1
|
Mattingly HH, Kamino K, Machta BB, Emonet T. Escherichia coli chemotaxis is information limited. NATURE PHYSICS 2021; 17:1426-1431. [PMID: 35035514 PMCID: PMC8758097 DOI: 10.1038/s41567-021-01380-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/10/2021] [Indexed: 05/08/2023]
Abstract
Organisms acquire and use information from their environment to guide their behaviour. However, it is unclear whether this information quantitatively limits their behavioural performance. Here, we relate information to the ability of Escherichia coli to navigate up chemical gradients, the behaviour known as chemotaxis. First, we derive a theoretical limit on the speed with which cells climb gradients, given the rate at which they acquire information. Next, we measure cells' gradient-climbing speeds and the rate of information acquisition by their chemotaxis signaling pathway. We find that E. coli make behavioural decisions with much less than the one bit required to determine whether they are swimming up-gradient. Some of this information is irrelevant to gradient climbing, and some is lost in communication to behaviour. Despite these limitations, E. coli climb gradients at speeds within a factor of two of the theoretical bound. Thus, information can limit the performance of an organism, and sensory-motor pathways may have evolved to efficiently use information acquired from the environment.
Collapse
Affiliation(s)
- H H Mattingly
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
| | - K Kamino
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
| | - B B Machta
- Department of Physics, Yale University
- Systems Biology Institute, West Campus, Yale University
| | - T Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University
- Quantitative Biology Institute, Yale University
- Department of Physics, Yale University
| |
Collapse
|
2
|
Edgington MP, Tindall MJ. Mathematical Analysis of the Escherichia coli Chemotaxis Signalling Pathway. Bull Math Biol 2018; 80:758-787. [PMID: 29404879 PMCID: PMC5862969 DOI: 10.1007/s11538-018-0400-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
We undertake a detailed mathematical analysis of a recent nonlinear ordinary differential equation (ODE) model describing the chemotactic signalling cascade within an Escherichia coli cell. The model includes a detailed description of the cell signalling cascade and an average approximation of the receptor activity. A steady-state stability analysis reveals the system exhibits one positive real steady state which is shown to be asymptotically stable. Given the occurrence of a negative feedback between phosphorylated CheB (CheB-P) and the receptor state, we ask under what conditions the system may exhibit oscillatory-type behaviour. A detailed analysis of parameter space reveals that whilst variation in kinetic rate parameters within known biological limits is unlikely to lead to such behaviour, changes in the total concentration of the signalling proteins do. We postulate that experimentally observed overshoot behaviour can actually be described by damped oscillatory dynamics and consider the relationship between overshoot amplitude, total cell protein concentration and the magnitude of the external ligand stimulus. Model reductions in the full ODE model allow us to understand the link between phosphorylation events and the negative feedback between CheB-P and receptor methylation, as well as elucidate why some mathematical models exhibit overshoot and others do not. Our paper closes by discussing intercell variability of total protein concentration as a means of ensuring the overall survival of a population as cells are subjected to different environments.
Collapse
Affiliation(s)
- Matthew P Edgington
- Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, UK.,The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| | - Marcus J Tindall
- Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, UK. .,Institute for Cardiovascular and Metabolic Research, University of Reading, Whiteknights, PO Box 218, Reading, RG6 6AA, UK.
| |
Collapse
|
3
|
Moine A, Espinosa L, Martineau E, Yaikhomba M, Jazleena PJ, Byrne D, Biondi EG, Notomista E, Brilli M, Molle V, Gayathri P, Mignot T, Mauriello EMF. The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genet 2017; 13:e1007103. [PMID: 29161263 PMCID: PMC5716589 DOI: 10.1371/journal.pgen.1007103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 11/05/2017] [Indexed: 11/17/2022] Open
Abstract
The FrzCD chemoreceptor from the gliding bacterium Myxococcus xanthus forms cytoplasmic clusters that occupy a large central region of the cell body also occupied by the nucleoid. In this work, we show that FrzCD directly binds to the nucleoid with its N-terminal positively charged tail and recruits active signaling complexes at this location. The FrzCD binding to the nucleoid occur in a DNA-sequence independent manner and leads to the formation of multiple distributed clusters that explore constrained areas. This organization might be required for cooperative interactions between clustered receptors as observed in membrane-bound chemosensory arrays.
Collapse
Affiliation(s)
- Audrey Moine
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenie Martineau
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Mutum Yaikhomba
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - P. J. Jazleena
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Deborah Byrne
- Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Emanuele G. Biondi
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenio Notomista
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Matteo Brilli
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnano, Italy
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS-Universités de Montpellier II et I, Montpellier, France
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | | |
Collapse
|
4
|
Haglin ER, Yang W, Briegel A, Thompson LK. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays. Biochemistry 2017; 56:5874-5885. [PMID: 28872847 PMCID: PMC5678893 DOI: 10.1021/acs.biochem.7b00698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.
Collapse
Affiliation(s)
| | - Wen Yang
- Department of Biology, Leiden University , 2333 Leiden, The Netherlands
| | - Ariane Briegel
- Department of Biology, Leiden University , 2333 Leiden, The Netherlands
| | | |
Collapse
|
5
|
Fundamental constraints on the abundances of chemotaxis proteins. Biophys J 2016; 108:1293-305. [PMID: 25762341 DOI: 10.1016/j.bpj.2015.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/25/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Flagellated bacteria, such as Escherichia coli, perform directed motion in gradients of concentration of attractants and repellents in a process called chemotaxis. The E. coli chemotaxis signaling pathway is a model for signal transduction, but it has unique features. We demonstrate that the need for fast signaling necessitates high abundances of the proteins involved in this pathway. We show that further constraints on the abundances of chemotaxis proteins arise from the requirements of self-assembly both of flagellar motors and of chemoreceptor arrays. All these constraints are specific to chemotaxis, and published data confirm that chemotaxis proteins tend to be more highly expressed than their homologs in other pathways. Employing a chemotaxis pathway model, we show that the gain of the pathway at the level of the response regulator CheY increases with overall chemotaxis protein abundances. This may explain why, at least in one E. coli strain, the abundance of all chemotaxis proteins is higher in media with lower nutrient content. We also demonstrate that the E. coli chemotaxis pathway is particularly robust to abundance variations of the motor protein FliM.
Collapse
|
6
|
Neumann S, Løvdok L, Bentele K, Meisig J, Ullner E, Paldy FS, Sourjik V, Kollmann M. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis. PLoS One 2014; 9:e87815. [PMID: 24736435 PMCID: PMC3988002 DOI: 10.1371/journal.pone.0087815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics – stationary pathway output, response amplitude, and relaxation time – in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.
Collapse
Affiliation(s)
- Silke Neumann
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Linda Løvdok
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kajetan Bentele
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Johannes Meisig
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ekkehard Ullner
- Department of Physics and Institute for Complex Systems and Mathematical Biology (ICSMB), Aberdeen, United Kingdom
| | - Ferencz S. Paldy
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Markus Kollmann
- Department Biologie, Heinrich-Heine-Universität, Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
7
|
A "trimer of dimers"-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 2012; 74:2339-82. [PMID: 22864951 DOI: 10.1007/s11538-012-9756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/12/2012] [Indexed: 01/13/2023]
Abstract
The network that controls chemotaxis in Escherichia coli is one of the most completely characterized signal transduction systems to date. Receptor clustering accounts for characteristics such as high sensitivity, precise adaptation over a wide dynamic range of ligand concentrations, and robustness to variations in the amounts of intracellular proteins. To gain insights into the structure-function relationship of receptor clusters and understand the mechanism behind the high-performance signaling, we develop and analyze a model for a single trimer of dimers. This new model extends an earlier model (Spiro et al. in Proc. Natl. Acad. Sci. 94:7263-7268, 1997) to incorporate the recent experimental findings that the core structure of receptor clusters is the trimer of receptor dimers. We show that the model can reproduce most of the experimentally-observed behaviors, including excitation, adaptation, high sensitivity, and robustness to parameter variations. In addition, the model makes a number of new predictions as to how the adaptation time varies with the expression level of various proteins involved in signal transduction. Our results provide a more mechanistically-based description of the structure-function relationship for the signaling system, and show the key role of the interaction among dimer members of the trimer in the chemotactic response of cells.
Collapse
|
8
|
Tindall MJ, Gaffney EA, Maini PK, Armitage JP. Theoretical insights into bacterial chemotaxis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:247-59. [PMID: 22411503 DOI: 10.1002/wsbm.1168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models.
Collapse
Affiliation(s)
- Marcus J Tindall
- School of Biological Sciences, University of Reading, Whiteknights, Reading, UK.
| | | | | | | |
Collapse
|
9
|
Massazza DA, Parkinson JS, Studdert CA. Cross-linking evidence for motional constraints within chemoreceptor trimers of dimers. Biochemistry 2011; 50:820-7. [PMID: 21174433 PMCID: PMC3042772 DOI: 10.1021/bi101483r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In Escherichia coli, chemoreceptors exhibit higher-order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer-of-dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo cross-linking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr, respectively. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed cross-links, whereas reporters located different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernible effect on the cross-linking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced cross-linking at most of the reporter sites, indicating that individual dimers may move closer together under this condition.
Collapse
Affiliation(s)
- Diego A. Massazza
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - John S. Parkinson
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Yu YD, Choi Y, Teo YY, Dalby AR. Developing stochastic models for spatial inference: bacterial chemotaxis. PLoS One 2010; 5:e10464. [PMID: 20498704 PMCID: PMC2869353 DOI: 10.1371/journal.pone.0010464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 04/05/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has been bacterial chemotaxis which has been studied extensively as a model of signal transduction. RESULTS By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model parameterisations. CONCLUSIONS By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is available or where molecular data is not quantitative.
Collapse
Affiliation(s)
- Yoon-Dong Yu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Yoonjoo Choi
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Yik-Ying Teo
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew R. Dalby
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Jiang L, Ouyang Q, Tu Y. Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput Biol 2010; 6:e1000735. [PMID: 20386737 PMCID: PMC2851563 DOI: 10.1371/journal.pcbi.1000735] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 03/03/2010] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli chemotactic motion in spatiotemporally varying environments is studied by using a computational model based on a coarse-grained description of the intracellular signaling pathway dynamics. We find that the cell's chemotaxis drift velocity v(d) is a constant in an exponential attractant concentration gradient [L] proportional, variantexp(Gx). v(d) depends linearly on the exponential gradient G before it saturates when G is larger than a critical value G(C). We find that G(C) is determined by the intracellular adaptation rate k(R) with a simple scaling law: G(C) infinity k(1/2)(R). The linear dependence of v(d) on G = d(ln[L])/dx directly demonstrates E. coli's ability in sensing the derivative of the logarithmic attractant concentration. The existence of the limiting gradient G(C) and its scaling with k(R) are explained by the underlying intracellular adaptation dynamics and the flagellar motor response characteristics. For individual cells, we find that the overall average run length in an exponential gradient is longer than that in a homogeneous environment, which is caused by the constant kinase activity shift (decrease). The forward runs (up the gradient) are longer than the backward runs, as expected; and depending on the exact gradient, the (shorter) backward runs can be comparable to runs in a spatially homogeneous environment, consistent with previous experiments. In (spatial) ligand gradients that also vary in time, the chemotaxis motion is damped as the frequency omega of the time-varying spatial gradient becomes faster than a critical value omega(c), which is controlled by the cell's chemotaxis adaptation rate k(R). Finally, our model, with no adjustable parameters, agrees quantitatively with the classical capillary assay experiments where the attractant concentration changes both in space and time. Our model can thus be used to study E. coli chemotaxis behavior in arbitrary spatiotemporally varying environments. Further experiments are suggested to test some of the model predictions.
Collapse
Affiliation(s)
- Lili Jiang
- Center for Theoretical Biology and School of Physics, Peking University, Beijing, China
- IBM T. J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Qi Ouyang
- Center for Theoretical Biology and School of Physics, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Yuhai Tu
- Center for Theoretical Biology and School of Physics, Peking University, Beijing, China
- IBM T. J. Watson Research Center, Yorktown Heights, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Challenges and Approaches for Assay Development of Membrane and Membrane-Associated Proteins in Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [DOI: 10.1016/s1877-1173(10)91007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
13
|
Mutational analysis of the connector segment in the HAMP domain of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 2008; 190:6676-85. [PMID: 18621896 DOI: 10.1128/jb.00750-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HAMP domains are approximately 50-residue motifs, found in many bacterial signaling proteins, that consist of two amphiphilic helices joined by a nonhelical connector segment. The HAMP domain of Tsr, the serine chemoreceptor of Escherichia coli, receives transmembrane input signals from the periplasmic serine binding domain and in turn modulates output signals from the Tsr kinase control domain to elicit chemotactic responses. We created random amino acid replacements at each of the 14 connector residues of Tsr-HAMP to identify those that are critical for Tsr function. In all, we surveyed 179 connector missense mutants and identified three critical residues (G235, L237, and I241) at which most replacements destroyed Tsr function and another important residue (G245) at which most replacements impaired Tsr function. The region surrounding G245 tolerated 1-residue deletions and insertions of up to 10 glycines, suggesting a role as a relatively nonspecific, flexible linker. The critical connector residues are consistent with a structural model of the Tsr-HAMP domain based on the solution structure of an isolated thermophile HAMP domain (M. Hulko, F. Berndt, M. Gruber, J. U. Linder, V. Truffault, A. Schultz, J. Martin, J. E. Schultz, A. N. Lupas, and M. Coles, Cell 126:929-940, 2006) in which G235 defines a critical turn at the C terminus of the first helix and L237 and I241 pack against the helices, perhaps to stabilize alternative HAMP signaling conformations. Most I241 lesions locked Tsr signal output in the kinase-on mode, implying that this residue is responsible mainly for stabilizing the kinase-off signaling state. In contrast, lesions at L237 resulted in a variety of aberrant output patterns, suggesting a role in toggling output between signaling states.
Collapse
|
14
|
Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP, Jensen RB, Jensen GJ. Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 2008; 69:30-41. [PMID: 18363791 PMCID: PMC3090075 DOI: 10.1111/j.1365-2958.2008.06219.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new method for recording both fluorescence and cryo-EM images of small bacterial cells was developed and used to identify chemoreceptor arrays in cryotomograms of intact Caulobacter crescentus cells. We show that in wild-type cells preserved in a near-native state, the chemoreceptors are hexagonally packed with a lattice spacing of 12 nm, just a few tens of nanometers away from the flagellar motor that they control. The arrays were always found on the convex side of the cell, further demonstrating that Caulobacter cells maintain dorsal/ventral as well as anterior/posterior asymmetry. Placing the known crystal structure of a trimer of receptor dimers at each vertex of the lattice accounts well for the density and agrees with other constraints. Based on this model for the arrangement of receptors, there are between one and two thousand receptors per array.
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - H. Jane Ding
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Zhuo Li
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - John Werner
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - D. Prabha Dias
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Rasmus B. Jensen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Abstract
Intracellular protein concentration gradients are generally thought to be unsustainable at steady-state due to diffusion. Here we show how protein concentration gradients can theoretically be sustained indefinitely through a relatively simple mechanism that couples diffusion to a spatially segregated kinase-phosphatase system. Although it is appreciated that such systems can theoretically give rise to phosphostate gradients, it has been assumed that they do not give rise to gradients in the total protein concentration. Here we show that this assumption does not hold if the two forms of protein have different diffusion coefficients. If, for example, the phosphorylated state binds selectively to a second larger protein or protein complex then a steady state gradient in total protein concentration will be created. We illustrate the principle with an analytical solution to the diffusion-reaction problem and by stochastic individual-based simulations using the Smoldyn program. We argue that protein gradients created in this way need to be considered in experiments using fluorescent probes and could in principle encode spatial information in the cytoplasm.
Collapse
Affiliation(s)
- Karen Lipkow
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, 7-132 Nils Hasselmo Hall, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
16
|
Montefusco DJ, Shrout AL, Besschetnova TY, Weis RM. Formation and activity of template-assembled receptor signaling complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:3280-9. [PMID: 17286419 DOI: 10.1021/la062717r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Problems in membrane biology require methods to recreate the interactions between receptors and cytoplasmic signaling proteins at the membrane surface. Here, unilamellar vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and a nickel-chelating lipid were used as templates to direct the assembly of proteins from the Escherichia coli chemotaxis signaling pathway. The bacterial chemoreceptors are known to form clusters, which promote the binding of the adaptor protein (CheW) and the kinase (CheA). When CheA was incubated with vesicles, CheW, and a histidine-tagged cytoplasmic domain fragment of the aspartate chemoreceptor (CF), the kinase activity was stimulated approximately 300-fold. Activity and pull-down assays were used with dynamic light scattering and electron microscopy to characterize the protein-vesicle compositions that were correlated with the high levels of activity, which demonstrated that CF-CheW-CheA complexes on the vesicle surface were the active entities. Assembly and stimulation occurred with vesicles of different sizes and CFs in different extents of glutamine substitution (in place of glutamate) at physiologically relevant sites. An exception was the combination of sonicated vesicles with the unsubstituted CF, which displayed lower CheA activity. The lower activity was attributed to the high curvature of the sonicated vesicles and a weaker tendency of the unsubstituted CF to self-assemble. Electron micrographs of the vesicle-protein assemblies revealed that protein binding induced pronounced changes in vesicle shape, which was consistent with the introduction of positive curvature in the outer leaflet of the bilayer. Overall, vesicle-mediated template-directed assembly is shown to be an effective way to form functional complexes of membrane-associated proteins and suggests that significant changes in membrane shape can be involved in the process of transmembrane signaling.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Chemistry, LGRT 701, 710 North Pleasant Street, University of Massachusetts, Amherst, MA 01003-9336, USA
| | | | | | | |
Collapse
|
17
|
Wolanin PM, Baker MD, Francis NR, Thomas DR, DeRosier DJ, Stock JB. Self-assembly of receptor/signaling complexes in bacterial chemotaxis. Proc Natl Acad Sci U S A 2006; 103:14313-8. [PMID: 16973743 PMCID: PMC1599961 DOI: 10.1073/pnas.0606350103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli chemotaxis is mediated by membrane receptor/histidine kinase signaling complexes. Fusing the cytoplasmic domain of the aspartate receptor, Tar, to a leucine zipper dimerization domain produces a hybrid, lzTar(C), that forms soluble complexes with CheA and CheW. The three-dimensional reconstruction of these complexes was different from that anticipated based solely on structures of the isolated components. We found that analogous complexes self-assembled with a monomeric cytoplasmic domain fragment of the serine receptor without the leucine zipper dimerization domain. These complexes have essentially the same size, composition, and architecture as those formed from lzTar(C). Thus, the organization of these receptor/signaling complexes is determined by conserved interactions between the constituent chemotaxis proteins and may represent the active form in vivo. To understand this structure in its cellular context, we propose a model involving parallel membrane segments in receptor-mediated CheA activation in vivo.
Collapse
Affiliation(s)
| | | | | | - Dennis R. Thomas
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454
| | | | - Jeffry B. Stock
- Departments of *Molecular Biology and
- Chemistry, Princeton University, Princeton, NJ 08544; and
| |
Collapse
|
18
|
Lipkow K. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput Biol 2006; 2:e39. [PMID: 16683020 PMCID: PMC1447658 DOI: 10.1371/journal.pcbi.0020039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Accepted: 03/15/2006] [Indexed: 01/02/2023] Open
Abstract
In the chemotaxis pathway of the bacterium Escherichia coli, signals are carried from a cluster of receptors to the flagellar motors by the diffusion of the protein CheY-phosphate (CheYp) through the cytoplasm. A second protein, CheZ, which promotes dephosphorylation of CheYp, partially colocalizes with receptors in the plasma membrane. CheZ is normally dimeric in solution but has been suggested to associate into highly active oligomers in the presence of CheYp. A model is presented here and supported by Brownian dynamics simulations, which accounts for these and other experimental data: A minority component of the receptor cluster (dimers of CheAshort) nucleates CheZ oligomerization and CheZ molecules move from the cytoplasm to a bound state at the receptor cluster depending on the current level of cellular stimulation. The corresponding simulations suggest that dynamic CheZ localization will sharpen cellular responses to chemoeffectors, increase the range of detectable ligand concentrations, and make adaptation more precise and robust. The localization and activation of CheZ constitute a negative feedback loop that provides a second tier of adaptation to the system. Subtle adjustments of this kind are likely to be found in many other signaling pathways. In order to function effectively, a living cell must not only synthesize the correct molecules but also put them in the correct place. Understanding how this positioning occurs, and what its consequences are, is a matter of great interest and concern to contemporary biologists. The author here proposes a novel mechanism that will enhance the ability of a bacterial cell to perform chemotaxis—the ability to swim toward sources of food or away from noxious substances. In this hypothesis, a key protein in the chemotaxis pathway moves dynamically between the membrane and the cytoplasm depending on the presence of attractants or repellents. This idea is explored and tested by means of detailed molecular simulations in which all of the relevant molecules are shown in their correct location in the cell. The simulations show that the proposed shift in location of the key molecule will improve the speed, range, and robustness of the cell's response. It seems likely that similar movements of proteins will occur in many other signaling pathways.
Collapse
Affiliation(s)
- Karen Lipkow
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Berleman JE, Bauer CE. A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol Microbiol 2005; 55:1390-402. [PMID: 15720548 DOI: 10.1111/j.1365-2958.2005.04489.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhodospirillum centenum is a photosynthetic bacterium capable of undergoing swim cell to swarm cell differentiation that allows this species to be motile on both liquid and solid media. Previous experiments have demonstrated that the che1 operon is required for the control of chemotactic and phototactic behaviour of both swim and swarm cells. In this report, we analyse the function of a second che-like gene cluster in R. centenum, the che2 gene cluster. In-frame deletion mutants of cheW2, cheB2, cheR2, cheY2, and of the entire che2 operon, exhibit defects in swim and swarm cell motility. Analysis of these strains demonstrates that they are non-motile, and that the non-motile phenotype is resulting from reduced polar and lateral flagella synthesis. Additionally, mutations in mcp2, ORF204, cheA2 and ORF74 remain chemotacticly and phototacticly competent at both high and low growth temperatures. Mutations in these che2 genes result in elevated levels of flagellin proteins giving rise to a hyperflagellate phenotype. We propose a model in which R. centenum utilizes a che-like signal transduction pathway (che2) for regulating flagellum synthesis in order to optimize swim cell-swarm cell differentiation in response to changing environmental conditions.
Collapse
Affiliation(s)
- James E Berleman
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
20
|
Abstract
Motile bacteria seek optimal living habitats by following gradients of attractant and repellent chemicals in their environment. The signaling machinery for these chemotactic behaviors, although assembled from just a few protein components, has extraordinary information-processing capabilities. Escherichia coli, the best-studied model, employs a networked cluster of transmembrane receptors to detect minute chemical stimuli, to integrate multiple and conflicting inputs, and to generate an amplified output signal that controls the cell's flagellar motors. Signal gain arises through cooperative action of chemoreceptors of different types. The signaling-teams within a receptor cluster may be built from trimers of receptor dimers that communicate through shared connections to their partner signaling proteins.
Collapse
Affiliation(s)
- John S Parkinson
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
21
|
Abstract
We have analyzed repellent signal processing in Escherichia coli by flash photorelease of leucine from photolabile precursors. We found that 1). response amplitudes of free-swimming cell populations increased with leucine jump concentration, with an apparent Hill coefficient of 1.3 and a half-maximal dose of 14.4 microM; 2). at a 0-0.5 mM leucine concentration jump sufficient to obtain a saturation motile response, the swimming cell response time of approximately 0.05 s was several-fold more rapid than the motor response time of 0.39 +/- 0.18 s measured by following the rotation of cells tethered by a single flagellum to quartz coverslips; and 3). the motor response time of individual cells was correlated with rotation bias but not cell size. These results provide information on amplification, rate-limiting step, and flagellar bundle mechanics during repellent signal processing. The difference between the half-maximal dose for the excitation response and the corresponding value reported for adaptation provides an estimate of the increase in the rate of formation of CheYP, the phosphorylated form of the signal protein CheY. The estimated increase gives a lower limit receptor kinase coupling ratio of 6.0. The magnitude and form of the motor response time distribution argue for it being determined by the poststimulus switching probability rather than CheYP turnover, diffusion, or binding. The temporal difference between the tethered and swimming cell response times to repellents can be quantitatively accounted for and suggests that one flagellum is sufficient to cause a measurable change of direction in which a bacterium swims.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Chicago, Illinois, USA.
| | | | | | | |
Collapse
|
22
|
Lipkow K, Andrews SS, Bray D. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J Bacteriol 2005; 187:45-53. [PMID: 15601687 PMCID: PMC538814 DOI: 10.1128/jb.187.1.45-53.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the use of a computational model to study the effects of cellular architecture and macromolecular crowding on signal transduction in Escherichia coli chemotaxis. A newly developed program, Smoldyn, allows the movement and interaction of a large number of individual molecules in a structured environment to be simulated (S. S. Andrews and D. Bray, Phys. Biol., in press). With Smoldyn, we constructed a three-dimensional model of an E. coli cell and examined the diffusion of CheYp from the cluster of receptors to the flagellar motors under control conditions and in response to attractant and repellent stimuli. Our simulations agree well with experimental observations of cell swimming responses and are consistent with the diffusive behavior expected in wild-type and mutant cells. The high resolution available to us in the new program allows us to calculate the loci of individual CheYp molecules in a cell and the distribution of their lifetimes under different cellular conditions. We find that the time delay between stimulus and response differs for flagellar motors located at different positions in the cell. We explore different possible locations for the phosphatase CheZ and show conditions under which a gradient of CheYp exists in the cell. The introduction of inert blocks into the cytoplasm, representing impenetrable structures such as the nucleoid and large protein complexes, produces a fall in the apparent diffusion coefficient of CheYp and enhances the differences between motors. These and other results are left as predictions for future experiments.
Collapse
Affiliation(s)
- Karen Lipkow
- Department of Anatomy, University of Cambridge, Downing St., Cambridge CB2 3DY, United Kingdom.
| | | | | |
Collapse
|
23
|
Abstract
Motile bacteria respond to environmental cues to move to more favorable locations. The components of the chemotaxis signal transduction systems that mediate these responses are highly conserved among prokaryotes including both eubacterial and archael species. The best-studied system is that found in Escherichia coli. Attractant and repellant chemicals are sensed through their interactions with transmembrane chemoreceptor proteins that are localized in multimeric assemblies at one or both cell poles together with a histidine protein kinase, CheA, an SH3-like adaptor protein, CheW, and a phosphoprotein phosphatase, CheZ. These multimeric protein assemblies act to control the level of phosphorylation of a response regulator, CheY, which dictates flagellar motion. Bacterial chemotaxis is one of the most-understood signal transduction systems, and many biochemical and structural details of this system have been elucidated. This is an exciting field of study because the depth of knowledge now allows the detailed molecular mechanisms of transmembrane signaling and signal processing to be investigated.
Collapse
Affiliation(s)
- Melinda D Baker
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
24
|
Francis NR, Wolanin PM, Stock JB, Derosier DJ, Thomas DR. Three-dimensional structure and organization of a receptor/signaling complex. Proc Natl Acad Sci U S A 2004; 101:17480-5. [PMID: 15572451 PMCID: PMC536031 DOI: 10.1073/pnas.0407826101] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmembrane signaling in bacterial chemotaxis has become an important model system for experimental and theoretical studies. These studies have provided a wealth of detailed molecular structures, including the structures of CheA, CheW, and the cytoplasmic domain of the serine receptor Tsr. How these three proteins interact to form the receptor/signaling complex remains unknown. By using EM and single-particle image analysis, we present a three-dimensional reconstruction of the receptor/signaling complex. The complex contains CheA, CheW, and the cytoplasmic portion of the aspartate receptor Tar. We observe density consistent with a structure containing 24 aspartate-receptor monomers and additional density sufficient to house the expected four CheA monomers and six CheW monomers. Within this bipolar structure are four groups of three receptor dimers that are not threefold symmetric and are therefore unlike the symmetric trimers observed in the x-ray crystal structure of the cytoplasmic domain of the serine receptor. In the latter, the interdimer contacts occur in the signaling domains near the hairpin loop. In our structure, the signaling domains within trimers appear spaced apart by the presence of CheA and CheW. This structure argues against models where one CheA and one CheW bind to the outer face of each of the dimers in the trimer. This structure of the receptor/signaling complex provides an additional basis for understanding the architecture of the large arrays of chemotaxis receptors, CheA, and CheW found at the cell poles in motile bacteria.
Collapse
Affiliation(s)
- Noreen R Francis
- Rosenstiel Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
25
|
Albert R, Chiu YW, Othmer HG. Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli. Biophys J 2004; 86:2650-9. [PMID: 15111386 PMCID: PMC1304138 DOI: 10.1016/s0006-3495(04)74321-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.
Collapse
Affiliation(s)
- Réka Albert
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
26
|
Lefman J, Zhang P, Hirai T, Weis RM, Juliani J, Bliss D, Kessel M, Bos E, Peters PJ, Subramaniam S. Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr. J Bacteriol 2004; 186:5052-61. [PMID: 15262942 PMCID: PMC451663 DOI: 10.1128/jb.186.15.5052-5061.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.
Collapse
Affiliation(s)
- Jonathan Lefman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hellingwerf KJ. A network of net-workers: report of the Euresco conference on ‘Bacterial Neural Networks’ held at San Feliu (Spain) from 8 to 14 May 2004. Mol Microbiol 2004; 54:2-13. [PMID: 15458400 DOI: 10.1111/j.1365-2958.2004.04321.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In May 2004, over 100 bacteriologists from 19 different countries discussed recent progress in identification and understanding of individual signal transfer mechanisms in bacteria and in the mutual interactions between these systems to form a functional living cell. The meeting was held in San Feliu and supported by ESF and EMBO. In part through the extensive sequencing efforts of the past few years, the bulk of the bacterial signal transfer systems have been resolved and their detailed characterization is revealing such characteristics as signal specificity, signalling rate constants, molecular interaction affinities, subcellular localization, etc., which should provide a solid basis to a computational extension of this field of studies. In parallel, the new genomics techniques are providing tools to characterize the way a collection of such systems interact in an individual cell, to give rise to 'life'. Systems theory provides rational and convenient ways to bring order to the wide range of observables thus obtained. Ultimately, the performance of engineered design will have to prove whether or not we know enough about the processes involved.
Collapse
Affiliation(s)
- Klaas J Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Abstract
The phenomenon of allostery is conventionally described for small symmetrical oligomeric proteins such as hemoglobin. Here we review experimental evidence from a variety of systems-including bacterial chemotaxis receptors, muscle ryanodine receptors, and actin filaments-showing that conformational changes can also propagate through extended lattices of protein molecules. We explore the statistical mechanics of idealized linear and two-dimensional arrays of allosteric proteins and show that, as in the analogous Ising models, arrays of closely packed units can show large-scale integrated behavior. We also discuss proteins that undergo conformational changes driven by the hydrolysis of ATP and give examples in which these changes propagate through linear chains of molecules. We suggest that conformational spread could provide the basis of a solid-state "circuitry" in a living cell, able to integrate biochemical and biophysical events over hundreds of protein molecules.
Collapse
Affiliation(s)
- Dennis Bray
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
| | | |
Collapse
|
29
|
Abstract
Bacterial chemotaxis is mediated by transmembrane receptors that bind attractant and repellent chemicals and control an intracellular protein kinase. Each cell contains thousands of receptor subunits that form a tightly packed array at one pole. Recent studies of bacterial behavior have begun to reveal the molecular logic of this sensory architecture.
Collapse
Affiliation(s)
- Peter M Wolanin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
30
|
Weis RM, Hirai T, Chalah A, Kessel M, Peters PJ, Subramaniam S. Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr. J Bacteriol 2003; 185:3636-43. [PMID: 12775701 PMCID: PMC156230 DOI: 10.1128/jb.185.12.3636-3643.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The serine receptor (Tsr) from Escherichia coli is representative of a large family of transmembrane receptor proteins that mediate bacterial chemotaxis by influencing cell motility through signal transduction pathways. Tsr and other chemotaxis receptors form patches in the inner membrane that are often localized at the poles of the bacteria. In an effort to understand the structural constraints that dictate the packing of receptors in the plane of the membrane, we have used electron microscopy to examine ordered assemblies of Tsr in membrane extracts isolated from cells engineered to overproduce the receptor. Three types of assemblies were observed: ring-like "micelles" with a radial arrangement of receptor subunits, two-dimensional crystalline arrays with approximate hexagonal symmetry, and "zippers," which are receptor bilayers that result from the antiparallel interdigitation of cytoplasmic domains. The registration among Tsr molecules in the micelle and zipper assemblies was sufficient for identification of the receptor domains and for determination of their contributions to the total receptor length. The overall result of this analysis is compatible with an atomic model of the receptor dimer that was constructed primarily from the X-ray crystal structures of the periplasmic and cytoplasmic domains. Significantly, the micelle and zipper structures were also observed in fixed, cryosectioned cells expressing the Tsr receptor at high abundance, suggesting that the modes of Tsr assembly found in vitro are relevant to the situation in the cell.
Collapse
Affiliation(s)
- Robert M Weis
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20817, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Levit MN, Stock JB. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J Biol Chem 2002; 277:36760-5. [PMID: 12119291 DOI: 10.1074/jbc.m204325200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Motile prokaryotes employ a chemoreceptor-kinase array to sense changes in the media and properly adjust their swimming behavior. This array is composed of a family of Type I membrane receptors, a histidine protein kinase (CheA), and an Src homology 3-like protein (CheW). Binding of an attractant to the chemoreceptors inhibits CheA, which results in decreased phosphorylation of the chemotaxis response regulator (CheY). Sensitivity of the system to stimuli is modulated by a protein methyltransferase (CheR) and a protein methylesterase (CheB) that catalyze the methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of the receptors. One of the most fundamental unanswered questions concerning the bacterial chemotaxis mechanism is the quantitative relationship between ligand binding to receptors and CheA inhibition. We show that the receptor glutamyl modifications cause adaptation by changing the gain (magnitude amplification) between attractant binding and kinase inhibition without substantially affecting ligand binding affinity. The mechanism adjusts receptor sensitivity to background stimulus intensity over several orders of magnitude of attractant concentrations. The cooperative effects of ligand binding appear to be minimal with Hill coefficients for kinase inhibition less than 2, independent of the state of glutamyl modification.
Collapse
Affiliation(s)
- Mikhail N Levit
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
32
|
Levit MN, Grebe TW, Stock JB. Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis. J Biol Chem 2002; 277:36748-54. [PMID: 12119289 DOI: 10.1074/jbc.m204317200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Motor behavior in prokaryotes is regulated by a phosphorelay network involving a histidine protein kinase, CheA, whose activity is controlled by a family of Type I membrane receptors. In a typical Escherichia coli cell, several thousand receptors are organized together with CheA and an Src homology 3-like protein, CheW, into complexes that tend to be localized at the cell poles. We found that these complexes have at least 6 receptors per CheA. CheW is not required for CheA binding to receptors, but is essential for kinase activation. The kinase activity per mole of bound CheA is proportional to the total bound CheW. Similar results were obtained with the E. coli serine receptor, Tsr, and the Salmonella typhimurium aspartate receptor, Tar. In the case of Tsr, under conditions optimal for kinase activation, the ratio of subunits in complexes is approximately 6 Tsr:4 CheW:1 CheA. Our results indicate that information from numerous receptors is integrated to control the activity of a relatively small number of kinase molecules.
Collapse
Affiliation(s)
- Mikhail N Levit
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|