; we highlight how these advances might be exploited in AI-2 quorum quenching, treatment of diseases, and the manipulation of beneficial behaviours caused by polyspecies communities.
Collapse
|
38
|
|
39
|
Hyde JA, Weening EH, Chang M, Trzeciakowski JP, Höök M, Cirillo JD, Skare JT. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 2011; 82:99-113. [PMID: 21854463 DOI: 10.1111/j.1365-2958.2011.07801.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aetiological agent of Lyme disease, Borrelia burgdorferi, is transmitted via infected Ixodes spp. ticks. Infection, if untreated, results in dissemination to multiple tissues and significant morbidity. Recent developments in bioluminescence technology allow in vivo imaging and quantification of pathogenic organisms during infection. Herein, luciferase-expressing B. burgdorferi and strains lacking the decorin adhesins DbpA and DbpB, as well as the fibronectin adhesin BBK32, were quantified by bioluminescent imaging to further evaluate their pathogenic potential in infected mice. Quantification of bacterial load was verified by quantitative PCR (qPCR) and cultivation. B. burgdorferi lacking DbpA and DbpB were only seen at the 1 h time point post infection, consistent with its low infectivity phenotype. The bbk32 mutant exhibited a significant decrease in its infectious load at day 7 relative to its parent. This effect was most pronounced at lower inocula and imaging correlated well with qPCR data. These data suggest that BBK32-mediated binding plays an important role in B. burgdorferi colonization. As such, in vivo imaging of bioluminescent Borrelia provides a sensitive means to detect, quantify and temporally characterize borrelial dissemination in a non-invasive, physiologically relevant environment and, more importantly, demonstrated a quantifiable infectivity defect for the bbk32 mutant.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Chandra A, Latov N, Wormser GP, Marques AR, Alaedini A. Epitope mapping of antibodies to VlsE protein of Borrelia burgdorferi in post-Lyme disease syndrome. Clin Immunol 2011; 141:103-10. [PMID: 21778118 DOI: 10.1016/j.clim.2011.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/18/2011] [Accepted: 06/17/2011] [Indexed: 11/18/2022]
Abstract
The VlsE lipoprotein of Borrelia burgdorferi elicits a strong immune response during the course of Lyme disease. The present study was aimed at characterization of the epitopes of VlsE targeted by the antibody response in patients with post-Lyme disease syndrome, a condition characterized by persisting symptoms of pain, fatigue, and/or neurocognitive impairment despite antibiotic treatment of B. burgdorferi infection. Epitope mapping was carried out using microarrays that contained synthesized overlapping peptides covering the full sequence of VlsE from B. burgdorferi B31. In addition to the previously characterized IR6 region in the variable domain, specific sequences in the N- and C-terminal invariable domains of VlsE were found to be major B cell epitopes in affected patients. The crystal structure of VlsE indicated that the newly described epitopes form a contiguous region in the surface-exposed membrane-proximal part of the monomeric form of the protein.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Neurology and Neuroscience, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | | | | | | | | |
Collapse
|
41
|
Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J Mol Med (Berl) 2011; 89:743-52. [PMID: 21509575 DOI: 10.1007/s00109-011-0759-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia.
Collapse
|
42
|
Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, Hendricks MM, Iimura S, Gajiwala K, Scholtz JM, Grimsley GR. Contribution of hydrophobic interactions to protein stability. J Mol Biol 2011; 408:514-28. [PMID: 21377472 DOI: 10.1016/j.jmb.2011.02.053] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 11/29/2022]
Abstract
Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions.
Collapse
Affiliation(s)
- C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nick Pace C, Huyghues-Despointes BMP, Fu H, Takano K, Scholtz JM, Grimsley GR. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci 2010; 19:929-43. [PMID: 20198681 PMCID: PMC2868236 DOI: 10.1002/pro.370] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/08/2010] [Indexed: 11/07/2022]
Abstract
The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge-charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317-15323).
Collapse
Affiliation(s)
- C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Terwilliger TC. Rapid model building of alpha-helices in electron-density maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:268-75. [PMID: 20179338 PMCID: PMC2827347 DOI: 10.1107/s0907444910000314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 12/04/2022]
Abstract
A method for the identification of alpha-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where alpha-helices appear as tubes of density. The positioning and direction of the alpha-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. An average of 63% of the alpha-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled alpha-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 A.
Collapse
|
45
|
Terwilliger TC. Rapid model building of beta-sheets in electron-density maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:276-84. [PMID: 20179339 PMCID: PMC2827348 DOI: 10.1107/s0907444910000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
Collapse
|
46
|
Terwilliger TC. Rapid chain tracing of polypeptide backbones in electron-density maps. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:285-94. [PMID: 20179340 PMCID: PMC2827349 DOI: 10.1107/s0907444910000272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022]
Abstract
A method for rapid chain tracing of polypeptide backbones at moderate resolution is presented. A method for the rapid tracing of polypeptide backbones has been developed. The method creates an approximate chain tracing that is useful for visual evaluation of whether a structure has been solved and for use in scoring the quality of electron-density maps. The essence of the method is to (i) sample candidate Cα positions at spacings of approximately 0.6 Å along ridgelines of high electron density, (ii) list all possible nonapeptides that satisfy simple geometric and density criteria using these candidate Cα positions, (iii) score the nonapeptides and choose the highest scoring ones, and (iv) find the longest chains that can be made by connecting nonamers. An indexing and storage scheme that allows a single calculation of most distances and density values is used to speed up the process. The method was applied to 42 density-modified electron-density maps at resolutions from 1.5 to 3.8 Å. A total of 21 428 residues in these maps were traced in 24 CPU min with an overall r.m.s.d. of 1.61 Å for Cα atoms compared with the known refined structures. The method appears to be suitable for rapid evaluation of electron-density map quality.
Collapse
|
47
|
Dresser AR, Hardy PO, Chaconas G. Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase. PLoS Pathog 2009; 5:e1000680. [PMID: 19997508 PMCID: PMC2779866 DOI: 10.1371/journal.ppat.1000680] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/04/2009] [Indexed: 12/23/2022] Open
Abstract
Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process.
Collapse
Affiliation(s)
- Ashley R. Dresser
- Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Olivier Hardy
- Department of Microbiology & Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology & Infectious Diseases, The University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
48
|
Lin T, Gao L, Edmondson DG, Jacobs MB, Philipp MT, Norris SJ. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLoS Pathog 2009; 5:e1000679. [PMID: 19997622 PMCID: PMC2780311 DOI: 10.1371/journal.ppat.1000679] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/04/2009] [Indexed: 01/11/2023] Open
Abstract
Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA), BB0022 (ruvB), BB0797 (mutS), and BB0098 (mutS-II), showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP) screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid) mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the ‘parental’ vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together these studies provide the first examples of trans-acting factors involved in vlsE recombination. Lyme disease is the most prevalent tick-borne infection in North America and Eurasia. It is caused by the bacterium Borrelia burgdorferi and is transmitted to humans via the bite of infected ticks. These spirochetes can cause both acute and chronic infection and inflammation of the skin, joints, heart, and central nervous system. The persistence of infection despite the presence of an active immune response is dependent upon antigenic variation of VlsE, a 35 kDa surface-exposed lipoprotein. A large number of different VlsE variants are present in the host simultaneously and are generated by recombination of the vlsE gene with adjacent vls silent cassettes. To try to identify factors important in vlsE recombination and immune evasion, we selected mutants in genes involved in DNA recombination and repair and screened them for infectivity and vlsE recombination. Mutants in genes encoding RuvA and RuvB (which act together to promote the exchange of strands between two different DNA molecules) had reduced infectivity and greatly diminished vlsE recombination. In immunodeficient mice, ruvA mutants retained full infectivity, and no vlsE recombination was detected. Our findings reinforce the importance of vlsE variation in immune evasion and persistent infection.
Collapse
Affiliation(s)
- Tao Lin
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Mary B. Jacobs
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, Louisiana, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Palmer GH, Bankhead T, Lukehart SA. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens. Cell Microbiol 2009; 11:1697-705. [PMID: 19709057 DOI: 10.1111/j.1462-5822.2009.01366.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (< 1.2 Mb), illustrate this variant generating capacity and its role in persistent infection. Borrelia burgdorferi VlsE diversity is encoded and expressed on a linear plasmid required for persistence and recent experiments have demonstrated that VlsE recombination is necessary for persistence in the immunocompetent host. In contrast, both Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire.
Collapse
Affiliation(s)
- Guy H Palmer
- Department of Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
50
|
Tilly K, Bestor A, Dulebohn DP, Rosa PA. OspC-independent infection and dissemination by host-adapted Borrelia burgdorferi. Infect Immun 2009; 77:2672-82. [PMID: 19398538 PMCID: PMC2708573 DOI: 10.1128/iai.01193-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/04/2008] [Accepted: 04/20/2009] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi OspC is required for the spirochete to establish infection in a mammal by tick transmission or needle inoculation. After a brief essential period, the protein no longer is required and the gene can be shut off. Using a system in which spirochetes contain only an unstable wild-type copy of the ospC gene, we can obtain mice persistently infected with bacteria lacking OspC. We implanted pieces of infected mouse skin subcutaneously in naïve mice, using donors carrying wild-type or ospC mutant spirochetes, and found that both could infect mice by this method, with similar numbers of wild-type or ospC mutant spirochetes disseminated throughout the tissues of recipient mice. Recipient mouse immune responses to tissue transfer-mediated infection with wild-type or ospC mutant spirochetes were similar. These experiments demonstrate that mammalian host-adapted spirochetes can infect and disseminate in mice in the absence of OspC, thereby circumventing this hallmark of tick-derived or in vitro-grown spirochetes. We propose a model in which OspC is one of a succession of functionally equivalent, essential proteins that are synthesized at different stages of mammalian infection. In this model, another protein uniquely present on host-adapted spirochetes performs the same essential function initially fulfilled by OspC. The strict temporal control of B. burgdorferi outer surface protein gene expression may reflect immunological constraints rather than distinct functions.
Collapse
Affiliation(s)
- Kit Tilly
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|