1
|
Park SD, Saunders AS, Reidy MA, Bender DE, Clifton S, Morris KT. A review of granulocyte colony-stimulating factor receptor signaling and regulation with implications for cancer. Front Oncol 2022; 12:932608. [PMID: 36033452 PMCID: PMC9402976 DOI: 10.3389/fonc.2022.932608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022] Open
Abstract
Granulocyte colony-stimulating factor receptor (GCSFR) is a critical regulator of granulopoiesis. Studies have shown significant upregulation of GCSFR in a variety of cancers and cell types and have recognized GCSFR as a cytokine receptor capable of influencing both myeloid and non-myeloid immune cells, supporting pro-tumoral actions. This systematic review aims to summarize the available literature examining the mechanisms that control GCSFR signaling, regulation, and surface expression with emphasis on how these mechanisms may be dysregulated in cancer. Experiments with different cancer cell lines from breast cancer, bladder cancer, glioma, and neuroblastoma are used to review the biological function and underlying mechanisms of increased GCSFR expression with emphasis on actions related to tumor proliferation, migration, and metastasis, primarily acting through the JAK/STAT pathway. Evidence is also presented that demonstrates a differential physiological response to aberrant GCSFR signal transduction in different organs. The lifecycle of the receptor is also reviewed to support future work defining how this signaling axis becomes dysregulated in malignancies.
Collapse
Affiliation(s)
- Sungjin David Park
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Apryl S. Saunders
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Megan A. Reidy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Dawn E. Bender
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Shari Clifton
- Department of Information Management, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Katherine T. Morris
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- *Correspondence: Katherine T. Morris,
| |
Collapse
|
2
|
Caiment F, Wolters J, Smit E, Schrooders Y, Kleinjans J, van den Beucken T. Valproic acid promotes mitochondrial dysfunction in primary human hepatocytes in vitro; impact of C/EBPα-controlled gene expression. Arch Toxicol 2020; 94:3463-3473. [PMID: 32623605 PMCID: PMC7502062 DOI: 10.1007/s00204-020-02835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Valproic acid (VPA) is a frequently prescribed anti-epileptic drug which is known to cause liver toxicity and steatosis through mitochondrial dysfunction. Nevertheless the mechanisms underlying these adverse effects are incompletely understood. In this study, we determined the effect of relatively short (3 h) or prolonged (72 h) exposure to VPA on mitochondrial function in primary human hepatocytes (PHHs). While 3 h VPA exposure did not affect oxygen consumption rates (OCRs) in PHHs, prolonged exposure (24–72 h) significantly reduced basal and maximal OCRs. Given that in particular prolonged VPA exposure is required to cause mitochondrial dysfunction, we investigated gene expression data after VPA exposure for 24, 48, 72 h and 72 h VPA followed by a 72 h washout period. We were able to reduce the comprehensive gene expression changes into a more comprehensible set of 18 TFs that were predicted to be persistently activated after 72 h of VPA exposure. Lentiviral knock-down of one of the candidate TFs, C/EBPα, partly rescued VPA-induced mitochondrial dysfunction. Furthermore, RNA-Seq analysis of shC/EBPα and shGFP control PHHs identified 24 genuine C/EBPα target genes that are regulated in response to prolonged VPA exposure in PHHs. Altogether this provides new insights on the involvement of C/EBPα in driving VPA-induced mitochondrial dysfunction in human liver cells. This hub gene, with its downstream regulators involved in this deregulation, thus represent potential new biomarkers for VPA-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- F Caiment
- Maastricht University, Maastricht, The Netherlands
| | - J Wolters
- Maastricht University, Maastricht, The Netherlands
| | - E Smit
- Maastricht University, Maastricht, The Netherlands
| | - Y Schrooders
- Maastricht University, Maastricht, The Netherlands
| | - J Kleinjans
- Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
3
|
Valencia K, Erice O, Kostyrko K, Hausmann S, Guruceaga E, Tathireddy A, Flores NM, Sayles LC, Lee AG, Fragoso R, Sun TQ, Vallejo A, Roman M, Entrialgo-Cadierno R, Migueliz I, Razquin N, Fortes P, Lecanda F, Lu J, Ponz-Sarvise M, Chen CZ, Mazur PK, Sweet-Cordero EA, Vicent S. The Mir181ab1 cluster promotes KRAS-driven oncogenesis and progression in lung and pancreas. J Clin Invest 2020; 130:1879-1895. [PMID: 31874105 PMCID: PMC7108928 DOI: 10.1172/jci129012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/19/2019] [Indexed: 02/03/2023] Open
Abstract
Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype, underscoring their nonredundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in 2 highly aggressive and difficult to treat KRAS-mutated cancers.
Collapse
Affiliation(s)
- Karmele Valencia
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Oihane Erice
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Kaja Kostyrko
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Center for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Natasha M. Flores
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leanne C. Sayles
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Alex G. Lee
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Rita Fragoso
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Adrian Vallejo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Rodrigo Entrialgo-Cadierno
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Itziar Migueliz
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Nerea Razquin
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Puri Fortes
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Jun Lu
- Genetics Department, Yale University, New Haven, Connecticut, USA
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clínica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Chang-Zheng Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Achelois Oncology, Redwood City, California, USA
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| |
Collapse
|
4
|
Kiser JN, Clancey E, Moraes JGN, Dalton J, Burns GW, Spencer TE, Neibergs HL. Identification of loci associated with conception rate in primiparous Holstein cows. BMC Genomics 2019; 20:840. [PMID: 31718557 PMCID: PMC6852976 DOI: 10.1186/s12864-019-6203-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/21/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Subfertility is a major issue facing the dairy industry as the average US Holstein cow conception rate (CCR) is approximately 35%. The genetics underlying the physiological processes responsible for CCR, the proportion of cows able to conceive and maintain a pregnancy at each breeding, are not well characterized. The objectives of this study were to identify loci, positional candidate genes, and transcription factor binding sites (TFBS) associated with CCR and determine if there was a genetic correlation between CCR and milk production in primiparous Holstein cows. Cows were bred via artificial insemination (AI) at either observed estrus or timed AI and pregnancy status was determined at day 35 post-insemination. Additive, dominant, and recessive efficient mixed model association expedited (EMMAX) models were used in two genome-wide association analyses (GWAA). One GWAA focused on CCR at first service (CCR1) comparing cows that conceived and maintained pregnancy to day 35 after the first AI (n = 494) to those that were open after the first AI (n = 538). The second GWAA investigated loci associated with the number of times bred (TBRD) required for conception in cows that either conceived after the first AI (n = 494) or repeated services (n = 472). RESULTS The CCR1 GWAA identified 123, 198, and 76 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. The TBRD GWAA identified 66, 95, and 33 loci associated (P < 5 × 10- 08) in additive, dominant, and recessive models, respectively. Four of the top five loci were shared in CCR1 and TBRD for each GWAA model. Many of the associated loci harbored positional candidate genes and TFBS with putative functional relevance to fertility. Thirty-six of the loci were validated in previous GWAA studies across multiple breeds. None of the CCR1 or TBRD associated loci were associated with milk production, nor was their significance with phenotypic and genetic correlations to 305-day milk production. CONCLUSIONS The identification and validation of loci, positional candidate genes, and TFBS associated with CCR1 and TBRD can be utilized to improve, and further characterize the processes involved in cattle fertility.
Collapse
Affiliation(s)
- Jennifer N. Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| | - Erin Clancey
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Joseph Dalton
- Department of Animal and Veterinary Science, University of Idaho, Caldwell, ID United States
| | - Gregory W. Burns
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO United States
| | - Holly L. Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA United States
| |
Collapse
|
5
|
Liu LM, Sun WZ, Fan XZ, Xu YL, Cheng MB, Zhang Y. Methylation of C/EBPα by PRMT1 Inhibits Its Tumor-Suppressive Function in Breast Cancer. Cancer Res 2019; 79:2865-2877. [PMID: 31015230 DOI: 10.1158/0008-5472.can-18-3211] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
Abstract
C/EBPα is an essential transcription factor involved in regulating the expression or function of certain cell-cycle regulators, including in breast cancer cells. Although protein arginine methyltransferases have been shown to play oncogenic roles in a variety of cancers, little is known about the role of arginine methylation in regulating the antiproliferation activity of C/EBPα. Here, we report that the protein arginine methyltransferase 1 (PRMT1) is overexpressed in human breast cancer and that elevated PRMT1 correlates with cancer malignancy. RNA-sequencing analysis revealed that knockdown of PRMT1 in breast cancer cells is accompanied by a decrease in the expression of pro-proliferative genes, including cyclin D1. Furthermore, tandem affinity purification followed by mass spectrometry identified PRMT1 as a component of the C/EBPα complex. C/EBPα associated with and was methylated by PRMT1 at three arginine residues (R35, R156, and R165). PRMT1-dependent methylation of C/EBPα promoted the expression of cyclin D1 by blocking the interaction between C/EBPα and its corepressor HDAC3, which resulted in rapid growth of tumor cells during the pathogenesis of breast cancer. Inhibition of PRMT1 significantly impeded the growth of cancer cells from patients with triple-negative breast cancer. This evidence that PRMT1 mediates C/EBPα methylation sheds light on a novel pathway and potential therapeutic target in breast cancer. SIGNIFICANCE: This study provides novel mechanistic insight of the role of the arginine methyltransferase PRMT1 in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Li-Ming Liu
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen-Zheng Sun
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Zhe Fan
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya-Li Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mo-Bin Cheng
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Weston BR, Li L, Tyson JJ. Mathematical Analysis of Cytokine-Induced Differentiation of Granulocyte-Monocyte Progenitor Cells. Front Immunol 2018; 9:2048. [PMID: 30279691 PMCID: PMC6153365 DOI: 10.3389/fimmu.2018.02048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Granulocyte-monocyte progenitor (GMP) cells play a vital role in the immune system by maturing into a variety of white blood cells, including neutrophils and macrophages, depending on exposure to cytokines such as various types of colony stimulating factors (CSF). Granulocyte-CSF (G-CSF) induces granulopoiesis and macrophage-CSF (M-CSF) induces monopoiesis, while granulocyte/macrophage-CSF (GM-CSF) favors monocytic and granulocytic differentiation at low and high concentrations, respectively. Although these differentiation pathways are well documented, the mechanisms behind the diverse behavioral responses of GMP cells to CSFs are not well understood. In this paper, we propose a mechanism of interacting CSF-receptors and transcription factors that control GMP differentiation, convert the mechanism into a set of differential equations, and explore the properties of this mathematical model using dynamical systems theory. Our model reproduces numerous experimental observations of GMP cell differentiation in response to varying dosages of G-CSF, M-CSF, and GM-CSF. In particular, we are able to reproduce the concentration-dependent behavior of GM-CSF induced differentiation, and propose a mechanism driving this behavior. In addition, we explore the differentiation of a fourth phenotype, monocytic myeloid-derived suppressor cells (M-MDSC), showing how they might fit into the classical pathways of GMP differentiation and how progenitor cells can be primed for M-MDSC differentiation. Finally, we use the model to make novel predictions that can be explored by future experimental studies.
Collapse
Affiliation(s)
- Bronson R Weston
- Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
7
|
Hashimoto A, Gao C, Mastio J, Kossenkov A, Abrams SI, Purandare AV, Desilva H, Wee S, Hunt J, Jure-Kunkel M, Gabrilovich DI. Inhibition of Casein Kinase 2 Disrupts Differentiation of Myeloid Cells in Cancer and Enhances the Efficacy of Immunotherapy in Mice. Cancer Res 2018; 78:5644-5655. [PMID: 30139814 DOI: 10.1158/0008-5472.can-18-1229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
The role of myeloid cells as regulators of tumor progression that significantly impact the efficacy of cancer immunotherapies makes them an attractive target for inhibition. Here we explore the effect of a novel, potent, and selective inhibitor of serine/threonine protein kinase casein kinase 2 (CK2) on modulating myeloid cells in the tumor microenvironment. Although inhibition of CK2 caused only a modest effect on dendritic cells in tumor-bearing mice, it substantially reduced the amount of polymorphonuclear myeloid-derived suppressor cells and tumor-associated macrophages. This effect was not caused by the induction of apoptosis, but rather by a block of differentiation. Our results implicated downregulation of CCAAT-enhancer binding protein-α in this effect. Although CK2 inhibition did not directly affect tumor cells, it dramatically enhanced the antitumor activity of immune checkpoint receptor blockade using anti-CTLA-4 antibody. These results suggest a potential role of CK2 inhibitors in combination therapies against cancer.Significance: These findings demonstrate the modulatory effects of casein kinase 2 inhibitors on myeloid cell differentiation in the tumor microenvironment, which subsequently synergize with the antitumor effects of checkpoint inhibitor CTLA4. Cancer Res; 78(19); 5644-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Chan Gao
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | - Scott I Abrams
- Roswell Park Comprehensive Cancer Center, Department of Immunology, Buffalo, New York, Medimmune, Gaithersburg, Maryland
| | | | | | - Susan Wee
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | | |
Collapse
|
8
|
Pyzer AR, Cole L, Rosenblatt J, Avigan DE. Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 2016; 139:1915-26. [PMID: 27299510 DOI: 10.1002/ijc.30232] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment consists of an immunosuppressive niche created by the complex interactions between cancer cells and surrounding stromal cells. A critical component of this environment are myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells arrested at different stages of differentiation and expanded in response to a variety of tumor factors. MDSCs exert diverse effects in modulating the interactions between immune effector cells and the malignant cells. An increased presence of MDSCs is associated with tumor progression, poorer outcomes, and decreased effectiveness of immunotherapeutic strategies. In this article, we will review our current understanding of the mechanisms that underlie MDSC expansion and their immune-suppressive function. Finally, we review the preclinical studies and clinical trials that have attempted to target MDSCs, in order to improve responses to cancer therapies.
Collapse
Affiliation(s)
- Athalia Rachel Pyzer
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - Leandra Cole
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - Jacalyn Rosenblatt
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - David E Avigan
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| |
Collapse
|
9
|
Naboulsi W, Megger DA, Bracht T, Kohl M, Turewicz M, Eisenacher M, Voss DM, Schlaak JF, Hoffmann AC, Weber F, Baba HA, Meyer HE, Sitek B. Quantitative Tissue Proteomics Analysis Reveals Versican as Potential Biomarker for Early-Stage Hepatocellular Carcinoma. J Proteome Res 2015; 15:38-47. [DOI: 10.1021/acs.jproteome.5b00420] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wael Naboulsi
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik A. Megger
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thilo Bracht
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Kohl
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Don Marvin Voss
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | | | | | - Helmut E. Meyer
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Barbara Sitek
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
10
|
The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia 2015; 30:767-75. [PMID: 26601784 DOI: 10.1038/leu.2015.324] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions. Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of C/EBPα during normal and malignant haematopoiesis with special emphasis on the recent work.
Collapse
|
11
|
Kim H, Zhao Q, Zheng H, Li X, Zhang T, Ma X. A novel crosstalk between TLR4- and NOD2-mediated signaling in the regulation of intestinal inflammation. Sci Rep 2015; 5:12018. [PMID: 26153766 PMCID: PMC4495563 DOI: 10.1038/srep12018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022] Open
Abstract
Although Toll-like receptor 4 (TLR4)- and nucleotide-binding oligomerization domain 2 (NOD2)-mediated signaling mechanisms have been extensively studied individually, the crosstalk between them in the regulation of intestinal mucosal defense and tissue homeostasis has been underappreciated. Here, we uncover some novel activities of NOD2 by gene expression profiling revealing the global nature of the cross-regulation between TLR4- and NOD2-mediated signaling. Specifically, NOD2 is able to sense the intensity of TLR4-mediated signaling, resulting in either synergistic stimulation of Interluekin-12 (IL-12) production when the TLR signaling intensity is low; or in the inhibition of IL-12 synthesis and maintenance of intestinal mucosal homeostasis when the TLR signaling intensifies. This balancing act is mediated through receptor-interacting serine/threonine kinase 2, and the transcriptional regulator CCAAT/enhancer-binding protein α (C/EBPα) via its serine 248 phosphorylation by Protein Kinase C. Mice deficient in C/EBPα in the hematopoietic compartment are highly susceptible to chemically induced experimental colitis in an IL-12-dependent manner. Additionally, in contrast to the dogma, we find that the major Crohn’s disease-associated NOD2 mutations could cause a primarily immunodeficient phenotype by selectively impairing TLR4-mediated IL-12 production and host defense. To restore the impaired homeostasis would be a way forward to developing novel therapeutic strategies for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Hajeong Kim
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology and School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China 200240
| | - Quanju Zhao
- 1] State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology and School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China 200240 [2] Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA 10065
| | - Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology and School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China 200240
| | - Xin Li
- 1] Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA 10065 [2] Department of Breast Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China 410008
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA 10065
| | - Xiaojing Ma
- 1] State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology and School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China 200240 [2] Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA 10065
| |
Collapse
|
12
|
Aflatoxin B1 augments the synthesis of corticotropin releasing hormone in JEG-3 placental cells. Chem Biol Interact 2015; 237:73-9. [PMID: 26026912 DOI: 10.1016/j.cbi.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
Aflatoxins pose a major threat to food safety. These toxins are classified as hepatocarcinogens; however, their effect on the other tissues is unclear. During pregnancy, the fetus and placental tissues are especially sensitive to toxin exposure. In the present study aflatoxin B1 was found to induce the mRNA expression of corticotrophin-releasing hormone (CRH) in placental cells. A corresponding increase in CRH peptide in the culture medium was also observed. Since signal transduction pathways have been described previously in the control of CRH transcription, the status of protein kinase Cs (PKCs) and mitogen-activated protein kinases (MAPKs) were determined by Western analysis. In the aflatoxin B1-treated cultures, PKC α/βII/δ and ERK-1/2 were activated. As the PKC inhibitor bisindolylmaleimide I and the ERK inhibitor PD98059 could revert the induced CRH expression, the pathways dictated by PKC and ERK were likely involved in the transcriptional regulation. Electrophoretic mobility shift assay showed that C/EBP could be the ultimate activated transcription factor. Taken together, this study demonstrated that aflatoxin B1 could increase the parturition-related placental hormone in vitro. These findings might have significant implications for public health.
Collapse
|
13
|
Pan W, Sun Q, Wang Y, Wang J, Cao S, Ren X. Highlights on mechanisms of drugs targeting MDSCs: providing a novel perspective on cancer treatment. Tumour Biol 2015; 36:3159-69. [DOI: 10.1007/s13277-015-3363-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
|
14
|
Friedman AD. C/EBPα in normal and malignant myelopoiesis. Int J Hematol 2015; 101:330-41. [PMID: 25753223 DOI: 10.1007/s12185-015-1764-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Cancer Research Building I, Room 253, 1650 Orleans Street, Baltimore, MD, 21231, USA,
| |
Collapse
|
15
|
Bartholdy B, Christopeit M, Will B, Mo Y, Barreyro L, Yu Y, Bhagat TD, Okoye-Okafor UC, Todorova TI, Greally JM, Levine RL, Melnick A, Verma A, Steidl U. HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin Invest 2014; 124:1158-67. [PMID: 24487588 DOI: 10.1172/jci71264] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by disruption of HSC and progenitor cell differentiation. Frequently, AML is associated with mutations in genes encoding epigenetic modifiers. We hypothesized that analysis of alterations in DNA methylation patterns during healthy HSC commitment and differentiation would yield epigenetic signatures that could be used to identify stage-specific prognostic subgroups of AML. We performed a nano HpaII-tiny-fragment-enrichment-by-ligation-mediated-PCR (nanoHELP) assay to compare genome-wide cytosine methylation profiles between highly purified human long-term HSC, short-term HSC, common myeloid progenitors, and megakaryocyte-erythrocyte progenitors. We observed that the most striking epigenetic changes occurred during the commitment of short-term HSC to common myeloid progenitors and these alterations were predominantly characterized by loss of methylation. We developed a metric of the HSC commitment–associated methylation pattern that proved to be highly prognostic of overall survival in 3 independent large AML patient cohorts, regardless of patient treatment and epigenetic mutations. Application of the epigenetic signature metric for AML prognosis was superior to evaluation of commitment-based gene expression signatures. Together, our data define a stem cell commitment–associated methylome that is independently prognostic of poorer overall survival in AML.
Collapse
|
16
|
Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, Gupta S, Vietsch EE, Laughlin SZ, Wadhwa M, Chetram M, Joshi M, Wang F, Kallakury B, Toretsky J, Wellstein A, Yi C. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 2014; 7:ra42. [PMID: 24803537 PMCID: PMC4175524 DOI: 10.1126/scisignal.2005049] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates and frequently carries oncogenic KRAS mutation. However, KRAS has thus far not been a viable therapeutic target. We found that the abundance of YAP mRNA, which encodes Yes-associated protein (YAP), a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia. In genetically engineered Kras(G12D) and Kras(G12D):Trp53(R172H) mouse models, pancreas-specific deletion of Yap halted the progression of early neoplastic lesions to PDAC without affecting normal pancreatic development and endocrine function. Although Yap was dispensable for acinar to ductal metaplasia (ADM), an initial step in the progression to PDAC, Yap was critically required for the proliferation of mutant Kras or Kras:Trp53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. Yap functioned as a critical transcriptional switch downstream of the oncogenic KRAS-mitogen-activated protein kinase (MAPK) pathway, promoting the expression of genes encoding secretory factors that cumulatively sustained neoplastic proliferation, a tumorigenic stromal response in the tumor microenvironment, and PDAC progression in Kras and Kras:Trp53 mutant pancreas tissue. Together, our findings identified Yap as a critical oncogenic KRAS effector and a promising therapeutic target for PDAC and possibly other types of KRAS-mutant cancers.
Collapse
Affiliation(s)
- Weiying Zhang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nivedita Nandakumar
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yuhao Shi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mark Manzano
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alias Smith
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Garrett Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Swati Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Eveline E. Vietsch
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sean Z. Laughlin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mandheer Wadhwa
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mahandranauth Chetram
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Mrinmayi Joshi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Fen Wang
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jeffrey Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
17
|
Trikha P, Carson WE. Signaling pathways involved in MDSC regulation. Biochim Biophys Acta Rev Cancer 2014; 1846:55-65. [PMID: 24727385 DOI: 10.1016/j.bbcan.2014.04.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/03/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
The immune system has evolved mechanisms to protect the host from the deleterious effects of inflammation. The generation of immune suppressive cells like myeloid derived suppressor cells (MDSCs) that can counteract T cell responses represents one such strategy. There is an accumulation of immature myeloid cells or MDSCs in bone marrow (BM) and lymphoid organs under pathological conditions such as cancer. MDSCs represent a population of heterogeneous myeloid cells comprising of macrophages, granulocytes and dendritic cells that are at early stages of development. Although, the precise signaling pathways and molecular mechanisms that lead to MDSC generation and expansion in cancer remains to be elucidated. It is widely believed that perturbation of signaling pathways involved during normal hematopoietic and myeloid development under pathological conditions such as tumorogenesis contributes to the development of suppressive myeloid cells. In this review we discuss the role played by key signaling pathways such as PI3K, Ras, Jak/Stat and TGFb during myeloid development and how their deregulation under pathological conditions can lead to the generation of suppressive myeloid cells or MDSCs. Targeting these pathways should help in elucidating mechanisms that lead to the expansion of MDSCs in cancer and point to methods for eliminating these cells from the tumor microenvironment.
Collapse
Affiliation(s)
- Prashant Trikha
- Comprehensive Cancer Center, The Ohio State University, USA.
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, USA; Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Kassem N, Fahmy AEG, Desoky M, Medhat N, Zawam HM. CCAAT/enhancer binding protein α gene expression in Egyptian patients with acute myeloid leukemia. J Egypt Natl Canc Inst 2013; 25:115-20. [DOI: 10.1016/j.jnci.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/17/2022] Open
|
19
|
E6AP, an E3 ubiquitin ligase negatively regulates granulopoiesis by targeting transcription factor C/EBPα for ubiquitin-mediated proteasome degradation. Cell Death Dis 2013; 4:e590. [PMID: 23598402 PMCID: PMC3641343 DOI: 10.1038/cddis.2013.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits β-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (β-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often experienced in myeloid leukemia.
Collapse
|
20
|
PKCδ enhances C/EBPα degradation via inducing its phosphorylation and cytoplasmic translocation. Biochem Biophys Res Commun 2013; 433:220-5. [DOI: 10.1016/j.bbrc.2013.02.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
|
21
|
Radomska HS, Alberich-Jordà M, Will B, Gonzalez D, Delwel R, Tenen DG. Targeting CDK1 promotes FLT3-activated acute myeloid leukemia differentiation through C/EBPα. J Clin Invest 2012; 122:2955-66. [PMID: 22797303 DOI: 10.1172/jci43354] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Mutations that activate the fms-like tyrosine kinase 3 (FLT3) receptor are among the most prevalent mutations in acute myeloid leukemias. The oncogenic role of FLT3 mutants has been attributed to the abnormal activation of several downstream signaling pathways, such as STAT3, STAT5, ERK1/2, and AKT. Here, we discovered that the cyclin-dependent kinase 1 (CDK1) pathway is also affected by internal tandem duplication mutations in FLT3. Moreover, we also identified C/EBPα, a granulopoiesis-promoting transcription factor, as a substrate for CDK1. We further demonstrated that CDK1 phosphorylates C/EBPα on serine 21, which inhibits its differentiation-inducing function. Importantly, we found that inhibition of CDK1 activity relieves the differentiation block in cell lines with mutated FLT3 as well as in primary patient-derived peripheral blood samples. Clinical trials with CDK1 inhibitors are currently under way for various malignancies. Our data strongly suggest that targeting the CDK1 pathway might be applied in the treatment of FLT3ITD mutant leukemias, especially those resistant to FLT3 inhibitor therapies.
Collapse
Affiliation(s)
- Hanna S Radomska
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hasemann MS, Schuster MB, Frank AK, Theilgaard-Mönch K, Pedersen TÅ, Nerlov C, Porse BT. Phosphorylation of serine 248 of C/EBPα is dispensable for myelopoiesis but its disruption leads to a low penetrant myeloid disorder with long latency. PLoS One 2012; 7:e38841. [PMID: 22715416 PMCID: PMC3371045 DOI: 10.1371/journal.pone.0038841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/11/2012] [Indexed: 02/06/2023] Open
Abstract
Background Transcription factors play a key role in lineage commitment and differentiation of stem cells into distinct mature cells. In hematopoiesis, they regulate lineage-specific gene expression in a stage-specific manner through various physical and functional interactions with regulatory proteins that are simultanously recruited and activated to ensure timely gene expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is such a factor and is essential for the development of granulocytic/monocytic cells. The activity of C/EBPα is regulated on several levels including gene expression, alternative translation, protein interactions and posttranslational modifications, such as phosphorylation. In particular, the phosphorylation of serine 248 of the transactivation domain has been shown to be of crucial importance for granulocytic differentiation of 32Dcl3 cells in vitro. Methodology/Principal Findings Here, we use mouse genetics to investigate the significance of C/EBPα serine 248 in vivo through the construction and analysis of CebpaS248A/S248A knock-in mice. Surprisingly, 8-week old CebpaS248A/S248A mice display normal steady-state hematopoiesis including unaltered development of mature myeloid cells. However, over time some of the animals develop a hematopoietic disorder with accumulation of multipotent, megakaryocytic and erythroid progenitor cells and a mild impairment of differentiation along the granulocytic-monocytic lineage. Furthermore, BM cells from CebpaS248A/S248A animals display a competitive advantage compared to wild type cells in a transplantation assay. Conclusions/Significance Taken together, our data shows that the substitution of C/EBPα serine 248 to alanine favors the selection of the megakaryocytic/erythroid lineage over the monocytic/granulocytic compartment in old mice and suggests that S248 phosphorylation may be required to maintain proper hematopoietic homeostasis in response to changes in the wiring of cellular signalling networks. More broadly, the marked differences between the phenotype of the S248A variant in vivo and in vitro highlight the need to exert caution when extending in vitro phenotypes to the more appropriate in vivo context.
Collapse
Affiliation(s)
- Marie S. Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B. Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Deptartment of Hematology, Skanes University Hospital, University of Lund, Lund, Sweden
| | - Thomas Å. Pedersen
- European Molecular Biology Laboratory (EMBL) Mouse Biology Unit, Monterotondo, Italy
| | - Claus Nerlov
- European Molecular Biology Laboratory (EMBL) Mouse Biology Unit, Monterotondo, Italy
- Medical Research Council (MRC) Center for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburg, Edinburg, United Kingdom
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
23
|
Qi X, Nishida J, Chaves L, Ohmori K, Huang H. CCAAT/enhancer-binding protein alpha (C/EBPalpha) is critical for interleukin-4 expression in response to FcepsilonRI receptor cross-linking. J Biol Chem 2011; 286:16063-73. [PMID: 21454593 DOI: 10.1074/jbc.m110.213389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basophils mediate many of their biological functions by producing IL-4. However, it is unknown how the Il4 gene is regulated in basophils. Here, we report that CCAAT/enhancer-binding protein α (C/EBPα), a major myeloid transcription factor, was highly expressed in basophils. We show that C/EBPα selectively activated Il4 promoter-luciferase reporter gene transcription in response to IgE cross-linking, but C/EBPα did not activate other known Th2 or mast cell enhancers. We found that the PI3K pathway and calcineurin were essential in C/EBPα-driven Il4 promoter-luciferase gene transcription. Our mutation analyses revealed that C/EBPα drove Il4 promoter-luciferase activity depending on its DNA binding domain. Mutation of the C/EBPα-binding site in the Il4 promoter region abolished C/EBPα-driven Il4 promoter-luciferase activity. Our results further showed that a mutation in nuclear factor of activated T cells (NFAT)-binding sites in the Il4 promoter also negated C/EBPα-driven Il4 promoter-luciferase activity. Our study demonstrates that C/EBPα, in cooperation with NFAT, directly regulates Il4 gene transcription.
Collapse
Affiliation(s)
- Xiaopeng Qi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, University of Colorado Denver School of Medicine, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
24
|
Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα. Oncogene 2011; 30:3328-35. [PMID: 21399661 DOI: 10.1038/onc.2011.57] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lung cancer is the most common cause of cancer-related mortality worldwide. Here, we report elevated expression of tribbles homolog 2 (TRIB2) in primary human lung tumors and in non-small cell lung cancer cells that express low levels of differentiation-inducing transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). In approximately 10-20% of cases, elevated TRIB2 expression resulted from gene amplification. TRIB2 knockdown was found to inhibit cell proliferation and in vivo tumor growth. In addition, TRIB2 knockdown led to morphological changes similar to C/EBPα overexpression and correlated with increased expression and activity of C/EBPα. TRIB2-mediated regulation of C/EBPα was found to occur through the association of TRIB2 with the E3 ligase TRIM21. Together, these data identify TRIB2 as a potential driver of lung tumorigenesis through a mechanism that involves downregulation of C/EBPα.
Collapse
|
25
|
CpG methylation of half-CRE sequences creates C/EBPalpha binding sites that activate some tissue-specific genes. Proc Natl Acad Sci U S A 2010; 107:20311-6. [PMID: 21059933 DOI: 10.1073/pnas.1008688107] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA methylation of the cytosine in the CpG dinucleotide is typically associated with gene silencing. Genomic analyses have identified low CpG promoters that are both methylated and transcriptionally active, but the mechanism underlying the activation of these methylated promoters remains unclear. Here we show that CpG methylation of the CRE sequence (TGACGTCA) enhances the DNA binding of the C/EBPα transcription factor, a protein critical for activation of differentiation in various cell types. Transfection assays also show that C/EBPα activates the CRE sequence only when it is methylated. The biological significance of this observation was seen in differentiating primary keratinocyte cultures from newborn mice where certain methylated promoters are both bound by C/EBPα and activated upon differentiation. Experimental demethylation by either 5-azacytidine treatment or DNMT1 depletion diminished both C/EBPα binding and activation of the same methylated promoters upon differentiation suggesting that CpG methylation can localize C/EBPα. Transfection studies in cell cultures using methylated tissue-specific proximal promoters identified half-CRE (CGTCA) and half-C/EBP (CGCAA) sequences that need to be methylated for C/EBPα mediated activation. In primary dermal fibroblasts, C/EBPα activates a different set of methylated tissue-specific promoters upon differentiation into adipocytes. These data identify a new function for methyl CpGs: producing DNA binding sites at half-CRE and half-C/EBP sequences for C/EBPα that are needed to activate tissue-specific genes.
Collapse
|
26
|
Abstract
Abstract
Introduction
The rational design of targeted therapies for acute myeloid leukemia (AML) requires the discovery of novel protein pathways in the systems biology of a specific AML subtype. We have shown that in the AML subtype with translocation t(8;21), the leukemic fusion protein AML1–ETO inhibits the function of transcription factors PU.1 and C/EBPα via direct protein–protein interaction. In addition, recently using proteomics, we have also shown that the AML subtypes differ in their proteome, interactome, and post-translational modifications.
Methods
We, therefore, hypothesized that the systematic identification of target proteins of AML1–ETO on a global proteome-wide level will lead to novel insights into the systems biology of t(8;21) AML on a post-genomic functional level. Thus, 6 h after inducible expression of AML1–ETO, protein expression changes were identified by two-dimensional gel electrophoresis and subsequent mass spectrometry analysis.
Results
Twenty-eight target proteins of AML1–ETO including prohibitin, NM23, HSP27, and Annexin1 were identified by MALDI-TOF mass spectrometry. AML1–ETO upregulated the differentiation inhibitory factor NM23 protein expression after 6 h, and the NM23 mRNA expression was also elevated in t(8;21) AML patient samples in comparison with normal bone marrow. AML1–ETO inhibited the ability of C/EBP transcription factors to downregulate the NM23 promoter. These data suggest a model in which AML1–ETO inhibits the C/EBP-induced downregulation of the NM23 promoter and thereby increases the protein level of differentiation inhibitory factor NM23.
Conclusions
Proteomic pathway discovery can identify novel functional pathways in AML, such as the AML1–ETO–C/EBP–NM23 pathway, as the main step towards a systems biology and therapy of AML.
Collapse
|
27
|
Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis. Blood 2010; 115:2491-9. [PMID: 20101026 DOI: 10.1182/blood-2009-07-231993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units, called poly-LacNAc chains, characterize the histo-blood group i and I antigens, respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus, which expresses 3 IGnT transcripts, IGnTA, IGnTB, and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation, the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue, with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene, consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model, with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen, granulocytic CD15, and also erythroid CD71 antigens. Taken together, these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism, with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.
Collapse
|
28
|
Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood 2009; 113:2795-804. [PMID: 19168792 DOI: 10.1182/blood-2008-08-172387] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is a heterogeneous disease from the molecular and biologic standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients who shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, whereas the rest presented with silencing of this gene and coexpression of certain T-cell markers. DNA methylation studies revealed that these 2 groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA-silenced leukemias also displayed marked hypermethylation compared with normal CD34(+) hematopoietic cells, whereas CEBPA mutant cases showed only mild changes in DNA methylation compared with these normal progenitors. Biologically, CEBPA-silenced leukemias presented with a decreased response to myeloid growth factors in vitro.
Collapse
|
29
|
Abstract
Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Beatrice U Mueller
- Department of Internal Medicine, University Hospital, 3010, Bern, Switzerland.
| | | |
Collapse
|
30
|
Trivedi AK, Pal P, Behre G, Singh SM. Multiple ways of C/EBPalpha inhibition in myeloid leukaemia. Eur J Cancer 2008; 44:1516-23. [PMID: 18515086 DOI: 10.1016/j.ejca.2008.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/29/2022]
Abstract
Transcription factors play a crucial role in myeloid differentiation and lineage determination. Tumour suppressor protein C/EBPalpha is a key regulator of granulocytic differentiation whose functional inactivation has become a pathophysiological signature of myeloid leukaemia. In this review we describe various mechanisms such as antagonistic protein-protein interaction, mutation and posttranslational modifications of C/EBPalpha which lead to its transcriptional inhibition and render C/EBPalpha inactive in its functions.
Collapse
Affiliation(s)
- A K Trivedi
- Drug Target Discovery and Development Division, Central Drug Research Institute (CDRI), Lucknow 226001, India.
| | | | | | | |
Collapse
|
31
|
Khanna-Gupta A. Sumoylation and the function of CCAAT enhancer binding protein alpha (C/EBP alpha). Blood Cells Mol Dis 2008; 41:77-81. [PMID: 18406180 PMCID: PMC2505045 DOI: 10.1016/j.bcmd.2008.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/06/2008] [Indexed: 12/25/2022]
Abstract
CCAAT enhancer binding protein alpha (C/EBP alpha) is the founding member of a family of basic region/leucine zipper (bZIP) transcription factors and is a master regulator of granulopoiesis. It is expressed at high levels throughout myeloid differentiation and binds to the promoters of multiple myeloid-specific genes at different stages of myeloid maturation. Profound hematopoietic abnormalities occur in mice nullizygous for C/EBP alpha including a selective early block in the differentiation of granulocytes. Mutations in C/EBP alpha are present in a subset of patients with AML presenting with a normal karyotype. These mutations can result in the expression of a 30 kDa dominant negative C/EBP alpha isoform, which contributes to loss of C/EBP alpha function. The molecular basis for this observation remains unknown. In addition to phosphorylation, C/EBP alpha is modified, post-translationally by a small ubiquitin-related modifier (SUMO) at a lysine residue (K159), which lies within the growth inhibitory region of the C/EBP alpha protein. Sumoylation at K159 in the C/EBP alpha protein prevents association of the SWI/SNF chromatin remodeling complex with C/EBP alpha, thereby hampering transactivation. In this review, the functional implications of post-translational modification, particularly sumoylation, of C/EBP alpha in normal granulopoiesis and leukemia are considered.
Collapse
Affiliation(s)
- Arati Khanna-Gupta
- Division of Hematology, The Brigham and Women's Hospital, Harvard Medical School, Karp Building RB5-212, 1 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Carnicer MJ, Lasa A, Buschbeck M, Serrano E, Carricondo M, Brunet S, Aventin A, Sierra J, Croce LD, Nomdedeu JF. K313dup is a recurrent CEBPA mutation in de novo acute myeloid leukemia (AML). Ann Hematol 2008; 87:819-27. [DOI: 10.1007/s00277-008-0528-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 06/03/2008] [Indexed: 12/18/2022]
|
33
|
Singh SM, Trivedi A, Behre G. C/EBPα S248A mutation reduces granulocytic differentiation in human leukemic K562 cells. Biochem Biophys Res Commun 2008; 369:692-4. [DOI: 10.1016/j.bbrc.2008.02.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 11/15/2022]
|
34
|
Iida S, Watanabe-Fukunaga R, Nagata S, Fukunaga R. Essential role of C/EBPalpha in G-CSF-induced transcriptional activation and chromatin modification of myeloid-specific genes. Genes Cells 2008; 13:313-27. [PMID: 18363963 DOI: 10.1111/j.1365-2443.2008.01173.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Granulocyte colony-stimulating factor (G-CSF) regulates the proliferation and differentiation of neutrophilic progenitor cells. Here, we investigated the roles of CCAAT/enhancer-binding protein (C/EBP)alpha in the G-CSF-induced transcriptional activation and chromatin modification of the CCR2 and myeloperoxidase (MPO) genes in IL-3-dependent myeloid FDN1.1 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays revealed that G-CSF activates C/EBPalpha to bind target promoters. ChIP mapping experiments across the CCR2 and MPO genes showed that G-CSF induces histone H3 modifications: the acetylation of Lys9, trimethylation of Lys4 and trimethylation of Lys9. The distribution profile of the trimethylated Lys9 was distinct from that of the two other modifications. All the G-CSF-induced C/EBPalpha recruitment, transcriptional activation and histone modifications were reversed by re-stimulation with IL-3, and were abolished by short hairpin RNA (shRNA)-mediated knockdown of C/EBPalpha. These results indicate that C/EBPalpha is activated by G-CSF to bind target promoters, and plays critical roles in the transcriptional activation and dynamic chromatin modification of target genes during neutrophil differentiation.
Collapse
Affiliation(s)
- Satoshi Iida
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
35
|
Cha HC, Oak NR, Kang S, Tran TA, Kobayashi S, Chiang SH, Tenen DG, MacDougald OA. Phosphorylation of CCAAT/enhancer-binding protein alpha regulates GLUT4 expression and glucose transport in adipocytes. J Biol Chem 2008; 283:18002-11. [PMID: 18408001 DOI: 10.1074/jbc.m800419200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) is required during adipogenesis for development of insulin-stimulated glucose uptake. Modes for regulating this function of C/EBPalpha have yet to be determined. Phosphorylation of C/EBPalpha on Ser-21 has been implicated in the regulation of granulopoiesis and hepatic gene expression. To explore the role of Ser-21 phosphorylation on C/EBPalpha function during adipogenesis, we developed constructs in which Ser-21 was mutated to alanine (S21A) to model dephosphorylation. In two cell culture models deficient in endogenous C/EBPalpha, enforced expression of S21A-C/EBPalpha resulted in normal lipid accumulation and expression of many adipogenic markers. However, S21A-C/EBPalpha had impaired ability to activate the Glut4 promoter specifically, and S21A-C/EBPalpha expression resulted in diminished GLUT4 and adiponectin expression, as well as reduced insulin-stimulated glucose uptake. No defects in insulin signaling or GLUT4 vesicle trafficking were identified with S21A-C/EBPalpha expression, and when exogenous GLUT4 expression was enforced to normalize expression in S21A-C/EBPalpha cells, insulin-responsive glucose transport was reconstituted, suggesting that the primary defect was a deficit in GLUT4 levels. Mice in which endogenous C/EBPalpha was replaced with S21A-C/EBPalpha displayed reduced GLUT4 and adiponectin protein expression in epididymal adipose tissue and increased blood glucose compared with wild-type littermates. These results suggest that phosphorylation of C/EBPalpha on Ser-21 may regulate adipocyte gene expression and whole body glucose homeostasis.
Collapse
Affiliation(s)
- Hyuk C Cha
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
C/EBPs: recipients of extracellular signals through proteome modulation. Curr Opin Cell Biol 2008; 20:180-5. [DOI: 10.1016/j.ceb.2008.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 12/27/2022]
|
37
|
Abstract
The current paradigm on leukemogenesis indicates that leukemias are propagated by leukemic stem cells. The genomic events and pathways involved in the transformation of hematopoietic precursors into leukemic stem cells are increasingly understood. This concept is based on genomic mutations or functional dysregulation of transcription factors in malignant cells of patients with acute myeloid leukemia (AML). Loss of the CCAAT/enhancer binding protein-alpha (CEBPA) function in myeloid cells in vitro and in vivo leads to a differentiation block, similar to that observed in blasts from AML patients. CEBPA alterations in specific subgroups of AML comprise genomic mutations leading to dominant-negative mutant proteins, transcriptional suppression by leukemic fusion proteins, translational inhibition by activated RNA-binding proteins, and functional inhibition by phosphorylation or increased proteasomal-dependent degradation. The PU.1 gene can be mutated or its expression or function can be blocked by leukemogenic fusion proteins in AML. Point mutations in the RUNX1/AML1 gene are also observed in specific subtypes of AML, in addition to RUNX1 being the most frequent target for chromosomal translocation in AML. These data are persuasive evidence that impaired function of particular transcription factors contributes directly to the development of human AML, and restoring their function represents a promising target for novel therapeutic strategies in AML.
Collapse
|
38
|
Geletu M, Balkhi MY, Peer Zada AA, Christopeit M, Pulikkan JA, Trivedi AK, Tenen DG, Behre G. Target proteins of C/EBPalphap30 in AML: C/EBPalphap30 enhances sumoylation of C/EBPalphap42 via up-regulation of Ubc9. Blood 2007; 110:3301-9. [PMID: 17671234 DOI: 10.1182/blood-2007-01-071035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a critical regulator for early myeloid differentiation. Mutations in C/EBPalpha occur in 10% of patients with acute myeloid leukemia (AML), leading to the expression of a 30-kDa dominant-negative isoform (C/EBPalphap30). In the present study, using a global proteomics approach to identify the target proteins of C/EBPalphap30, we show that Ubc9, an E2-conjugating enzyme essential for sumoylation, is increased in its expression when C/EBPalphap30 is induced. We confirmed the increased expression of Ubc9 in patients with AML with C/EBPalphap30 mutations compared with other subtypes. We further confirmed that the increase of Ubc9 expression was mediated through increased transcription. Furthermore, we show that Ubc9-mediated enhanced sumoylation of C/EBPalphap42 decreases the transactivation capacity on a minimal C/EBPalpha promoter. Importantly, overexpression of C/EBPalphap30 in granulocyte colony-stimulating factor (G-CSF)-stimulated human CD34(+) cells leads to a differentiation block, which was overcome by the siRNA-mediated silencing of Ubc9. In summary, our data indicate that Ubc9 is an important C/EBPalphap30 target through which C/EBPalphap30 enhances the sumoylation of C/EBPalphap42 to inhibit granulocytic differentiation.
Collapse
Affiliation(s)
- Mulu Geletu
- Bone Marrow Transplantation Section, State Center for Cell and Gene Therapy, Department of Internal Medicine IV-Hematology/Oncology, University Hospital of Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The production of mature, differentiated myeloid cells is regulated by the action of hematopoietic cytokines on progenitor cells in the bone marrow. Cytokines drive the process of myeloid differentiation by binding to specific cell-surface receptors in a stage- and lineage-specific manner. Following the binding of a cytokine to its cognate receptor, intracellular signal-transduction pathways become activated that facilitate the myeloid differentiation process. These intracellular signaling pathways may promote myelopoiesis by stimulating expansion of a progenitor pool, supporting cellular survival during the differentiation process, or by directly driving the phenotypic changes associated with differentiation. Ultimately, pathways that drive the differentiation process converge on myeloid transcription factors, including PU.1 and the C/EBP family, that are critical for differentiation to proceed. While much is known about the cytokines, cytokine receptors and transcription factors that regulate myeloid differentiation, less is known about the precise roles that specific signaling mediators play in promoting myeloid differentiation. Recently, however, the application of novel pharmacologic inhibitors, siRNA strategies, and transgenic and knockout models has begun to shed light on the involvement and function of signaling pathways in normal myeloid differentiation. This review will discuss the roles that key signaling pathways and mediators play in myeloid differentiation.
Collapse
Affiliation(s)
- M B Miranda
- Department of Medicine, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
40
|
Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7:105-17. [PMID: 17259967 DOI: 10.1038/nri2024] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, great progress has been made in elucidating the progenitor-cell hierarchy of the myeloid lineage. Transcription factors have been shown to be key determinants in the orchestration of myeloid identity and differentiation fates. Most transcription factors show cell-lineage-restricted and stage-restricted expression patterns, indicating the requirement for tight regulation of their activities. Moreover, if dysregulated or mutated, these transcription factors cause the differentiation block observed in many myeloid leukaemias. Consequently, therapies designed to restore defective transcription factor functions are an attractive option in the treatment of myeloid and other human cancers.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13092 Berlin, Germany.
| | | |
Collapse
|
41
|
Liao H, Hyman MC, Lawrence DA, Pinsky DJ. Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1alpha, and C/EBPalpha. FASEB J 2006; 21:935-49. [PMID: 17197388 DOI: 10.1096/fj.06-6285com] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypoxia, as occurs during tissue ischemia, tips the natural anticoagulant/procoagulant balance of the endovascular wall to favor activation of coagulation. Plasminogen activator inhibitor-1 (PAI-1) is an important factor suppressing fibrinolysis under conditions of low oxygen tension. We previously reported that hypoxia induced PAI-1 mRNA and antigen expression in murine macrophages secondary to increased de novo transcription as well as increased mRNA stability. We now show in RAW264.7 murine macrophages that the transcription factors early growth response gene-1 (Egr-1), hypoxia-inducible factor-1alpha (HIF-1alpha), and CCAAT/enhancer binding protein alpha (C/EBPalpha) are quickly activated in hypoxia and are responsible for transcription and expression of PAI-1. Murine PAI-1 promoter constructs, including Egr, HIF-1alpha, and/or C/EBPalpha binding sites, were transfected into RAW 264.7 murine macrophages. To identify the relative importance of each of these putative hypoxia-responsive elements, cells were exposed to normobaric hypoxia, and transcriptional activity was recorded. At 16 h of hypoxic exposure, murine PAI-1 promoter deletion constructs that included Egr, HIF-1alpha, and/or C/EBPalpha binding sites demonstrated increased transcriptional activity. Mutation of each of these three murine PAI-1 promoter sites (or a combination of them) resulted in a marked reduction in hypoxia sensitivity as detected by transcriptional analysis. Functional data obtained using 32P-labeled Egr, HIF-1alpha response element (HRE), and C/EBPalpha oligonucleotides revealed induction of DNA binding activity in nuclear extracts from hypoxic RAW cells, with supershift analysis confirming activation of Egr-1, HIF-1alpha, or C/EBPalpha. ChIP analysis confirmed the authenticity of these interactions as each of these transcription factors binds to chromatin under hypoxic conditions. Further, the induction of PAI-1 by Egr-1, HIF-1alpha, or C/EBPalpha was replicated in primary peritoneal macrophages. These data suggest that although HIF-1alpha appears to dominate the PAI-1 transcriptional response in hypoxia, Egr-1 and C/EBPalpha greatly augment this response and can do so independent of HIF-1alpha or each other. These studies are relevant to ischemic up-regulation of the PAI-1 gene and consequent accrual of microvascular thrombus under ischemic conditions.
Collapse
Affiliation(s)
- Hui Liao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
42
|
Trivedi AK, Bararia D, Christopeit M, Peerzada AA, Singh SM, Kieser A, Hiddemann W, Behre HM, Behre G. Proteomic identification of C/EBP-DBD multiprotein complex: JNK1 activates stem cell regulator C/EBPalpha by inhibiting its ubiquitination. Oncogene 2006; 26:1789-801. [PMID: 16983342 DOI: 10.1038/sj.onc.1209964] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Functional inactivation of transcription factors in hematopoietic stem cell development is involved in the pathogenesis of acute myeloid leukemia (AML). Stem cell regulator C/enhancer binding protein (EBP)alpha is among such transcription factors known to be inactive in AML. This is either due to mutations or inhibition by protein-protein interactions. Here, we applied a mass spectrometry-based proteomic approach to systematically identify putative co-activator proteins interacting with the DNA-binding domain (DBD) of C/EBP transcription factors. In our proteomic screen, we identified c-Jun N-terminal kinase (JNK) 1 among others such as PAK6, MADP-1, calmodulin-like skin proteins and ZNF45 as proteins interacting with DBD of C/EBPs from nuclear extract of myelomonocytic U937 cells. We show that kinase JNK1 physically interacts with DBD of C/EBPalpha in vitro and in vivo. Furthermore, we show that active JNK1 inhibits ubiquitination of C/EBPalpha possibly by phosphorylating in its DBD. Consequently, JNK1 prolongs C/EBPalpha protein half-life leading to its enhanced transactivation and DNA-binding capacity. In certain AML patients, however, the JNK1 mRNA expression and its kinase activity is decreased which suggests a possible reason for C/EBPalpha inactivation in AML. Thus, we report the first proteomic screen of C/EBP-interacting proteins, which identifies JNK1 as positive regulator of C/EBPalpha.
Collapse
Affiliation(s)
- A K Trivedi
- Bone Marrow Transplantation Section, Department of Internal Medicine IV, State Center for Cell and Gene Therapy, Martin-Luther-University Halle-Wittenberg, Halle, SA, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang D, D'Costa J, Civin CI, Friedman AD. C/EBPalpha directs monocytic commitment of primary myeloid progenitors. Blood 2006; 108:1223-9. [PMID: 16645168 PMCID: PMC1895870 DOI: 10.1182/blood-2005-12-008763] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
C/EBPalpha is required for generation of granulocyte-monocyte progenitors, but the subsequent role of C/EBPalpha in myeloid lineage commitment remains uncertain. We transduced murine marrow cells with C/EBPalpha-estradiol receptor (ER) or empty vector and subjected these to lineage depletion just prior to culture in estradiol with myeloid cytokines. This protocol limits biases due to lineage-specific effects on developmental kinetics, proliferation, and apoptosis. Also, lowering the dose of estradiol reduced activated C/EBPalpha-ER to near the physiologic range. C/EBPalpha-ER increased Mac1(+)/Gr1(-)/MPO(-)/low monocytes 1.9-fold while reducing Mac1(+)/Gr1(+)/MPO(hi) granulocytes 2.5-fold at 48 hours, even in 0.01 microM estradiol. This pattern was confirmed morphologically and by quantitative polymerase chain reaction (PCR) assay of lineage markers. To directly assess effects on immature progenitors, transduced cells were cultured for 1 day with and then in methylcellulose without estradiol. A 2-fold increase in monocytic compared with granulocytic colonies was observed in IL-3/IL-6/SCF or GM-CSF, but not G-CSF, even in 0.01 microM estradiol. C/EBPalpha-ER induced PU.1 mRNA, and PU.1-ER stimulated monocytic development, suggesting that transcriptional induction of PU.1 by C/EBPalpha contributes to monopoiesis. A C/EBPalpha variant incapable of zippering with c-Jun did not induce monopoiesis, and a variant unable to bind NF-kappaB p50 stimulated granulopoiesis, suggesting their cooperation with C/EBPalpha during monocytic commitment.
Collapse
Affiliation(s)
- Dehua Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
44
|
Schuster MB, Porse BT. C/EBPalpha: a tumour suppressor in multiple tissues? Biochim Biophys Acta Rev Cancer 2006; 1766:88-103. [PMID: 16616425 DOI: 10.1016/j.bbcan.2006.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 11/22/2022]
Abstract
The CCATT/enhancer binding protein alpha, C/EBPalpha, is a key transcription factor involved in late differentiation events of several cell types. Besides acting as a classical transcription factor, C/EBPalpha is also a well-characterized inhibitor of mitotic growth in most cell lines tested. In line with its anti-mitotic properties, C/EBPalpha has been shown to interact with, and alter the activities of, several cell cycle related proteins and a number of models as to the mechanistics of C/EBPalpha-mediated growth repression have been proposed. More recently, several reports have indicated that C/EBPalpha acts as a tumour suppressor in the hematopoietic system and that mutation within C/EBPalpha is sufficient to induce tumourigenesis. Here, we will review these data and probe the possibility that C/EBPalpha also act as a tumour suppressor in other C/EBPalpha-expressing tissues.
Collapse
Affiliation(s)
- Mikkel Bruhn Schuster
- Section for Gene Therapy Research, Department of Clinical Biochemistry, Copenhagen University Hospital, Juliane Maries Vej 20-9322, DK2100 Copenhagen, Denmark
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The transcription factor C/EBPalpha controls differentiation and proliferation in normal granulopoiesis in a stage-specific manner. Loss of C/EBPalpha function in myeloid cells in vitro and in vivo leads to a block to myeloid differentiation similar to that which is observed in malignant cells from patients with acute myeloid leukemia. The finding of C/EBPalpha alterations in subgroups of acute myeloid leukemia patients suggests a direct link between critically decreased C/EBPalpha function and the development of the disorder. RECENT FINDINGS Conditional mouse models provide direct evidence that loss of C/EBPalpha function leads to the accumulation of myeloid blasts in the bone marrow. Targeted disruption of the wild type C/EBPalpha protein, while conserving the dominant-negative 30 kDa isoform of C/EBPalpha, induces an AML-like disease in mice. In hematopoietic stem cells C/EBPalpha serves to limit cell self-renewal. Finally, C/EBPalpha function is disrupted at different levels in specific subgroups of acute myeloid leukemia patients. SUMMARY There is evidence that impaired C/EBPalpha function contributes directly to the development of acute myeloid leukemia. Normal myeloid development and acute myeloid leukemia are now thought to reflect opposite sides of the same hematopoietic coin. Restoring C/EBPalpha function represents a promising target for novel therapeutic strategies in acute myeloid leukemia.
Collapse
|
46
|
Steffen B, Müller-Tidow C, Schwäble J, Berdel WE, Serve H. The molecular pathogenesis of acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56:195-221. [PMID: 16236521 DOI: 10.1016/j.critrevonc.2004.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 09/30/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022] Open
Abstract
The description of the molecular pathogenesis of acute myeloid leukemias (AML) has seen dramatic progress over the last years. Two major types of genetic events have been described that are crucial for leukemic transformation: alterations in myeloid transcription factors governing hematopoietic differentiation and activating mutations of signal transduction intermediates. These processes are highly interdependent, since the molecular events changing the transcriptional control in hematopoietic progenitor cells modify the composition of signal transduction molecules available for growth factor receptors, while the activating mutations in signal transduction molecules induce alterations in the activity and expression of several transcription factors that are crucial for normal myeloid differentiation. The purpose of this article is to review the current literature describing these genetic events, their biological consequences and their clinical implications. As the article will show, the recent description of several critical transforming mutations in AML may soon give rise to more efficient and less toxic molecularly targeted therapies of this deadly disease.
Collapse
Affiliation(s)
- Björn Steffen
- Department of Medicine, Hematology/Oncology, University of Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | | | | | | | | |
Collapse
|
47
|
Shimokawa T, Ra C. C/EBPα functionally and physically interacts with GABP to activate the human myeloid IgA Fc receptor (FcαR, CD89) gene promoter. Blood 2005; 106:2534-42. [PMID: 15928042 DOI: 10.1182/blood-2004-06-2413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman Fcα receptor (FcαR; CD89), the receptor for the crystallizable fragment (Fc) of immunoglobulin A (IgA), is expressed exclusively in myeloid cells, including granulocytes and monocytes/macrophages, and is considered to define a crucial role of these cells in immune and inflammatory responses. A 259-base pair fragment of the FCAR promoter is sufficient to direct myeloid expression of a reporter gene and contains functionally important binding sites for CCAAT/enhancer-binding protein α (C/EBPα) (CE1, CE2, and CE3) and an unidentified Ets-like nuclear protein. Here, we show that the Ets-binding site is bound by a heterodimer composed of GA-binding protein α (GABPα), an Ets-related factor, and GABPβ, a Notch-related protein. Cotransfection of GABP increased FCAR promoter activity 3.7-fold through the Ets-binding site. GABP and C/EBPα synergistically activated the FCAR promoter 280-fold. Consistent with these observations, in vitro binding analyses revealed a physical interaction between the GABPα subunit and C/EBPα. This is the first report demonstrating both physical and functional interactions between GABP and C/EBPα and will provide new insights into the molecular basis of myeloid gene expression. (Blood. 2005;106:2534-2542)
Collapse
Affiliation(s)
- Toshibumi Shimokawa
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Sciences, Itabashi-ku, Tokyo, Japan
| | | |
Collapse
|
48
|
Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 2005; 328:461-70. [PMID: 15694370 DOI: 10.1016/j.bbrc.2005.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor C/EBP delta is involved in the intestinal inflammatory response. C/EBP delta regulates several inflammatory response genes, such as haptoglobin, in the rat intestinal epithelial cell line IEC-6 in response to IL-1. However, the different C/EBP delta domains involved in IL-1 beta-mediated transcriptional activation and the kinases implicated have not been properly defined. To address this, we determined the role of the p38 MAP kinase in the regulation of C/EBP delta transcriptional activity. The IL-1-dependent induction of the acute phase protein gene haptoglobin in IEC-6 cells was decreased in response to the p38 MAP kinase inhibitor SB203580, as determined by Northern blot. Transcriptional activity of C/EBP delta was repressed by the specific inhibitor of the p38 MAP kinase, as assessed by transient transfection assays. Mutagenesis studies and transient transfection assays revealed an important domain for transcriptional activation between amino acids 70 and 108. This domain overlapped with a docking site for the p38 MAP kinase, between amino acids 75 and 85, necessary to insure C/EBP delta phosphorylation. Deletion of this domain led to a decrease in basal transcriptional activity of C/EBP delta and in p300-dependent transactivation, as assessed by transient transfection assays, and in IL-1-dependent haptoglobin induction. This unusual arrangement of a kinase docking site within a transactivation domain may functionally be important for the regulation of C/EBP delta transcriptional activity.
Collapse
Affiliation(s)
- Amy Svotelis
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
49
|
Shim M, Powers KL, Ewing SJ, Zhu S, Smart RC. Diminished Expression of C/EBPα in Skin Carcinomas Is Linked to Oncogenic Ras and Reexpression of C/EBPα in Carcinoma Cells Inhibits Proliferation. Cancer Res 2005. [DOI: 10.1158/0008-5472.861.65.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The basic leucine zipper transcription factor, CCAAT/enhancer binding protein α (C/EBPα) is involved in mitotic growth arrest and has been implicated as a human tumor suppressor in acute myeloid leukemia. We have previously shown that C/EBPα is abundantly expressed in mouse epidermal keratinocytes. In the current study, the expression of C/EBPα was evaluated in seven mouse skin squamous cell carcinoma (SCC) cell lines that contain oncogenic Ha-Ras. C/EBPα mRNA and protein levels were greatly diminished in all seven SCC cell lines compared with normal primary keratinocytes, whereas C/EBPβ levels were not dramatically changed. Reexpression of C/EBPα in these SCC cell lines resulted in the inhibition in SCC cell proliferation. To determine whether the decrease in C/EBPα expression observed in the SCC cell lines also occurred in the carcinoma itself, immunohistochemical staining for C/EBPα in mouse skin SCCs was conducted. All 14 SCCs evaluated displayed negligible C/EBPα protein expression and normal C/EBPβ levels compared with the epidermis and all 14 carcinomas contained mutant Ras. To determine whether oncogenic Ras is involved in the down-regulation of C/EBPα, BALB/MK2 keratinocytes were infected with a retrovirus containing Ras12V, and C/EBPα protein, mRNA and DNA binding levels were determined. Keratinocytes infected with the retrovirus containing oncogenic Ras12V displayed greatly diminished C/EBPα protein, mRNA and DNA binding levels. In addition, BALB/MK2 cells containing endogenous mutant Ras displayed diminished C/EBPα expression and the ectopic expression of a dominant-negative RasN17 partially restored C/EBPα levels in these cells. These results indicate that oncogenic Ras negatively regulates C/EBPα expression and the loss of C/EBPα expression may contribute to the development of skin SCCs.
Collapse
Affiliation(s)
- Minsub Shim
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Kristina L. Powers
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Sarah J. Ewing
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Songyun Zhu
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| | - Robert C. Smart
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
50
|
Affiliation(s)
- Claus Nerlov
- Mouse Biology Programme, European Molecular Biology Laboratory, via Ramarini 32, 00016 Monterotondo, Italy.
| |
Collapse
|