1
|
Xu J, Cheng S, Zhang R, Cai F, Zhu Z, Cao J, Wang J, Yu Q. Study on the mechanism of sodium ion inhibiting citric acid fermentation in Aspergillus niger. BIORESOURCE TECHNOLOGY 2024; 394:130245. [PMID: 38145764 DOI: 10.1016/j.biortech.2023.130245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Excessive sodium significantly inhibits citric acid fermentation by Aspergillus niger during the recycling of citric acid wastewater. This study aimed to elucidate the inhibition mechanism at the interface of physiology and transcriptomics. The results showed that excessive sodium caused a 22.3 % increase in oxalic acid secretion and a 147.6 % increase in H+-ATPase activity at the 4 h fermentation compared to the control. Meanwhile, a 13.1 % reduction in energy charge level and a 15.2 % decline in NADH content were found, which implied the effects on carbon metabolism and redox balance. In addition, transcriptomic analysis revealed that excessive sodium altered the gene expression profiles related to ATPase, hydrolase, and oxidoreductase, as well as pathways like glyoxylate metabolism, and transmembrane transport. These findings gained insights into the metabolic regulation of A. niger response to environmental stress and provided theoretical guidance for the construction of sodium-tolerant A. niger for industrial application.
Collapse
Affiliation(s)
- Jian Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Sulian Cheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Ruijing Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Fengjiao Cai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Zhengjun Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jinghua Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Jiangbo Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China
| | - Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan 430068, China.
| |
Collapse
|
2
|
Bendig T, Ulmer A, Luzia L, Müller S, Sahle S, Bergmann FT, Lösch M, Erdemann F, Zeidan AA, Mendoza SN, Teusink B, Takors R, Kummer U, Figueiredo AS. The pH-dependent lactose metabolism of Lactobacillus delbrueckii subsp. bulgaricus: An integrative view through a mechanistic computational model. J Biotechnol 2023; 374:90-100. [PMID: 37572793 DOI: 10.1016/j.jbiotec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.
Collapse
Affiliation(s)
- Tamara Bendig
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Laura Luzia
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Susanne Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sven Sahle
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Frank T Bergmann
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Maren Lösch
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ahmad A Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | | | - Bas Teusink
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ursula Kummer
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| | - Ana Sofia Figueiredo
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Patil N, Howe O, Cahill P, Byrne HJ. Monitoring and modelling the dynamics of the cellular glycolysis pathway: A review and future perspectives. Mol Metab 2022; 66:101635. [PMID: 36379354 PMCID: PMC9703637 DOI: 10.1016/j.molmet.2022.101635] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health, disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical. SCOPE OF REVIEW This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the limitations of the current approaches are considered. MAJOR CONCLUSIONS Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics technologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
Collapse
Affiliation(s)
- Nitin Patil
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics and Optometric & Clinical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
4
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Radlinski LC, Bäumler AJ. To breathe or not to breathe? eLife 2022; 11:79593. [PMID: 35593698 PMCID: PMC9122492 DOI: 10.7554/elife.79593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes uses respiration to sustain a risky fermentative lifestyle during infection.
Collapse
Affiliation(s)
- Lauren C Radlinski
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, United States
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, United States
| |
Collapse
|
6
|
Rivera-Lugo R, Deng D, Anaya-Sanchez A, Tejedor-Sanz S, Tang E, Reyes Ruiz VM, Smith HB, Titov DV, Sauer JD, Skaar EP, Ajo-Franklin CM, Portnoy DA, Light SH. Listeria monocytogenes requires cellular respiration for NAD + regeneration and pathogenesis. eLife 2022; 11:e75424. [PMID: 35380108 PMCID: PMC9094743 DOI: 10.7554/elife.75424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Deng
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, BerkeleyBerkeleyUnited States
| | - Sara Tejedor-Sanz
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eugene Tang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Valeria M Reyes Ruiz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Hans B Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Caroline M Ajo-Franklin
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
- Duchossois Family Institute, University of ChicagoChicagoUnited States
| |
Collapse
|
7
|
Echlin H, Frank M, Rock C, Rosch JW. Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2020; 114:536-552. [PMID: 32495474 DOI: 10.1111/mmi.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that must adapt to unique nutritional environments in several host niches. The pneumococcus can metabolize a range of carbohydrates that feed into glycolysis ending in pyruvate, which is catabolized by several enzymes. We investigated how the pneumococcus utilizes these enzymes to metabolize different carbohydrates and how this impacts survival in the host. Loss of ldh decreased bacterial burden in the nasopharynx and enhanced bacteremia in mice. Loss of spxB, pdhC or pfl2 decreased bacteremia and increased host survival. In glucose or galactose, loss of ldh increased capsule production, whereas loss of spxB and pdhC reduced capsule production. The pfl2 mutant exhibited reduced capsule production only in galactose. In glucose, pyruvate was metabolized primarily by LDH to generate lactate and NAD+ and by SpxB and PDHc to generate acetyl-CoA. In galactose, pyruvate metabolism was shunted toward acetyl-CoA production. The majority of acetyl-CoA generated by PFL was used to regenerate NAD+ with a subset used in capsule production, while the acetyl-CoA generated by SpxB and PDHc was utilized primarily for capsule biosynthesis. These data suggest that the pneumococcus can alter flux of pyruvate metabolism dependent on the carbohydrate present to succeed in distinct host niches.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Xiao H, Wang Q, Bang-Berthelsen CH, Jensen PR, Solem C. Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by Lactococcus lactis Using Its Native Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4912-4921. [PMID: 32233405 DOI: 10.1021/acs.jafc.0c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mannitol can be obtained as a by-product of certain heterolactic lactic acid bacteria, when grown on substrates containing fructose. Lactococcus lactis, a homolactic lactic acid bacterium, normally does not form mannitol but can be persuaded into doing so by expressing certain foreign enzyme activities. In this study, we find that L. lactis has an inherent capacity to form mannitol from glucose. By adaptively evolving L. lactis or derivatives blocked in NAD+ regenerating pathways, we manage to accelerate growth on mannitol. When cells of the adapted strains are resuspended in buffer containing glucose, 4-58% of the glucose metabolized is converted into mannitol, in contrast to nonadapted strains. The highest conversion was obtained for a strain lacking all major NAD+ regenerating pathways. Mannitol had an inhibitory effect on the conversion, which we speculated was due to the mannitol uptake system. After its inactivation, 60% of the glucose was converted into mannitol by cells suspended in glucose buffer. Using a two-stage setup, where biomass first was accumulated by aerated culturing, followed by a nonaerated phase (static conditions), it was possible to obtain 6.1 g/L mannitol, where 60% of the glucose had been converted into mannitol, which is the highest yield reported for L. lactis.
Collapse
Affiliation(s)
- Hang Xiao
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Qi Wang
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | | | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Rice T, Zannini E, K Arendt E, Coffey A. A review of polyols - biotechnological production, food applications, regulation, labeling and health effects. Crit Rev Food Sci Nutr 2019; 60:2034-2051. [PMID: 31210053 DOI: 10.1080/10408398.2019.1625859] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food research is constantly searching for new ways to replace sugar. This is due to the negative connotations of sugar consumption on health which has driven consumer demand for healthier products and is reflected on a national level by the taxation of sugary beverages. Sugar alcohols, a class of polyols, are present in varying levels in many fruits and vegetables and are also added to foods as low calorific sweeteners. The most commonly used polyols in food include sorbitol, mannitol, xylitol, erythritol, maltitol, lactitol and isomalt. Of these, microorganisms can produce sorbitol, mannitol, xylitol and erythritol either naturally or through genetic engineering. Production of polyols by microbes has been the focus of a lot of research for its potential as an alternative to current industrial scale production by chemical synthesis but can also be used for in situ production of natural sweeteners in fermented products using microbes approved for use in foods. This review on the generation of these natural sweetening compounds by microorganisms examines the current understanding and methods of microbial production of polyols that are applicable in the food industry. The review also considers the health benefits and effects of polyol usage and discusses regulations which are applicable to polyol use.
Collapse
Affiliation(s)
- Tom Rice
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
10
|
Sahoo TK, Jayaraman G. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate. Appl Microbiol Biotechnol 2019; 103:5653-5662. [PMID: 31115633 DOI: 10.1007/s00253-019-09819-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022]
Abstract
D-Lactic acid (D-LA) is an enantiomer of lactic acid, which has a niche application in synthesis of poly-lactic acid based (PLA) polymer owing to its contribution to the thermo-stability of stereo-complex PLA polymer. Utilization of renewable substrates such as whey permeate is pivotal to economically viable production of D-LA. In present work, we have demonstrated D-LA production from whey permeate by Lactobacillus delbrueckii and engineered Lactococcus lactis. We observed that lactose fermentation by a monoculture of L. delbrueckii yields D-LA and galactose as major products. The highest yield of D-LA obtained was 0.48 g g-1 when initial lactose concentration was 30 g L-1. Initial lactose concentration beyond 20 g L-1 resulted in accumulation of glucose and galactose, and hence, reduced the stoichiometric yield of D-LA. L. lactis naturally produces L-lactic acid (L-LA), so a mutant strain of L. lactis (L. lactis Δldh ΔldhB ΔldhX) was used to prevent L-LA production and engineer it for D-LA production. Heterologous over-expression of D-lactate dehydrogenase (ldhA) in the recombinant strain L. lactis TSG1 resulted in 0.67 g g-1 and 0.44 g g-1 of D-LA yield from lactose and galactose, respectively. Co-expression of galactose permease (galP) and α-phosphoglucomutase (pgmA) with ldhA in the recombinant strain L. lactis TSG3 achieved a D-LA yield of 0.92 g g-1 from galactose. A co-culture batch process of L. delbrueckii and L. lactis TSG3 achieved an enhanced stoichiometric yield of 0.90 g g-1 and ~45 g L-1D-LA from whey permeate (lactose). This is the highest reported yield of D-LA from lactose substrate, and the titres can be improved further by a suitably designed fed-batch co-culture process.
Collapse
Affiliation(s)
- Tridweep K Sahoo
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
11
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression. J Bacteriol 2019; 201:JB.00703-18. [PMID: 30833356 DOI: 10.1128/jb.00703-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR).IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.
Collapse
|
13
|
Zhang X, Wang Y, Zhou X. Ligation-Based qPCR-Amplification Assay for Radiolabel-Free Detection of ATP and NAD + with High Selectivity and Sensitivity. Anal Chem 2019; 91:1665-1670. [PMID: 30572701 DOI: 10.1021/acs.analchem.8b05663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed a new sensing system based on quantitative real-time polymerase chain reaction assay (qPCR) to detect adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+) with high sensitivity and selectivity. T4 DNA ligase can catalyze the ligation of two short oligonucleotides (DNA1 and DNA2), which complement a template (cDNA), in the presence of its cofactor, ATP, resulting in increased template concentration and decreased Ct values in qPCR assays. Similarly, the Escherichia coli DNA ligase is also able to catalyze the ligation of DNA1 and DNA2 upon the addition of NAD+. Moreover, this approach has potential for detecting other important cofactors in related systems. Therefore, as a convenient and sensitive strategy, the method may light new beacons and find broad application in biological fields.
Collapse
Affiliation(s)
- Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| |
Collapse
|
14
|
Leonard A, Lalk M. Infection and metabolism – Streptococcus pneumoniae metabolism facing the host environment. Cytokine 2018; 112:75-86. [DOI: 10.1016/j.cyto.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
|
15
|
Brunnbauer P, Leder A, Kamali C, Kamali K, Keshi E, Splith K, Wabitsch S, Haber P, Atanasov G, Feldbrügge L, Sauer IM, Pratschke J, Schmelzle M, Krenzien F. The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids. Sci Rep 2018; 8:16110. [PMID: 30382125 PMCID: PMC6208386 DOI: 10.1038/s41598-018-34350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.
Collapse
Affiliation(s)
- Philipp Brunnbauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Annekatrin Leder
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Can Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kaan Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Eriselda Keshi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Katrin Splith
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Simon Wabitsch
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Philipp Haber
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Georgi Atanasov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Linda Feldbrügge
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Igor M Sauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Johann Pratschke
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Moritz Schmelzle
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Felix Krenzien
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| |
Collapse
|
16
|
Leonard A, Gierok P, Methling K, Gómez-Mejia A, Hammerschmidt S, Lalk M. Metabolic inventory of Streptococcus pneumoniae growing in a chemical defined environment. Int J Med Microbiol 2018; 308:705-712. [DOI: 10.1016/j.ijmm.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022] Open
|
17
|
Olesen SV, Rajabi N, Svensson B, Olsen CA, Madsen AS. An NAD +-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM. Biochemistry 2018; 57:3903-3915. [PMID: 29863862 DOI: 10.1021/acs.biochem.8b00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sirtuins, a group of NAD+-dependent deacylases, have emerged as the key connection between NAD+ metabolism and aging. This class of enzymes hydrolyzes a range of ε- N-acyllysine PTMs, and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM. Screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, demonstrated that one of the investigated proteins, Sir2La, is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity of Sir2La as a sirtuin, known sirtuin inhibitors, nicotinamide and suramin, as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. On the basis of steady-state kinetics, Sir2La showed a slight preference for propionyllysine (Kpro) over acetyllysine (Kac). For nonfluorogenic peptide substrates, the preference is driven by a remarkably low KM (280 nM vs 700 nM, for Kpro and Kac, respectively), whereas kcat was similar (21 × 10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has a very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.
Collapse
Affiliation(s)
- Sita V Olesen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
18
|
Martino Carpi F, Cortese M, Orsomando G, Polzonetti V, Vincenzetti S, Moreschini B, Coleman M, Magni G, Pucciarelli S. Simultaneous quantification of nicotinamide mononucleotide and related pyridine compounds in mouse tissues by UHPLC-MS/MS. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Giuseppe Orsomando
- Department of Clinical Sciences, Section of Biochemistry; Polytechnic University of Marche; Ancona Italy
| | - Valeria Polzonetti
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Silvia Vincenzetti
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Benedetta Moreschini
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | | | - Giulio Magni
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Stefania Pucciarelli
- School of Bioscience and Veterinary Medicine; University of Camerino; Camerino Italy
| |
Collapse
|
19
|
Abstract
Lactic acid bacteria (LAB) ferment plants, fish, meats and milk and turn them into tasty food products with increased shelf life; other LAB help digesting food and create a healthy environment in the intestine. The economic and societal importance of these relatively simple and small bacteria is immense. In this review we hope to show that their adaptations to nutrient-rich environments provides fascinating and often puzzling behaviours that give rise to many fundamental evolutionary biological questions in need of a systems biology approach. We will provide examples of such questions, compare the (metabolic) behaviour of LAB to that of other model organisms, and provide the latest insights, if available.
Collapse
Affiliation(s)
- Bas Teusink
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| | - Douwe Molenaar
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| |
Collapse
|
20
|
Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks. Biotechnol Adv 2017; 35:981-1003. [PMID: 28916392 DOI: 10.1016/j.biotechadv.2017.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/30/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Abstract
Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive capabilities. In this review, we present an overview of the relevant mathematical frameworks for kinetic formulation, construction and analysis. Starting with kinetic formalisms, we next review statistical methods for parameter inference, as well as recent computational frameworks applied to the construction and analysis of kinetic models. Finally, we discuss opportunities and limitations hindering the development of larger kinetic reconstructions.
Collapse
|
21
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
22
|
Afzal M, Shafeeq S, Manzoor I, Henriques-Normark B, Kuipers OP. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:158. [PMID: 27900287 PMCID: PMC5110562 DOI: 10.3389/fcimb.2016.00158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this study, we have explored the transcriptomic response of Streptococcus pneumoniae D39 to N-acetylglucosamine (NAG). Transcriptome comparison of S. pneumoniae D39 wild-type grown in chemically defined medium (CDM) in the presence of 0.5% NAG to that grown in the presence of 0.5% glucose revealed elevated expression of many genes/operons, including nagA, nagB, manLMN, and nanP. We have further confirmed the NAG-dependent expression of nagA, nagB, manLMN, and nanP by β-galactosidase assays. nagA, nagB and glmS are putatively regulated by a transcriptional regulator NagR. We predicted the operator site of NagR (dre site) in PnagA, PnagB, and PglmS, which was further confirmed by mutating the predicted dre site in the respective promoters (nagA, nagB, and glmS). Growth comparison of ΔnagA, ΔnagB, and ΔglmS with the D39 wild-type demonstrates that nagA and nagB are essential for S. pneumoniae D39 to grow in the presence of NAG as a sole carbon source. Furthermore, deletion of ccpA shows that CcpA has no effect on the expression of nagA, nagB, and glmS in the presence of NAG in S. pneumoniae.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | | | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
23
|
Afzal M, Shafeeq S, Kuipers OP. Methionine-mediated gene expression and characterization of the CmhR regulon in Streptococcus pneumoniae. Microb Genom 2016; 2:e000091. [PMID: 28348831 PMCID: PMC5359408 DOI: 10.1099/mgen.0.000091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022] Open
Abstract
This study investigated the transcriptomic response of Streptococcus pneumoniae D39 to methionine. Transcriptome comparison of the S. pneumoniae D39 wild-type grown in chemically defined medium with 0–10 mM methionine revealed the elevated expression of various genes/operons involved in methionine synthesis and transport (fhs, folD, gshT, metA, metB-csd, metEF, metQ, tcyB, spd-0150, spd-0431 and spd-0618). Furthermore, β-galactosidase assays and quantitative RT-PCR studies demonstrated that the transcriptional regulator, CmhR (SPD-0588), acts as a transcriptional activator of the fhs, folD, metB-csd, metEF, metQ and spd-0431 genes. A putative regulatory site of CmhR was identified in the promoter region of CmhR-regulated genes and this CmhR site was further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- 1Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,2Department of Bioinformatics and Biotechnology, G C University, Faisalabad, Pakistan
| | - Sulman Shafeeq
- 3Department of Microbiology, Tumor and Cell Biology, , Karolinska Institutet, Nobels väg 16, Stockholm, SE-171 77, Sweden
| | - Oscar P Kuipers
- 1Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
24
|
Dolatshahi S, Fonseca LL, Voit EO. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis. MOLECULAR BIOSYSTEMS 2016; 12:37-47. [PMID: 26609780 DOI: 10.1039/c5mb00726g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dairy bacterium Lactococcus lactis has to master a complicated task. It must control its essentially linear glycolytic pathway in such a fashion that, when the substrate, glucose, runs out, it retains enough phosphoenolpyruvate and fructose-1,6-bisphosphate to be able to restart glycolysis as soon as new glucose becomes available. Although glycolysis is arguably the best-studied metabolic pathway, its details in L. lactis are still unclear, and it is, in particular, not understood how the bacterium manages the stop-and-start task. The primary purpose of this paper and its companion is a clarification of some of the details of the governing regulatory strategies with which L. lactis manages to retain the necessary metabolites for the restart of glycolysis after periods of starvation. The paper furthermore discusses how the bacterium changes these strategies when it is subjected to aerobic rather than anaerobic conditions.
Collapse
Affiliation(s)
- Sepideh Dolatshahi
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Luis L Fonseca
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Sriyudthsak K, Mejia RF, Arita M, Hirai MY. PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems. Nucleic Acids Res 2016; 44:W205-11. [PMID: 27174940 PMCID: PMC4987946 DOI: 10.1093/nar/gkw415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/01/2016] [Indexed: 12/29/2022] Open
Abstract
PASMet (Prediction, Analysis and Simulation of Metabolic networks) is a web-based platform for proposing and verifying mathematical models to understand the dynamics of metabolism. The advantages of PASMet include user-friendliness and accessibility, which enable biologists and biochemists to easily perform mathematical modelling. PASMet offers a series of user-functions to handle the time-series data of metabolite concentrations. The functions are organised into four steps: (i) Prediction of a probable metabolic pathway and its regulation; (ii) Construction of mathematical models; (iii) Simulation of metabolic behaviours; and (iv) Analysis of metabolic system characteristics. Each function contains various statistical and mathematical methods that can be used independently. Users who may not have enough knowledge of computing or programming can easily and quickly analyse their local data without software downloads, updates or installations. Users only need to upload their files in comma-separated values (CSV) format or enter their model equations directly into the website. Once the time-series data or mathematical equations are uploaded, PASMet automatically performs computation on server-side. Then, users can interactively view their results and directly download them to their local computers. PASMet is freely available with no login requirement at http://pasmet.riken.jp/ from major web browsers on Windows, Mac and Linux operating systems.
Collapse
Affiliation(s)
| | | | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
26
|
Hong L, Zhou F, Wang G, Zhang X. Synthesis and sensing integration: A novel enzymatic reaction modulated Nanoclusters Beacon (NCB) "Illumination" strategy for label-free biosensing and logic gate operation. Biosens Bioelectron 2016; 86:588-594. [PMID: 27453987 DOI: 10.1016/j.bios.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023]
Abstract
A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application.
Collapse
Affiliation(s)
- Lu Hong
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| | - Fu Zhou
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| | - Guangfeng Wang
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 PR China.
| | - Xiaojun Zhang
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| |
Collapse
|
27
|
Ge J, Dong ZZ, Zhang L, Cai QY, Bai DM, Li ZH. Label-free biosensor based on dsDNA-templated copper nanoparticles for highly sensitive and selective detection of NAD+. RSC Adv 2016. [DOI: 10.1039/c6ra17579a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel label-free biosensor for high sensing of NAD+ based on dsDNA-templated CuNPs and DNA ligation reaction.
Collapse
Affiliation(s)
- Jia Ge
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhen-Zhen Dong
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Qi-Yong Cai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dong-Mei Bai
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhao-Hui Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
28
|
Dolatshahi S, Fonseca LL, Voit EO. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model. MOLECULAR BIOSYSTEMS 2016; 12:23-36. [DOI: 10.1039/c5mb00331h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article and the companion paper use computational systems modeling to decipher the complex coordination of regulatory signals controlling the glycolytic pathway in the dairy bacterium Lactococcus lactis.
Collapse
Affiliation(s)
- Sepideh Dolatshahi
- Department of Biomedical Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Luis L. Fonseca
- Department of Biomedical Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Eberhard O. Voit
- Department of Biomedical Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
29
|
Liu L, Cui Z, Deng Y, Dean B, Hop CECA, Liang X. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1011:69-76. [PMID: 26766786 DOI: 10.1016/j.jchromb.2015.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/04/2015] [Accepted: 12/19/2015] [Indexed: 12/15/2022]
Abstract
A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects.
Collapse
Affiliation(s)
- Liling Liu
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States
| | - Zhiyi Cui
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States
| | - Yuzhong Deng
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States
| | - Cornelis E C A Hop
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, United States.
| |
Collapse
|
30
|
Chen X, Lin C, Chen Y, Wang Y, Chen X. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise. Biosens Bioelectron 2015; 77:486-90. [PMID: 26454831 DOI: 10.1016/j.bios.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023]
Abstract
In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs.
Collapse
Affiliation(s)
- Xuexu Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunshui Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Yiying Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
31
|
Paixão L, Caldas J, Kloosterman TG, Kuipers OP, Vinga S, Neves AR. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism. Front Microbiol 2015; 6:1041. [PMID: 26500614 PMCID: PMC4595796 DOI: 10.3389/fmicb.2015.01041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.
Collapse
Affiliation(s)
- Laura Paixão
- Laboratory of Lactic Acid Bacteria and In Vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - José Caldas
- Center of Intelligent Systems, Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Susana Vinga
- Center of Intelligent Systems, Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Ana R Neves
- Laboratory of Lactic Acid Bacteria and In Vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|
32
|
Measuring NAD(+) levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis 2015; 6:1445-57. [PMID: 25046046 DOI: 10.4155/bio.14.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NAD(+) is an endogenous analyte and is unstable during blood sample collection, both of which present obstacles for quantitation. Moreover, current procedures for NAD(+) sample collection require onsite treatment with strong acid to stabilize the NAD(+) in mouse blood cells. RESULTS NAD(+) can be stabilized by addition of acid before the frozen mouse blood sample was thawed. A simple sample collection procedure was proposed to facilitate the analysis of NAD(+) in mouse blood and tissue samples. A LC-MS/MS method was developed for quantifying NAD(+) in mouse blood and various tissue samples. The described method was used to measure endogenous NAD(+) levels in mouse blood following oral administration of the nicotinamide phosphoribosyltransferase inhibitor GNE-617. CONCLUSION This study presents a suitable assay and sample collection procedure for high throughput screening of NAD(+) samples in preclinical discovery studies.
Collapse
|
33
|
Large-Scale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose. Appl Environ Microbiol 2015; 81:2408-22. [PMID: 25616803 DOI: 10.1128/aem.03157-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria form one of the largest living surfaces on Earth, and their metabolic activity is of fundamental importance for global nutrient cycling. Here, we explored the largely unknown intracellular pathways in 25 microbes representing different classes of marine bacteria that use glucose: Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia of the Bacteriodetes phylum. We used (13)C isotope experiments to infer metabolic fluxes through their carbon core pathways. Notably, 90% of all strains studied use the Entner-Doudoroff (ED) pathway for glucose catabolism, whereas only 10% rely on the Embden-Meyerhof-Parnas (EMP) pathway. This result differed dramatically from the terrestrial model strains studied, which preferentially used the EMP pathway yielding high levels of ATP. Strains using the ED pathway exhibited a more robust resistance against the oxidative stress typically found in this environment. An important feature contributing to the preferential use of the ED pathway in the oceans could therefore be enhanced supply of NADPH through this pathway. The marine bacteria studied did not specifically rely on a distinct anaplerotic route, but the carboxylation of phosphoenolpyruvate (PEP) or pyruvate for fueling of the tricarboxylic acid (TCA) cycle was evenly distributed. The marine isolates studied belong to clades that dominate the uptake of glucose, a major carbon source for bacteria in seawater. Therefore, the ED pathway may play a significant role in the cycling of mono- and polysaccharides by bacterial communities in marine ecosystems.
Collapse
|
34
|
Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Fact 2015; 14:7. [PMID: 25592678 PMCID: PMC4320542 DOI: 10.1186/s12934-015-0190-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. RESULTS By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. CONCLUSIONS The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Jianhua Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Zhanglei Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Yajun Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China.
| | - Qiang Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| | - Jian Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| | - Depei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, 300457, P. R. China. .,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, 300457, P. R. China.
| |
Collapse
|
35
|
Murabito E, Verma M, Bekker M, Bellomo D, Westerhoff HV, Teusink B, Steuer R. Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation. PLoS One 2014; 9:e106453. [PMID: 25268481 PMCID: PMC4182131 DOI: 10.1371/journal.pone.0106453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation. Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular, we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.
Collapse
Affiliation(s)
- Ettore Murabito
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
- * E-mail: (EM); (RS)
| | - Malkhey Verma
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
| | - Martijn Bekker
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Domenico Bellomo
- Systems Bioinformatics IBIVU and Netherlands Institute for Systems Biology (NISB), VU University Amsterdam, Amsterdam, The Netherlands
| | - Hans V. Westerhoff
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Sciences (CEAS), Manchester Centre for Integrative Systems Biology (MCISB), The University of Manchester, Manchester, United Kingdom
- Synthetic Systems Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Molecular Cell Physiology, FALW, VU University Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics IBIVU and Netherlands Institute for Systems Biology (NISB), VU University Amsterdam, Amsterdam, The Netherlands
| | - Ralf Steuer
- CzechGlobe - Global Change Research Center, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Humboldt-University Berlin, Institute for Theoretical Biology, Berlin, Germany
- * E-mail: (EM); (RS)
| |
Collapse
|
36
|
Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum. Appl Environ Microbiol 2014; 80:3015-24. [PMID: 24610842 DOI: 10.1128/aem.04189-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation.
Collapse
|
37
|
Regulation of acetate kinase isozymes and its importance for mixed-acid fermentation in Lactococcus lactis. J Bacteriol 2014; 196:1386-93. [PMID: 24464460 DOI: 10.1128/jb.01277-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acetate kinase (ACK) converts acetyl phosphate to acetate along with the generation of ATP in the pathway for mixed-acid fermentation in Lactococcus lactis. The reverse reaction yields acetyl phosphate for assimilation purposes. Remarkably, L. lactis has two ACK isozymes, and the corresponding genes are present in an operon. We purified both enzymes (AckA1 and AckA2) from L. lactis MG1363 and determined their oligomeric state, specific activities, and allosteric regulation. Both proteins form homodimeric complexes, as shown by size exclusion chromatography and static light-scattering measurements. The turnover number of AckA1 is about an order of magnitude higher than that of AckA2 for the reaction in either direction. The Km values for acetyl phosphate, ATP, and ADP are similar for both enzymes. However, AckA2 has a higher affinity for acetate than does AckA1, suggesting an important role under acetate-limiting conditions despite the lower activity. Fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, and phospho-enol-pyruvate inhibit the activities of AckA1 and AckA2 to different extents. The allosteric regulation of AckA1 and AckA2 and the pool sizes of the glycolytic intermediates are consistent with a switch from homolactic to mixed-acid fermentation upon slowing of the growth rate.
Collapse
|
38
|
Cao Z, Wang P, Qiu X, Lau C, Lu J. Ligation-triggered fluorescent silver nanoclusters system for the detection of nicotinamide adenine dinucleotide. Anal Bioanal Chem 2014; 406:1895-902. [PMID: 24442015 DOI: 10.1007/s00216-013-7609-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/25/2013] [Accepted: 12/29/2013] [Indexed: 01/08/2023]
Abstract
Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD(+)), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5' end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3' end. Only in the presence of NAD(+), the probe was linked at 5' and 3' ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM-500 nM with a detection limit of as low as 1 pM NAD(+), and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD(+) level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD(+), taking advantage of specificity, sensitivity, cost-efficiency, and simplicity.
Collapse
Affiliation(s)
- Zhijuan Cao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | | | | | | | | |
Collapse
|
39
|
Costa RS, Hartmann A, Gaspar P, Neves AR, Vinga S. An extended dynamic model of Lactococcus lactis metabolism for mannitol and 2,3-butanediol production. MOLECULAR BIOSYSTEMS 2014; 10:628-39. [PMID: 24413179 DOI: 10.1039/c3mb70265k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomedical research and biotechnological production are greatly benefiting from the results provided by the development of dynamic models of microbial metabolism. Although several kinetic models of Lactococcus lactis (a Lactic Acid Bacterium (LAB) commonly used in the dairy industry) have been developed so far, most of them are simplified and focus only on specific metabolic pathways. Therefore, the application of mathematical models in the design of an engineering strategy for the production of industrially important products by L. lactis has been very limited. In this work, we extend the existing kinetic model of L. lactis central metabolism to include industrially relevant production pathways such as mannitol and 2,3-butanediol. In this way, we expect to study the dynamics of metabolite production and make predictive simulations in L. lactis. We used a system of ordinary differential equations (ODEs) with approximate Michaelis-Menten-like kinetics for each reaction, where the parameters were estimated from multivariate time-series metabolite concentrations obtained by our team through in vivo Nuclear Magnetic Resonance (NMR). The results show that the model captures observed transient dynamics when validated under a wide range of experimental conditions. Furthermore, we analyzed the model using global perturbations, which corroborate experimental evidence about metabolic responses upon enzymatic changes. These include that mannitol production is very sensitive to lactate dehydrogenase (LDH) in the wild type (W.T.) strain, and to mannitol phosphoenolpyruvate: a phosphotransferase system (PTS(Mtl)) in a LDH mutant strain. LDH reduction has also a positive control on 2,3-butanediol levels. Furthermore, it was found that overproduction of mannitol-1-phosphate dehydrogenase (MPD) in a LDH/PTS(Mtl) deficient strain can increase the mannitol levels. The results show that this model has prediction capability over new experimental conditions and offers promising possibilities to elucidate the effect of alterations in the main metabolism of L. lactis, with application in strain optimization.
Collapse
Affiliation(s)
- Rafael S Costa
- Instituto de Engenharia de Sistemas e Computadores, Investigacão e Desenvolvimento (INESC-ID), R Alves Redol 9, 1000-029 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
40
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
41
|
Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance. Appl Environ Microbiol 2013; 79:7628-38. [PMID: 24077711 DOI: 10.1128/aem.02529-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are widely used as probiotics in several commercial products; however, to date there is little knowledge about their carbohydrate metabolic pathways. In this work, we studied the metabolism of glucose and lactose in the widely used probiotic strain Bifidobacterium animalis subsp. lactis BB-12 by in vivo (13)C nuclear magnetic resonance (NMR) spectroscopy. The metabolism of [1-(13)C]glucose was characterized in cells grown in glucose as the sole carbon source. Moreover, the metabolism of lactose specifically labeled with (13)C on carbon 1 of the glucose or the galactose moiety was determined in suspensions of cells grown in lactose. These experiments allowed the quantification of some intermediate and end products of the metabolic pathways, as well as determination of the consumption rate of carbon sources. Additionally, the labeling patterns in metabolites derived from the metabolism of glucose specifically labeled with (13)C on carbon 1, 2, or 3 in cells grown in glucose or lactose specifically labeled in carbon 1 of the glucose moiety ([1-(13)Cglucose]lactose), lactose specifically labeled in carbon 1 of the galactose moiety ([1-(13)Cgalactose]lactose), and [1-(13)C]glucose in lactose-grown cells were determined in cell extracts by (13)C NMR. The NMR analysis showed that the recovery of carbon was fully compatible with the fructose 6-phosphate, or bifid, shunt. The activity of lactate dehydrogenase, acetate kinase, fructose 6-phosphate phosphoketolase, and pyruvate formate lyase differed significantly between glucose and lactose cultures. The transcriptional analysis of several putative glucose and lactose transporters showed a significant induction of Balat_0475 in the presence of lactose, suggesting a role for this protein as a lactose permease. This report provides the first in vivo experimental evidence of the metabolic flux distribution in the catabolic pathway of glucose and lactose in bifidobacteria and shows that the bifid shunt is the only pathway involved in energy recruitment from these two sugars. On the basis of our experimental results, a model of sugar metabolism in B. animalis subsp. lactis is proposed.
Collapse
|
42
|
Zhao R, Zheng S, Duan C, Liu F, Yang L, Huo G. NAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis. FEBS Open Bio 2013; 3:379-86. [PMID: 24251099 PMCID: PMC3821033 DOI: 10.1016/j.fob.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/02/2022] Open
Abstract
Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD-dependent l-lactate dehydrogenase (l-nLDH) and potential electron transport chain (ETC)-related NAD-independent l-LDH (l-iLDH) exist in L. lactis, the activities of these enzymes were measured in this study using crude cell extracts prepared from respiratory and fermentation cultures. Further studies were conducted with purified preparations of recombinant LDH homologous proteins. The results showed that l-iLDH activity was hardly detected in both crude cell extracts and purified l-iLDH homologous protein while l-nLDH activity was very significant. This suggested that l-iLDHs were inactive in lactate utilization. The results of kinetic analyses and the effects of activator, inhibitor, substrate and product concentrations on the reaction equilibrium showed that l-nLDH was much more prone to catalyze the pyruvate reduction reaction but could reverse its role provided that the concentrations of NADH and pyruvate were extremely low while NAD and lactate were abundant. Metabolite analysis in respiratory culture revealed that the cellular status in the stationary phase was beneficial for l-nLDH to catalyze lactate oxidation. The factors accounting for the respiration- and stationary phase-dependent lactate utilization in L. lactis are discussed here. LutABC proteins do not participate in lactate oxidation in Lactococcus lactis Lactococcus lactis has very low NAD-independent lactate dehydrogenase activity Fructose-1,6-bisphosphate-dependent lactate dehydrogenase can work in reverse in vivo Metabolite concentrations in the stationary phase are favorable for lactate oxidation Respiratory metabolism is the basis for continual lactate oxidation in Lactococcus
Collapse
Key Words
- DCPIP, 2,6-dichlorophenolindophenol
- ETC, electron transport chain
- FBP, fructose 1,6-bisphosphate
- IPP, isopentenyl diphosphate
- LDH, lactate dehydrogenase
- Lactate dehydrogenase
- Lactate oxidation
- Lactococcus lactis
- PMF, proton motive force
- Proton motive force
- Type II IPP isomerase
- iLDH, NAD-independent lactate dehydrogenase
- nLDH, NAD-dependent lactate dehydrogenase
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China ; Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
43
|
Carvalho AL, Turner DL, Fonseca LL, Solopova A, Catarino T, Kuipers OP, Voit EO, Neves AR, Santos H. Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools. PLoS One 2013; 8:e68470. [PMID: 23844205 PMCID: PMC3700934 DOI: 10.1371/journal.pone.0068470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/29/2013] [Indexed: 01/27/2023] Open
Abstract
The effect of pH on the glucose metabolism of non-growing cells of L. lactis MG1363 was studied by in vivo NMR in the range 4.8 to 6.5. Immediate pH effects on glucose transporters and/or enzyme activities were distinguished from transcriptional/translational effects by using cells grown at the optimal pH of 6.5 or pre-adjusted to low pH by growth at 5.1. In cells grown at pH 5.1, glucose metabolism proceeds at a rate 35% higher than in non-adjusted cells at the same pH. Besides the upregulation of stress-related genes (such as dnaK and groEL), cells adjusted to low pH overexpressed H(+)-ATPase subunits as well as glycolytic genes. At sub-optimal pHs, the total intracellular pool of lactic acid reached approximately 500 mM in cells grown at optimal pH and about 700 mM in cells grown at pH 5.1. These high levels, together with good pH homeostasis (internal pH always above 6), imply intracellular accumulation of the ionized form of lactic acid (lactate anion), and the concomitant export of the equivalent protons. The average number, n, of protons exported with each lactate anion was determined directly from the kinetics of accumulation of intra- and extracellular lactic acid as monitored online by (13)C-NMR. In cells non-adjusted to low pH, n varies between 2 and 1 during glucose consumption, suggesting an inhibitory effect of intracellular lactate on proton export. We confirmed that extracellular lactate did not affect the lactate: proton stoichiometry. In adjusted cells, n was lower and varied less, indicating a different mix of lactic acid exporters less affected by the high level of intracellular lactate. A qualitative model for pH effects and acid stress adaptation is proposed on the basis of these results.
Collapse
Affiliation(s)
- Ana Lúcia Carvalho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - David L. Turner
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Luís L. Fonseca
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Integrative BioSystems Institute and the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Caparica, Oeiras, Portugal
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | - Eberhard O. Voit
- Integrative BioSystems Institute and the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
44
|
Ortiz ME, Bleckwedel J, Raya RR, Mozzi F. Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 2013; 97:4713-26. [PMID: 23604535 DOI: 10.1007/s00253-013-4884-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/22/2013] [Accepted: 03/30/2013] [Indexed: 01/18/2023]
Abstract
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.
Collapse
Affiliation(s)
- Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, San Miguel de Tucumán 4000, Argentina
| | | | | | | |
Collapse
|
45
|
Angermayr SA, Hellingwerf KJ. On the Use of Metabolic Control Analysis in the Optimization of Cyanobacterial Biosolar Cell Factories. J Phys Chem B 2013; 117:11169-75. [DOI: 10.1021/jp4013152] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S. Andreas Angermayr
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam and Netherlands Institute of Systems Biology, The Netherlands
| | - Klaas J. Hellingwerf
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam and Netherlands Institute of Systems Biology, The Netherlands
| |
Collapse
|
46
|
Carvalho SM, Kuipers OP, Neves AR. Environmental and nutritional factors that affect growth and metabolism of the pneumococcal serotype 2 strain D39 and its nonencapsulated derivative strain R6. PLoS One 2013; 8:e58492. [PMID: 23505518 PMCID: PMC3591343 DOI: 10.1371/journal.pone.0058492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/05/2013] [Indexed: 01/06/2023] Open
Abstract
Links between carbohydrate metabolism and virulence in Streptococcus pneumoniae have been recurrently established. To investigate these links further we developed a chemically defined medium (CDM) and standardized growth conditions that allowed for high growth yields of the related pneumococcal strains D39 and R6. The utilization of the defined medium enabled the evaluation of different environmental and nutritional factors on growth and fermentation patterns under controlled conditions of pH, temperature and gas atmosphere. The same growth conditions impacted differently on the nonencapsulated R6, and its encapsulated progenitor D39. A semi-aerobic atmosphere and a raised concentration of uracil, a fundamental component of the D39 capsule, improved considerably D39 growth rate and biomass. In contrast, in strain R6, the growth rate was enhanced by strictly anaerobic conditions and uracil had no effect on biomass. In the presence of oxygen, the difference in the growth rates was mainly attributed to a lower activity of pyruvate oxidase in strain D39. Our data indicate an intricate connection between capsule production in strain D39 and uracil availability. In this study, we have also successfully applied the in vivo NMR technique to study sugar metabolism in S. pneumoniae R6. Glucose consumption, end-products formation and evolution of intracellular metabolite pools were monitored online by (13)C-NMR. Additionally, the pools of NTP and inorganic phosphate were followed by (31)P-NMR after a pulse of glucose. These results represent the first metabolic profiling data obtained non-invasively for S. pneumoniae, and pave the way to a better understanding of regulation of central metabolism.
Collapse
Affiliation(s)
- Sandra M. Carvalho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
47
|
Ferreira MT, Manso AS, Gaspar P, Pinho MG, Neves AR. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS One 2013; 8:e58277. [PMID: 23472168 PMCID: PMC3589339 DOI: 10.1371/journal.pone.0058277] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/01/2013] [Indexed: 01/25/2023] Open
Abstract
The ability to successfully adapt to changing host conditions is crucial for full virulence of bacterial pathogens. Staphylococcus aureus has to cope with fluctuating oxygen concentrations during the course of infection. Hence, we studied the effect of oxygen on glucose metabolism in non-growing S. aureus COL-S cells by in vivo13C-NMR. Glucose catabolism was probed at different oxygen concentrations in suspensions of cells grown aerobically (direct effects on metabolism) or anaerobically (transcriptional adjustment to oxygen deprivation). In aerobically-grown cells, the rate of glucose consumption diminished progressively with decreasing oxygen concentrations. Additionally, oxygen deprivation resulted in biphasic glucose consumption, with the second phase presenting a higher rate. The fructose-1,6-bisphosphate pool peaked while glucose was still abundant, but the transient maximum varied with the oxygen concentration. As oxygen became limiting mannitol/mannitol-1-phosphate were detected as products of glucose catabolism. Under anoxic conditions, accumulation of mannitol-1-phosphate ceased with the switch to higher glucose consumption rates, which implies the activation of a more efficient means by which NAD+ can be regenerated. The distribution of end-products deriving from glucose catabolism was dramatically affected by oxygen: acetate increased and lactate decreased with the oxygen concentration; ethanol was formed only anaerobically. Moreover, oxygen promoted the energetically favourable conversion of lactate into acetate, which was particularly noticeable under fully oxygenated conditions. Interestingly, under aerobiosis growing S. aureus cells also converted lactate to acetate, used simultaneously glucose and lactate as substrates for growth, and grew considerably well on lactate-medium. We propose that the efficient lactate catabolism may endow S. aureus with a metabolic advantage in its ecological niche.
Collapse
Affiliation(s)
- Maria Teresa Ferreira
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S. Manso
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula Gaspar
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Rute Neves
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
48
|
Sriyudthsak K, Shiraishi F, Hirai MY. Identification of a metabolic reaction network from time-series data of metabolite concentrations. PLoS One 2013; 8:e51212. [PMID: 23326311 PMCID: PMC3542379 DOI: 10.1371/journal.pone.0051212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Recent development of high-throughput analytical techniques has made it possible to qualitatively identify a number of metabolites simultaneously. Correlation and multivariate analyses such as principal component analysis have been widely used to analyse those data and evaluate correlations among the metabolic profiles. However, these analyses cannot simultaneously carry out identification of metabolic reaction networks and prediction of dynamic behaviour of metabolites in the networks. The present study, therefore, proposes a new approach consisting of a combination of statistical technique and mathematical modelling approach to identify and predict a probable metabolic reaction network from time-series data of metabolite concentrations and simultaneously construct its mathematical model. Firstly, regression functions are fitted to experimental data by the locally estimated scatter plot smoothing method. Secondly, the fitted result is analysed by the bivariate Granger causality test to determine which metabolites cause the change in other metabolite concentrations and remove less related metabolites. Thirdly, S-system equations are formed by using the remaining metabolites within the framework of biochemical systems theory. Finally, parameters including rate constants and kinetic orders are estimated by the Levenberg–Marquardt algorithm. The estimation is iterated by setting insignificant kinetic orders at zero, i.e., removing insignificant metabolites. Consequently, a reaction network structure is identified and its mathematical model is obtained. Our approach is validated using a generic inhibition and activation model and its practical application is tested using a simplified model of the glycolysis of Lactococcus lactis MG1363, for which actual time-series data of metabolite concentrations are available. The results indicate the usefulness of our approach and suggest a probable pathway for the production of lactate and acetate. The results also indicate that the approach pinpoints a probable strong inhibition of lactate on the glycolysis pathway.
Collapse
Affiliation(s)
- Kansuporn Sriyudthsak
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- JST, CREST, Kawaguchi, Saitama, Japan
| | - Fumihide Shiraishi
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- * E-mail: (FS); (MYH)
| | - Masami Yokota Hirai
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- JST, CREST, Kawaguchi, Saitama, Japan
- * E-mail: (FS); (MYH)
| |
Collapse
|
49
|
A specific mutation in the promoter region of the silent cel cluster accounts for the appearance of lactose-utilizing Lactococcus lactis MG1363. Appl Environ Microbiol 2012; 78:5612-21. [PMID: 22660716 DOI: 10.1128/aem.00455-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Lactococcus lactis laboratory strain MG1363 has been described to be unable to utilize lactose. However, in a rich medium supplemented with lactose as the sole carbon source, it starts to grow after prolonged incubation periods. Transcriptome analyses showed that L. lactis MG1363 Lac(+) cells expressed celB, encoding a putative cellobiose-specific phosphotransferase system (PTS) IIC component, which is normally silent in MG1363 Lac(-) cells. Nucleotide sequence analysis of the cel cluster of a Lac(+) isolate revealed a change from one of the guanines to adenine in the promoter region. We showed here that one particular mutation, taking place at increased frequency, accounts for the lactose-utilizing phenotype occurring in MG1363 cultures. The G-to-A transition creates a -10 element at an optimal distance from the -35 element. Thus, a fully active promoter is created, allowing transcription of the otherwise cryptic cluster. Nuclear magnetic resonance (NMR) spectroscopy results show that MG1363 Lac(+) uses a novel pathway of lactose utilization.
Collapse
|
50
|
Guo T, Kong J, Zhang L, Zhang C, Hu S. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS One 2012; 7:e36296. [PMID: 22558426 PMCID: PMC3338672 DOI: 10.1371/journal.pone.0036296] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/30/2012] [Indexed: 01/08/2023] Open
Abstract
Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15±0.08 mM to 9.94±0.07 mM, and the corresponding diacetyl production increased from 1.07±0.03 mM to 4.16±0.06 mM with the intracellular NADH/NAD+ ratios varying from 0.711±0.005 to 0.383±0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival.
Collapse
Affiliation(s)
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- * E-mail:
| | | | | | | |
Collapse
|