1
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
2
|
Svenningsen EB, Ottosen RN, Jørgensen KH, Nisavic M, Larsen CK, Hansen BK, Wang Y, Lindorff-Larsen K, Tørring T, Hacker SM, Palmfeldt J, Poulsen TB. The covalent reactivity of functionalized 5-hydroxy-butyrolactams is the basis for targeting of fatty acid binding protein 5 (FABP5) by the neurotrophic agent MT-21. RSC Chem Biol 2022; 3:1216-1229. [PMID: 36320884 PMCID: PMC9533406 DOI: 10.1039/d2cb00161f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Covalently acting compounds experience a strong interest within chemical biology both as molecular probes in studies of fundamental biological mechanisms and/or as novel drug candidates. In this context, the identification of new classes of reactive groups is particularly important as these can expose novel reactivity modes and, consequently, expand the ligandable proteome. Here, we investigated the electrophilic reactivity of the 3-acyl-5-hydroxy-1,5-dihydro-2H-pyrrole-2-one (AHPO) scaffold, a heterocyclic motif that is e.g. present in various bioactive natural products. Our investigations were focused on the compound MT-21 – a simplified structural analogue of the natural product epolactaene – which is known to have both neurotrophic activity and ability to trigger apoptotic cell death. We found that the central N-acyl hemiaminal group of MT-21 can function as an electrophilic centre enabling divergent reactivity with both amine- and thiol-based nucleophiles, which furthermore translated to reactivity with proteins in both cell lysates and live cells. We found that in live cells MT-21 strongly engaged the lipid transport protein fatty acid-binding protein 5 (FABP5) by direct binding to a cysteine residue in the bottom of the ligand binding pocket. Through preparation of a series of MT-21 derivatives, we probed the specificity of this interaction which was found to be strongly dependent on subtle structural changes. Our study suggests that MT-21 may be employed as a tool compound in future studies of the biology of FABP5, which remains incompletely understood. Furthermore, our study has also made clear that other natural products containing the AHPO-motif may likewise possess covalent reactivity and that this property may underlie their biological activity. In this work, it is shown that an N-acyl hemiaminal motif present in many natural products can function as an electrophilic centre, mediating covalent reactivity in biological systems, reacting with both thiols and amines.![]()
Collapse
Affiliation(s)
| | - Rasmus N. Ottosen
- Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
| | | | - Marija Nisavic
- Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
- Department of Clinical Medicine – Research Unit for Molecular Medicine, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Camilla K. Larsen
- Department of Engineering – Microbial Biosynthesis, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bente K. Hansen
- Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yong Wang
- Copenhagen Biocenter, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Thomas Tørring
- Department of Engineering – Microbial Biosynthesis, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stephan M. Hacker
- Leiden Institute of Chemistry, Leiden University, NL-2333 CC Leiden, The Netherlands
| | - Johan Palmfeldt
- Department of Clinical Medicine – Research Unit for Molecular Medicine, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Thomas B. Poulsen
- Department of Chemistry, Aarhus University, DK-8000, Aarhus C, Denmark
| |
Collapse
|
3
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
4
|
Shiri M, Ranjbar M, Yasaei Z, Zamanian F, Notash B. Palladium-catalyzed tandem reaction of 2-chloroquinoline-3-carbaldehydes and isocyanides. Org Biomol Chem 2018; 15:10073-10081. [PMID: 29168530 DOI: 10.1039/c7ob02043k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A facile domino reaction of 2-chloroquinoline-3-carbaldehydes in one and two equivalents of isocyanide has been investigated. Three-component reactions of 2-chloroquinoline-3-carbaldehydes, isocyanides and amines are also described. In this Pd-catalyzed reaction under controlled conditions, three novel types of quinoline derivatives were formed via amidation, lactamization or carbamate formation along with the formation of C-C, C-N, and C-O bonds in a one-pot procedure.
Collapse
Affiliation(s)
- Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 1993893973, Iran.
| | | | | | | | | |
Collapse
|
5
|
Pelkey ET, Pelkey SJ, Greger JG. De Novo Synthesis of 3-Pyrrolin-2-Ones. ADVANCES IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1016/bs.aihch.2015.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Kim JY, So KJ, Lee S, Park JH. Bcl-rambo induces apoptosis via interaction with the adenine nucleotide translocator. FEBS Lett 2012; 586:3142-9. [PMID: 22921587 DOI: 10.1016/j.febslet.2012.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
Abstract
The Bcl-2 family proteins plays a central role in apoptosis. The pro- or anti-apoptotic activities of Bcl-2 family are dependent on the Bcl-2 homology (BH) regions. Bcl-rambo, a new pro-apoptotic member, is unusual in that its pro-apoptotic activity is independent of its BH domains. However, the mechanism underlying Bcl-rambo-induced apoptosis is largely unknown. Mitochondrial localization is indispensable for the pro-apoptotic function of Bcl-rambo. Bcl-rambo interacts physically with the adenine nucleotide translocator (ANT), suppresses the ADT/ATP-dependent translocation activity of ANT. Collectively, our data indicate Bcl-rambo is a pro-apoptotic member of the Bcl-2 family, induces the permeability transition via interaction with ANT.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/DIABLO from mitochondria during cell death signaling. PLoS One 2012; 7:e42298. [PMID: 22848756 PMCID: PMC3407092 DOI: 10.1371/journal.pone.0042298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/05/2012] [Indexed: 12/02/2022] Open
Abstract
Mitochondrially mediated apoptosis is characterized by redistribution of proteins from mitochondria to cytoplasm following permeabilization of the outer mitochondrial membrane. We applied flow cytometry to quantify simultaneously the redistribution of two apoptogenic proteins, cytochrome c (cyt c) and Smac/DIABLO (Smac). Mammalian cells were treated with digitonin that selectively permeabilizes the plasma membrane. Following fixation, treated cells were infused successively with primary and secondary antibodies (the latter fluorescently tagged) enabling independent detection of cyt c and Smac. Digitonin-treated cells that retain cyt c or Smac in mitochondria generate strong fluorescence signals in flow cytometry. Cells in which cyt c or Smac have transited the outer mitochondrial membrane show greatly reduced fluorescence because the proteins are lost from the digitonin-permeabilized cells. Quantitative flow cytometry revealed that in 143B TK- cells treated with staurosporine, cyt c and Smac exit mitochondria asymmetrically, with cyt c redistribution preceding that of Smac. However, in HeLa cells likewise treated, cyt c and Smac exit mitochondria concurrently. Under other conditions of apoptotic induction, for example, 143B TK- cells treated with MT-21 (an apoptotic inducer that binds to the mitochondrial adenine nucleotide transporter), redistribution of Smac precedes that of cyt c. The various patterns of redistribution of these proteins were confirmed by immunocytochemical analysis and confocal microscopy. We conclude that flow cytometry can be employed effectively to quantify simultaneously the redistribution of cyt c and Smac from mitochondria to the cytosol. Moreover, differential redistribution of cyt c and Smac occurs under various conditions, thereby reflecting constraints on availability of these proteins to exit mitochondria after permeabilization of the outer membrane.
Collapse
|
8
|
Biology of mitochondria in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:355-415. [PMID: 22482456 DOI: 10.1016/b978-0-12-385883-2.00005-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS.
Collapse
|
9
|
Mitsui-Saitoh K, Furukawa T, Akutagawa T, Hasada K, Mizutani H, Sugimoto Y, Yamada J, Niwa M, Hotta Y, Takaya Y. Protective effects of cyclo(L-Leu-L-Tyr) against postischemic myocardial dysfunction in guinea-pig hearts. Biol Pharm Bull 2011; 34:335-42. [PMID: 21372381 DOI: 10.1248/bpb.34.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protective effects of cyclic dipeptides in alcoholic beverages were investigated in the perfused guinea-pig hearts subjected to ischemia and reperfusion. Subsequently, in order to determine the importance of cyclic dipeptide structure, the effects of cyclo(L-Leu-L-Tyr) (cLY) were compared with those of the newly synthesized non-cyclic dipeptides, L-Leu-L-Tyr (LY) and L-Tyr-L-Leu (YL). After reperfusion, pressure recovery (%) in the left ventricle reached a peak of over 90% in the presence of cLY (10(-6) M and 10(-5) M) (control: 22.9%). The recovery by LY and YL was significantly lower than that by cLY, and ATP levels simultaneously monitored using (31)P-NMR were already lower during the ischemic end period than those observed with cLY treatment. In perfused mitochondrial preparations, cLY significantly inhibited mitochondrial Ca(2+) ([Ca(2+)](m)) elevation in a similar way to that of the mitochondrial permeability transition pore (MPTP) inhibitor cyclosporin A. In vitro electron paramagnetic resonance (EPR) revealed that the active oxygen radicals quenching activity of cLY was greater than those of non-cyclic dipeptides. cLY inhibited caspase-3-induced apoptosis. The cyclic dipeptide structure inhibits opening of the MPTP by preventing [Ca(2+)](m) overload-induced apoptosis related to mitochondrial active oxygen radical accumulation in ischemia-reperfusion hearts.
Collapse
|
10
|
Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:735-45. [DOI: 10.1016/j.bbabio.2011.03.010] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
|
11
|
Brenner C, Subramaniam K, Pertuiset C, Pervaiz S. Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 2010; 30:883-95. [PMID: 21076465 DOI: 10.1038/onc.2010.501] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria have important functions in mammalian cells as the energy powerhouse and integrators of the mitochondrial pathway of apoptosis. The adenine nucleotide translocase (ANT) is a family of proteins involved in cell death pathways that perform distinctly opposite functions to regulate cell fate decisions. On the one hand, ANT catalyzes the adenosine triphosphate export from the mitochondrial matrix to the intermembrane space with the concomitant import of ADP from the intermembrane space to the matrix. On the other hand, during periods of stress, ANT could function as a lethal pore and trigger the process of mitochondrial membrane permeabilization, which leads irreversibly to cell death. In human, ANT is encoded by four homologous genes, whose expression is not only tissue specific, but also varies according to the pathophysiological state of the cell. Recent evidence revealed a differential role of the ANT isoforms in apoptosis and a deregulation of their expression in cancer. In this review, we introduce the current knowledge of ANT in apoptosis and cancer cells and propose a novel classification of ANT isoforms.
Collapse
Affiliation(s)
- C Brenner
- Univ Paris-Sud, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
12
|
Martin LJ. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals (Basel) 2010; 3:839-915. [PMID: 21258649 PMCID: PMC3023298 DOI: 10.3390/ph3040839] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology and Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA; ; Tel.: +410-502-5170
| |
Collapse
|
13
|
Kakeya H, Nishimura S. Novel Natural Products Open the Door of Chemical Biology and Medicinal Chemistry. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Martin LJ. The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:186-97. [PMID: 19651206 PMCID: PMC2790555 DOI: 10.1016/j.bbadis.2009.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/23/2023]
Abstract
Effective therapies are needed for the treatment of amyotrophic lateral sclerosis (ALS), a fatal type of motor neuron disease. Morphological, biochemical, molecular genetic, and cell/animal model studies suggest that mitochondria have potentially diverse roles in neurodegenerative disease mechanisms and neuronal cell death. In human ALS, abnormalities have been found in mitochondrial structure, mitochondrial respiratory chain enzymes, and mitochondrial cell death proteins indicative of some non-classical form of programmed cell death. Mouse models of ALS are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria. This minireview summarizes work on the how malfunctioning mitochondria might contribute to neuronal death in ALS through the biophysical entity called the mitochondrial permeability pore (mPTP). The major protein components of the mPTP are enriched in mouse motor neurons. Early in the course of disease in ALS mice expressing human mutant superoxide dismutase-1, mitochondria in motor neurons undergo trafficking abnormalities and dramatic remodeling resulting in the formation of mega-mitochondria and coinciding with increased protein carbonyl formation and nitration of mPTP components. The genetic deletion of a major mPTP component, cyclophilin D, has robust effects in ALS mice by delaying disease onset and extending survival. Thus, attention should be directed to the mPTP as a rational target for the development of drugs designed to treat ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA.
| |
Collapse
|
15
|
Baines CP, Molkentin JD. Adenine nucleotide translocase-1 induces cardiomyocyte death through upregulation of the pro-apoptotic protein Bax. J Mol Cell Cardiol 2009; 46:969-77. [PMID: 19452617 PMCID: PMC2768428 DOI: 10.1016/j.yjmcc.2009.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overexpression of the adenine nucleotide translocase (ANT) has been shown to be cytotoxic in several cell types. Although ANT was originally proposed to be a critical component of the mitochondrial permeability transition (MPT) pore, recent data have suggested that this may not be the case. We therefore hypothesized that the cytotoxic actions of ANT are through an alternative mechanism, independent of the MPT pore. Infection of cultured neonatal cardiomyocytes with an ANT1-encoding adenovirus induced a gene dosage-dependent increase in cell death. However, ANT1 overexpression failed to induce MPT, and neither pharmacological nor genetic inhibition of the MPT pore was able to prevent ANT1-induced cell death. These data suggested that ANT1-induced death progressed through an MPT pore-independent pathway. Somewhat surprisingly, we observed that protein levels of Bax, a pro-apoptotic Bcl protein, were consistently elevated in ANT1-infected cardiomyocytes. Membranes isolated from ANT1-infected myocytes exhibited significantly increased amounts of membrane-inserted Bax, and immunocytochemistry revealed increased Bax activation in ANT1-infected myocytes. Co-expression with the Bax antagonist Bcl2 was able to greatly reduce the degree of ANT1-induced cell death. Furthermore, Bax/Bak-deficient fibroblasts were resistant to the cytotoxic effects of ANT1 overexpression. Interestingly, ANT1 overexpression was also associated with enhanced production of reactive oxygen species (ROS), and the antioxidant MnTBAP was able to significantly attenuate both the ANT1-induced upregulation of Bax and cell death. Taken together, these data indicate that ANT mediates cell death, not through the MPT pore, but rather via a ROS-dependent upregulation and activation of Bax.
Collapse
Affiliation(s)
- Christopher P Baines
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
16
|
Fukui M, Nagahara Y, Nishio Y, Honjoh T, Shinomiya T. Rokitamycin induces a mitochondrial defect and caspase-dependent apoptosis in human T-cell leukemia Jurkat cells. J Pharmacol Sci 2009; 110:69-77. [PMID: 19403997 DOI: 10.1254/jphs.08267fp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Macrolides are a well-known family of oral antibiotics whose antibacterial spectrum of activity covers most relevant bacterial species responsible for respiratory infectious disease. In recent years, it has been reported that macrolides have not only bactericidal activity but also direct immunomodulating activity in mammals. In this study, we observed new physiological activity of macrolides and examined whether various macrolides induce apoptosis in human leukemia cell lines. We investigated the effects of 13 different macrolides on the viability of Jurkat and HL-60 cells. Among all the macrolides used in this study, rokitamycin, a semisynthetic macrolide with a 16-member ring, effectively induced cell death. Rokitamycin induced DNA fragmentation and caspase activation, resembling the progression of apoptosis. Moreover, rokitamycin reduced the mitochondrial transmembrane potential and released cytochrome c from mitochondria to the cytosol, suggesting that mitochondrial perturbation is involved in rokitamycin-induced apoptosis. These results suggest that rokitamycin possesses not only bactericidal activity but also pro-apoptotic activity in human leukemia cells.
Collapse
Affiliation(s)
- Masayuki Fukui
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
17
|
Kashiwaya K, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Shinomura Y, Nakamura Y, Nakagawa H. Identification of C2orf18, termed ANT2BP (ANT2-binding protein), as one of the key molecules involved in pancreatic carcinogenesis. Cancer Sci 2009; 100:457-64. [PMID: 19154410 PMCID: PMC11158434 DOI: 10.1111/j.1349-7006.2008.01058.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows one of the worst mortality rates among the common malignancies, and the great majority of PDAC patients are diagnosed at an advanced stage where no effective therapy is presently available. Hence, identification of novel molecular targets and development of molecular therapy for PDAC are urgently required. Through our genome-wide gene expression profiles of microdissected PDAC cells, we here identified a novel gene C2orf18 as a molecular target for PDAC treatment. Transcriptional and immunohistochemical analysis validated its overexpression in PDAC cells and limited expression in normal adult organs. Knockdown of C2orf18 by small-interfering RNA in PDAC cell lines resulted in induction of apoptosis and suppression of cancer cell growth, suggesting its essential role in maintaining viability of PDAC cells. We showed that C2orf18 was localized in the mitochondria and it could interact with adenine nucleotide translocase 2 (ANT2), which is involved in maintenance of the mitochondrial membrane potential and energy homeostasis, and was indicated some roles in apoptosis. These findings implicated that C2orf18, termed ANT2-binding protein (ANT2BP), might serve as a candidate molecular target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Kotoe Kashiwaya
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Berridge MV, Herst PM, Lawen A. Targeting mitochondrial permeability in cancer drug development. Mol Nutr Food Res 2008; 53:76-86. [DOI: 10.1002/mnfr.200700493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Azuma M, Kabe Y, Kuramori C, Kondo M, Yamaguchi Y, Handa H. Adenine nucleotide translocator transports haem precursors into mitochondria. PLoS One 2008; 3:e3070. [PMID: 18728780 PMCID: PMC2516936 DOI: 10.1371/journal.pone.0003070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.
Collapse
Affiliation(s)
- Motoki Azuma
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Yasuaki Kabe
- Department of Integrative Medical Biology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Chikanori Kuramori
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Masao Kondo
- Department of Early Childhood Care and Education, Toyoko Gakuen Women's College, , Setagaya-ku, Tokyo, Japan
| | - Yuki Yamaguchi
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Hiroshi Handa
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
- Solutions Research Organization, Integrated Research Institute, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| |
Collapse
|
20
|
Hong J, Samudio I, Chintharlapalli S, Safe S. 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes decrease mitochondrial membrane potential and induce apoptosis in endometrial and other cancer cell lines. Mol Carcinog 2008; 47:492-507. [PMID: 18085536 PMCID: PMC2711558 DOI: 10.1002/mc.20407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes, containing p-t-butyl (DIM-C-pPhtBu) and phenyl (DIM-C-pPhC(6)H(5)) substituents, are peroxisome proliferator-activated receptor gamma (PPARgamma) agonists; however, DIM-C-pPhtBu-induced growth inhibition and cell death in human HEC1A endometrial cancer cells is PPARgamma-independent. DIM-C-pPhtBu decreased mitochondrial membrane potential (MMP) and promoted the release of cytochrome c and caspase activation and nuclear uptake of endonuclease G leading to apoptosis of HEC1A cells. DIM-C-pPhtBu specifically targeted the mitochondrial permeability transition pore complex (PTPC) because the DIM-C-pPhtBu-induced pro-apoptotic responses were inhibited by atractyloside (Atra), a compound that specifically interacts with the inner mitochondrial membrane adenine nucleotide transport (ANT) proteins. At the dose of Atra used in this study (300 microM), this compound alone did not alter the PTPC but inhibited the mitochondriotoxic effects of DIM-C-pPhtBu. DIM-C-pPhtBu/DIM-C-pPhC(6)H(5) and Atra also differentially affected the ability of eosin-5-maleimide (EMA) to alkylate Cys160 in the ANT protein and Atra, but not DIM-C-pPhtBu, inhibited the exchange of ATP/ADP in isolated mitochondria suggesting that these pharmacophores act on different sites on the ANT protein. Results of this study show that the receptor-independent proapoptotic activity of DIM-C-pPhtBu and DIM-C-pPhC(6)H(5) were related to novel mitochondriotoxic activities involving inner mitochondrial ANT proteins.
Collapse
Affiliation(s)
- Jun Hong
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
21
|
Katsuragi T, Sato C, Usune S, Ueno S, Segawa M, Migita K. Caffeine-inducible ATP release is mediated by Ca2+-signal transducing system from the endoplasmic reticulum to mitochondria. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:93-101. [PMID: 18446524 DOI: 10.1007/s00210-008-0292-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Adenosine triphosphate (ATP) is released as an autocrine/paracrine signal from a variety of cells. The present study was undertaken to clarify the Ca2+-signal pathway involved in the caffeine-inducible release of ATP from cultured smooth muscle cells (SMC). The release of ATP induced by caffeine (3 mM) was almost completely inhibited by ryanodine and tetracaine, but not by 2-APB, thus being mediated by ryanodine receptors (RyR). The expression of messenger RNA from only RyR-2 was detected in the cells. Furthermore, the induced release was attenuated by mitochondrial inhibitors, rotenone and oligomycin and by Cl- channel blockers, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid. Increase in Ca2+-signals with fluo 4 and rhod-2 caused by caffeine were reduced by tetracaine and oligomycin plus carbonyl cyanide m-chlorophenylhydrazone, respectively. A close spatial relation between the endoplasmic reticulum (ER) and mitochondria was electromicroscopically observed in the SMC, supporting the existence of a Ca2+-signaling bridge on both the organelli. These results suggest that caffeine stimulates ryanodine receptor (RyR-2) and facilitates a Ca2+-signal transducing system from ER to mitochondria, and then, the signal appears to accelerate the ATP synthesis in mitochondria. In addition, the mitochondrial event may lead further cell signaling to the cell membrane and activates Cl- channels, resulting in the extracellular release of cytosolic ATP.
Collapse
Affiliation(s)
- Takeshi Katsuragi
- Department of Pharmacology, Fukuoka University, Fukuoka, 814-0180, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Patenaude A, Deschesnes RG, Rousseau JLC, Petitclerc E, Lacroix J, Côté MF, C-Gaudreault R. New Soft Alkylating Agents with Enhanced Cytotoxicity against Cancer Cells Resistant to Chemotherapeutics and Hypoxia. Cancer Res 2007; 67:2306-16. [PMID: 17332362 DOI: 10.1158/0008-5472.can-06-3824] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chloroethylureas (CEU) are soft alkylating agents that covalently bind to beta-tubulin (betaTAC) and affect microtubule polymerization dynamics. Herein, we report the identification of a CEU subset and its corresponding oxazolines, which induce cell growth inhibition, apoptosis, and microtubule disruption without alkylating beta-tubulin (N-betaTAC). Both betaTAC and N-betaTAC trigger the collapse of mitochondrial potential (DeltaPsi(m)) and modulate reactive oxygen species levels, following activation of intrinsic caspase-8 and caspase-9. Experiments using human fibrosarcoma HT1080 respiratory-deficient cells (rho(0)) and uncoupler of the mitochondrial respiratory chain (MRC) showed that betaTAC and N-betaTAC impaired the MRC. rho(0) cells displayed an increased sensitivity toward N-betaTAC as compared with rho(+) cells but, in contrast, were resistant to betaTAC or classic chemotherapeutics, such as paclitaxel. Oxazoline-195 (OXA-195), an N-betaTAC derivative, triggered massive swelling of isolated mitochondria. This effect was insensitive to cyclosporin A and to Bcl-2 addition. In contrast, adenine nucleotide translocator (ANT) antagonists, bongkrekic acid or atractyloside, diminished swelling induced by OXA-195. The antiproliferative activities of the N-betaTACs CEU-025 and OXA-152 were markedly decreased in the presence of atractyloside. Conversely, pretreatment with cyclosporin A enhanced growth inhibition induced by betaTAC and N-betaTAC. One of the proteins alkylated by N-betaTAC was identified as the voltage-dependent anion channel isoform-1, an ANT partner. Our results suggest that betaTAC and N-betaTAC, despite their common ability to affect the microtubule network, trigger different cytotoxic mechanisms in cancer cells. The role of mitochondria in these mechanisms and the potential of N-betaTAC as a new therapeutic approach for targeting hypoxia-resistant cells are discussed.
Collapse
Affiliation(s)
- Alexandre Patenaude
- Unité de Biotechnologie et de Bioingénierie, CHUQ, Hôpital Saint-François d'Assise, Université Laval, Québec, Canada.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The permeability transition pore (PTP) is a multi-protein complex at contact sites of the inner with the outer mitochondrial membrane. Research over the past years has led to the concept that the PTP occupies a central role in cell death induction. Numerous apoptosis signals convert this protein aggregate into an unspecific pore, thus activating mitochondria for the cellular self-destruction process. Here, we describe the evidence for this and the various approaches being undertaken to elucidate its subunit composition and mode of regulation. In particular, we review data that indicate a role of specific PTP subunits for apoptosis inhibition during tumorigenesis.
Collapse
Affiliation(s)
- C Brenner
- University of Versailles/St Quentin, CNRS UMR 8159, Versailles, France.
| | | |
Collapse
|
24
|
Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006; 25:4812-30. [PMID: 16892093 DOI: 10.1038/sj.onc.1209598] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are vital for cellular bioenergetics and play a central role in determining the point-of-no-return of the apoptotic process. As a consequence, mitochondria exert a dual function in carcinogenesis. Cancer-associated changes in cellular metabolism (the Warburg effect) influence mitochondrial function, and the invalidation of apoptosis is linked to an inhibition of mitochondrial outer membrane permeabilization (MOMP). On theoretical grounds, it is tempting to develop specific therapeutic interventions that target the mitochondrial Achilles' heel, rendering cancer cells metabolically unviable or subverting endogenous MOMP inhibitors. A variety of experimental therapeutic agents can directly target mitochondria, causing apoptosis induction. This applies to a heterogeneous collection of chemically unrelated compounds including positively charged alpha-helical peptides, agents designed to mimic the Bcl-2 homology domain 3 of Bcl-2-like proteins, ampholytic cations, metals and steroid-like compounds. Such MOMP inducers or facilitators can induce apoptosis by themselves (monotherapy) or facilitate apoptosis induction in combination therapies, bypassing chemoresistance against DNA-damaging agents. In addition, it is possible to design molecules that neutralize inhibitor of apoptosis proteins (IAPs) or heat shock protein 70 (HSP70). Such IAP or HSP70 inhibitors can mimic the action of mitochondrion-derived mediators (Smac/DIABLO, that is, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point, in the case of IAPs; AIF, that is apoptosis-inducing factor, in the case of HSP70) and exert potent chemosensitizing effects.
Collapse
Affiliation(s)
- L Galluzzi
- CNRS-FRE 2939, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
25
|
Machida K, Ohta Y, Osada H. Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 2006; 281:14314-20. [PMID: 16551620 DOI: 10.1074/jbc.m513297200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The permeability transition pore is involved in the mitochondrial pathway of apoptosis. Cyclophilin D, a pore component, has catalytic activity as a peptidyl prolyl cis, trans-isomerase (PPIase), which is essential to the pore opening. It has been reported that cyclophilin D overexpression suppresses apoptosis in cancer cells. To clarify the mechanism of this effect, we generated glioma cells overexpressing wild-type or a PPIase-deficient mutant of cyclophilin D. Interestingly, we found that the PPIase-dependent apoptosis suppression by cyclophilin D correlated with the amounts of mitochondrial-bound hexokinase II, which has anti-apoptotic activity. Inactivation of endogenous cyclophilin D by small interference RNA or a cyclophilin inhibitor was found to release hexokinase II from mitochondria and to enhance Bax-mediated apoptosis. The anti-apoptotic effects of cyclophilin D were canceled out by the detachment of hexokinase II from mitochondria, demonstrating that mitochondrial binding of hexokinase II is essential to the apoptosis suppression by cyclophilin D. Furthermore, cyclophilin D dysfunction appears to abrogate hexokinase II-mediated apoptosis suppression, indicating that cyclophilin D is required for the anti-apoptotic activity of hexokinase II. Based on the above, we propose here that cyclophilin D suppresses apoptotic cell death via a mitochondrial hexokinase II-dependent mechanism in cancer cells.
Collapse
Affiliation(s)
- Kiyotaka Machida
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Hirosawa 2-1, Saitama 351-0198, Japan
| | | | | |
Collapse
|
26
|
Temkin V, Huang Q, Liu H, Osada H, Pope RM. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 2006; 26:2215-25. [PMID: 16507998 PMCID: PMC1430284 DOI: 10.1128/mcb.26.6.2215-2225.2006] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/18/2005] [Accepted: 12/21/2005] [Indexed: 12/15/2022] Open
Abstract
Receptor-interacting protein (RIP) has been implicated in the induction of death receptor-mediated, nonapoptotic cell death. However, the mechanisms remain to be elucidated. Here we show that tumor necrosis factor alpha induced RIP-dependent inhibition of adenine nucleotide translocase (ANT)-conducted transport of ADP into mitochondria, which resulted in reduced ATP and necrotic cell death. The inhibition of ADP/ATP exchange coincided with the loss of interaction between ANT and cyclophilin D and the inability of ANT to adopt the cytosolic conformational state, which prevented cytochrome c release. Neither overexpression of Bcl-xL nor inhibition of reactive oxygen species prevented necrosis. In contrast, the ectopic expression of ANT or cyclophilin D was effective at preventing cell death. These observations demonstrate a novel mechanism initiated through death receptor ligation and mediated by RIP that results in the suppression of ANT activity and necrosis.
Collapse
Affiliation(s)
- Vladislav Temkin
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 E. Huron, Suite 2300, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
27
|
Puranam KL, Wu G, Strittmatter WJ, Burke JR. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria. Biochem Biophys Res Commun 2006; 341:607-13. [PMID: 16427603 DOI: 10.1016/j.bbrc.2006.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 11/23/2022]
Abstract
Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.
Collapse
Affiliation(s)
- Kasturi L Puranam
- Deane Laboratory, Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
28
|
Toleikis A, Trumbeckaite S, Majiene D. Cytochrome c Effect on Respiration of Heart Mitochondria: Influence of Various Factors. Biosci Rep 2005; 25:387-97. [PMID: 16307383 DOI: 10.1007/s10540-005-2897-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The effect of exogenous cytochrome c on respiration rate of the rat and human heart mitochondria was assessed in situ, using permeabilized fibers. It was (i) much more pronounced in State 2 and 4 than in State 3 with all the respiratory substrates (pyruvate+malate, succinate, palmitoyl-CoA+carnitine and octanoyl-L-carnitine), (ii) different with different substrates, (iii) much higher after ischemia in both metabolic states, particularly in the case of succinate oxidation compared to pyruvate+malate, (iv) the highest in State 4 with succinate as a substrate. Similar results were obtained with the isolated rat and rabbit heart mitochondria. The differences in the degree of stimulation of mitochondrial respiration by cytochrome c and, thus, sensitivity of cytochrome c test in evaluation of the intactness/injury of outer mitochondrial membrane are probably determined by the differences in the cytochrome c role in the control of mitochondrial respiration in the above-described conditions.
Collapse
Affiliation(s)
- Adolfas Toleikis
- Institute for Biomedical Research, Kaunas University of Medicine, Eiveniu St.4, LT-50009, Kaunas-7, Lithuania
| | | | | |
Collapse
|
29
|
Wang Y, Perchellet EM, Ward MM, Lou K, Hua DH, Perchellet JPH. Rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria treated with anti-tumor 1,4-anthracenediones. Anticancer Drugs 2005; 16:953-67. [PMID: 16162972 DOI: 10.1097/01.cad.0000180123.24031.5a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since synthetic analogs of 1,4-anthraquinone (AQ code number), such as AQ8, AQ9 and AQ10, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these anti-tumor compounds might directly target mitochondria in cell and cell-free systems to cause the collapse of mitochondrial membrane potential (/Deltapsim) that is linked to permeability transition pore (PTP) opening. Using JC-1 dye, the abilities of various AQ analogs to induce the /Deltapsim in wild-type and MDR HL-60 cells are rapid (within 2.5-10 min), irreversible after drug removal, concentration dependent in the 0.256-10 micromol/l range and generally related to their anti-tumor activities in vitro. The /Deltapsim caused by AQ9 and AQ10, which are more potent than mitoxantrone, staurosporine and the reference depolarizing agent carbonyl cyanide m-chlorophenylhydrazone (CCCP) in HL-60 cells, are not prevented by caspase-2 or -8 inhibitors, suggesting that activations of these apical caspases upstream of mitochondria are not involved in this process. Antitumor AQ analogs (0.256-10 micromol/l) also mimic the abilities of the known depolarizing agents CCCP, alamethicin, gramicidin A and 100 micromol/l CaCl2 to directly induce within 15 min the /Deltapsim in isolated mitochondria prepared from mouse liver and loaded with rhodamine 123 dye. The fact that 20 micromol/l Ca2+, which is insufficient to trigger depolarization on its own, is required to reveal the depolarizing effect of AQ9 in isolated mitochondria suggests that anti-tumor AQ analogs might interact with the PTP to alter its conformation and increase its Ca2+ sensitivity. Indeed, such Ca2+-dependent /Deltapsim of isolated mitochondria treated with 1.6 micromol/l AQ9 or 100 micromol/l Ca2+ are blocked by ruthenium red. Daunorubicin (DAU) is unable to mimic the rapid /Deltapsim caused by anti-tumor AQ analogs within 2.5-40 min of treatment in HL-60 cells or isolated mitochondria. Moreover, the /Deltapsim caused by 1.6 micromol/l AQ9 or 100 micromol/l Ca2+ in isolated mitochondria are similarly blocked by cyclosporin A (CsA), bongkrekic acid and decylubiquinone, which prevent PTP opening, suggesting that, in contrast to DAU, anti-tumor AQ analogs that directly target mitochondria to trigger the Ca2+-dependent and CsA-sensitive /Deltapsim, might induce PTP opening and the mitochondrial pathway of apoptosis even in the absence of nuclear signals.
Collapse
Affiliation(s)
- Yang Wang
- Anti-Cancer Drug Laboratory, Division of Biology, Ackert Hall, Kansas State University, Manhattan, Kansas 66506-4901, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wu CC, Chan ML, Chen WY, Tsai CY, Chang FR, Wu YC. Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol Cancer Ther 2005; 4:1277-85. [PMID: 16093444 DOI: 10.1158/1535-7163.mct-05-0027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pristimerin, a naturally occurring triterpenoid, has been shown to cause cytotoxicity in several cancer cell lines. However, the mechanism for the cytotoxic effect of pristimerin was never explored. In the present study, human breast cancer MDA-MB-231 cells treated with pristimerin (1 and 3 micromol/L) showed rapid induction of apoptosis, as indicated by caspase activation, DNA fragmentation, and morphologic changes. Pretreatment of a pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) completely prevented pristimerin-induced apoptosis. Treatment of tumor cells with pristimerin resulted in a rapid release of cytochrome c from mitochondria, which preceded caspase activation and the decrease of mitochondrial membrane potential. In addition, neither benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone nor permeability transition pore inhibitor cyclosporin A markedly prevented pristimerin-induced mitochondrial cytochrome c release. Pristimerin did not significantly alter the protein level of Bcl-2 family members (Bcl-2, Bcl-X(L), and Bax), nor did it induce Bax translocation. Moreover, Bcl-2 overexpression fails to prevent pristimerin-induced apoptosis. The generation of reactive oxygen species in MDA-MB-231 cells was also not affected by pristimerin. In a cell-free system, pristimerin induced cytochrome c release from isolated mitochondria. Taken together, these results suggested that pristimerin is a novel mitochondria-targeted compound and may be further evaluated as a chemotherapeutic agent for human cancer.
Collapse
Affiliation(s)
- Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Wright MM, Howe AG, Zaremberg V. Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 2004; 82:18-26. [PMID: 15052325 DOI: 10.1139/o03-092] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The apoptotic program utilizes cellular membranes to transduce and generate operative signals. Lipids are major components of cellular membranes and have the potential to control the effectiveness of the signal by directing it to the proper location, being a source of new signals or as mediators in the response. These possible lipid functions are illustrated in the present review, focussing on the role that two different phospholipids, cardiolipin and phosphatidyl choline, play in apoptosis. Mitochondria have a central role in apoptosis, and many important aspects of the process mediated by this organelle converge through its distinctive lipid cardiolipin. Specifically, changes in cardiolipin metabolism have been detected in early steps of the death program and it is postulated (i) to mediate recruitment of pro apoptotic proteins like Bid to the mitochondria surface and (ii) to actively participate in the release of proteins relevant for the execution phase of apoptosis, like cytochrome c. Unlike the organelle specific distribution of cardiolipin, phosphatidylcholine is widely distributed among all organelles of the cell. The importance of phosphatidylcholine in apoptosis has been approached mainly through the study of the mode of action of (i) phosphatidylcholine anticancer analogues such as edelfosine and (ii) molecules that alter phosphatidylcholine metabolism, such as farnesol. The contribution of phosphatidylcholine metabolism to the apoptotic program is discussed, analyzing the experimental evidence available and pointing out some controversies in the proposed mechanisms of action.
Collapse
Affiliation(s)
- Marcia M Wright
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
32
|
Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S, Kajimoto S, Shibayama-Imazu T, Nakaya K. Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 2004; 279:42503-15. [PMID: 15292218 DOI: 10.1074/jbc.m404256200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta-Hydroxyisovalerylshikonin (beta-HIVS), a compound isolated from the traditional oriental medicinal herb Lithospermum radix, is an ATP non-competitive inhibitor of protein-tyrosine kinases, such as v-Src and EGFR, and it induces apoptosis in various lines of human tumor cells. However, the way in which beta-HIVS induces apoptosis remains to be clarified. In this study, we performed cDNA array analysis and found that beta-HIVS suppressed the expression of the gene for tumor necrosis factor receptor-associated protein 1 (TRAP1), which is a member of the heat-shock family of proteins. When human leukemia HL60 cells and human lung cancer DMS114 cells were treated with beta-HIVS, the amount of TRAP1 in mitochondria decreased in a time-dependent manner during apoptosis. A similar reduction in the level of TRAP1 was also observed upon exposure of cells to VP16. Treatment of DMS114 cells with TRAP1-specific siRNA sensitized the cells to beta-HIVS-induced apoptosis. Moreover, the reduction in the level of expression of TRAP1 by TRAP1-specific siRNA enhanced the release of cytochrome c from mitochondria when DMS114 cells were treated with either beta-HIVS or VP16. The suppression of the level of TRAP1 by either beta-HIVS or VP16 was blocked by N-acetyl-cysteine, indicating the involvement of reactive oxygen species (ROS) in the regulation of the expression of TRAP1. These results suggest that suppression of the expression of TRAP1 in mitochondria might play an important role in the induction of apoptosis caused via formation of ROS.
Collapse
Affiliation(s)
- Yutaka Masuda
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 2004; 279:34682-90. [PMID: 15178689 DOI: 10.1074/jbc.m402999200] [Citation(s) in RCA: 606] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Kesheng Zhao
- Departments of Pharmacology and Biochemistry, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Machida K, Osada H. Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann N Y Acad Sci 2003; 1010:182-5. [PMID: 15033717 DOI: 10.1196/annals.1299.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We propose a model for the mechanism of permeability transition (PT) related cytochrome c release. It is likely that the Ca(2+) requirement for the induction of the mitochondrial permeability transition pore (MPTP) opening might be due to the Ca(2+)-dependent interaction between cyclophilin D and ANT. We show here that the modification of adenine nucleotide translocase (ANT), which is one of the components of MPTP, can induce two different types of the cytochrome c release. One is dependent on classical PT, resulting in mitochondrial swelling, and is inhibited by cyclosporin A. The other is PT-independent, without swelling, and is insensitive to cyclosporin A.
Collapse
Affiliation(s)
- Kiyotaka Machida
- Antibiotics Laboratory, Riken, Hirosawa 2-1, Saitama 351-0198, Japan
| | | |
Collapse
|
35
|
Korge P, Honda HM, Weiss JN. Effects of fatty acids in isolated mitochondria: implications for ischemic injury and cardioprotection. Am J Physiol Heart Circ Physiol 2003; 285:H259-69. [PMID: 12793979 DOI: 10.1152/ajpheart.01028.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (DeltaPsim), we studied the effects of fatty acids on DeltaPsim regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support DeltaPsim. In comparison, long-chain activated fatty acids promoted 1). a slower depolarization that was not reversible with BSA, 2). cytochrome c loss that was unrelated to permeability transition pore opening, and 3). inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.
Collapse
Affiliation(s)
- Paavo Korge
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California 90095-17690, USA.
| | | | | |
Collapse
|
36
|
Miyake Y, Kakeya H, Kataoka T, Osada H. Epoxycyclohexenone inhibits Fas-mediated apoptosis by blocking activation of pro-caspase-8 in the death-inducing signaling complex. J Biol Chem 2003; 278:11213-20. [PMID: 12551927 DOI: 10.1074/jbc.m209610200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Death receptors belong to the tumor necrosis factor receptor family. They can induce apoptosis following engagement with specific ligands and are known to play an important role in the regulation of the immune system. Here we report that epoxycyclohexenone (ECH) inhibits apoptosis induced by anti-Fas antibody, Fas ligand (FasL), or tumor necrosis factor-alpha but not by staurosporine, MG-132, C2-ceramide, or UV irradiation. These results suggest that ECH specifically blocks death receptor-mediated apoptosis. Neither the surface expression of Fas nor the Fas-FasL interaction was influenced by ECH. However, ECH did block the activation of pro-caspase-8 in the death-inducing signaling complex, although recruitment of Fas-associating death domain (FADD) and pro-caspase-8 was not affected. ECH inhibited the enzymatic activity of recombinant active caspase-8 at slightly lower concentrations than it did for active caspase-3 and active caspase-9 in vitro. However, in FasL-treated cells, ECH was only able to inhibit the activation of pro-caspase-8, and it had no effect on the already activated caspase-8 at a concentration that is effective at inhibiting Fas-induced apoptosis. ECH directly bound the large subunit of active caspase-8 that contains the active center cysteine and had a relatively higher affinity to pro-caspase-8. Moreover, compared with pro-caspase-3 and pro-caspase-9, pro-caspase-8 was predominantly depleted by biotinylated ECH with avidin beads in the cell lysates, suggesting that ECH preferentially affects pro-caspase-8. Thus, our results suggest that ECH blocks the self-activation of pro-caspase-8 in the death-inducing signaling complex and thus selectively inhibits death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Yasunobu Miyake
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|