1
|
Spinsante C, Carducci F, Carotti E, Canapa A, Bizzaro D, Biscotti MA, Barucca M. A bioinformatic approach to characterize the vitellogenin receptor and the low density lipoprotein receptor superfamily in the newt Cynops orientalis. Sci Rep 2025; 15:3403. [PMID: 39870874 PMCID: PMC11772764 DOI: 10.1038/s41598-025-88011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary. In tetrapods, information concerning genes encoding these proteins is limited to a few taxa. Here, we report the characterization of VTGR in the amphibian Cynops orientalis. The secondary structure analyses and the expression profiles obtained from hepatic and gonadal tissues of C. orientalis supported the role of VTGR as vitellogenin oocyte membrane receptor in this species. Moreover, to get a holistic view of the evolutionary history of this gene superfamily, we extended our investigation to all 15 genes belonging to the LDLR superfamily analyzing through a phylogenetic analysis a total of 161 sequences belonging to 11 genera of vertebrates. The position of LRP8 in the tree and its expression findings in C. orientalis ovary allowed us to suggest that other proteins of the LDLR superfamily could act as receptors during vitellogenesis.
Collapse
Affiliation(s)
- Chiara Spinsante
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Marco Barucca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
2
|
Clarke DN, Kane A, Perillo M, Lowe CJ, Swartz SZ. VitelloTag: a tool for high-throughput cargo delivery into oocytes. Development 2024; 151:dev202857. [PMID: 39171380 PMCID: PMC11423919 DOI: 10.1242/dev.202857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Delivering molecular tools into oocytes is essential for developmental and reproductive biology. Microinjection, the conventional method, is equipment intensive, often technically challenging and has a low yield, and is impractical in species with delicate oocytes or restricted spawning seasons. To overcome these limitations, we developed VitelloTag, a cost-effective, high-throughput system using vitellogenin-derived fusion proteins to enable efficient cargo delivery via receptor-mediated endocytosis. We demonstrate its utility by delivering Cas9/sgRNA complexes in two distantly related species for gene knockout.
Collapse
Affiliation(s)
- D. Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142,USA
| | - Akshay Kane
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543-1015, USA
| | - Margherita Perillo
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543-1015, USA
| | | | - S. Zachary Swartz
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543-1015, USA
| |
Collapse
|
3
|
Liu Z, Zhang N, Wang C, Shi L, Hu Y, Wang Y, Li J. Lrp13a and Lrp13b serve as vitellogenin receptors in the ovary of zebrafish†. Biol Reprod 2024; 111:123-134. [PMID: 38660750 DOI: 10.1093/biolre/ioae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
In oviparous animals, egg yolk is largely derived from vitellogenin, which is taken up from the maternal circulation by the growing oocytes via the vitellogenin receptor. Recently, a novel member of the lipoprotein receptor superfamily termed low-density lipoprotein receptor-related protein 13 was identified and proposed as a candidate of vitellogenin receptor in oviparous animals. However, the roles of low-density lipoprotein receptor-related protein 13 in vitellogenesis are still poorly defined. Here, we investigated the expression, vitellogenin-binding properties, and function of low-density lipoprotein receptor-related protein 13 in zebrafish. Two different lrp13 genes termed lrp13a and lrp13b were found in zebrafish. Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction revealed both lrp13s to be predominantly expressed in zebrafish ovary, and in situ hybridization detected both lrp13s transcripts in the ooplasm of early stage oocytes. Two yeast hybrid studies showed that among eight vitellogenins of zebrafish, Vtg1, 2, and 3 bind to Lrp13a, while Vtg1, 2, and 5 bind to Lrp13b. We created zebrafish lrp13a and lrp13b mutant lines using CRISPR/Cas9. Knockout of lrp13a leads to a male-biased sex ratio and decreased diameter of embryo yolk, while knockout of lrp13b and double knockout of lrp13a and lrp13b leads to the delay of vitellogenesis, followed by follicular atresia. These phenotypes of mutants can be explained by the disruption of vitellogenesis in the absence of Lrp13s. Taken together, our results indicate that both Lrp13a and Lrp13b can serve as vitellogenin receptors in zebrafish among other vitellogenin receptors that are not yet described.
Collapse
Affiliation(s)
- Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Nan Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Chuangxin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Lina Shi
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Yixuan Hu
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Yamei Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
4
|
Tan K, Ma X, Su B, Zhan C, Yang X, Waiho K, Lim LS, Kwan KY. Targeting TtVgR via siRNA Knockdown Elicits Ovarian Cell Death in the Tri-spine Horseshoe Crab. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:575-587. [PMID: 38676851 DOI: 10.1007/s10126-024-10319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The vitellogenin present in the bloodstream undergoes internalization into developing oocytes through the vitellogenin receptor (VgR), a process mediated by receptor-mediated endocytosis. VgR plays a crucial role in facilitating the accumulation of vitellogenin and the maturation of oocytes. In this study, we characterized a Tachypleus tridentatus vitellogenin receptor (TtVgR) gene from the tri-spine horseshoe crab, revealing a length of 1956 bp and encoding 652 amino acid residues with 12 exons. TtVgR has a molecular weight of 64.26 kDa and an isoelectric point of 5.95. Predictions indicate 85 phosphorylation sites and 7 glycosylation sites within TtVgR. Transcriptional analysis demonstrated specific expression of TtVgR in the ovary and yellow connective tissue. TtVgR was identified and distributed in the plasma membrane of oocytes. The siRNA-mediated TtVgR knockdown significantly reduced the transcriptional activity of TtVgR. This depletion induced excessive ROS production, resulting in DNA damage in ovarian primary cells. TUNEL and flow cytometry analyses confirmed ovarian cell apoptosis following TtVgR knockdown, indicating DNA damage in ovarian primary cells. These findings underscore the importance of TtVgR in ovarian cell development, suggesting its potential involvement in vitellogenesis and oocyte maturation. This knowledge may inform innovative breeding strategies and contribute to the sustainable management and conservation of the tri-spine horseshoe crab.
Collapse
Affiliation(s)
- Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Fourth Institute of Oceanography, Beihai, 536000, Guangxi, China
| | - Boyu Su
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Chen Zhan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Xin Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus City, Terengganu, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu City, Sabah, Malaysia
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou City, 535011, Guangxi, China.
| |
Collapse
|
5
|
Wang J, Tang S, Ge Q, Wang Q, He Y, Ren X, Li J, Li J. Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda. Int J Mol Sci 2024; 25:1089. [PMID: 38256163 PMCID: PMC10815947 DOI: 10.3390/ijms25021089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.
Collapse
Affiliation(s)
- Jiajia Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Shuai Tang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
| | - Qianqian Ge
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Yuying He
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| | - Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (J.W.); (S.T.); (Q.W.); (Y.H.); (X.R.); (J.L.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
| |
Collapse
|
6
|
Wang C, Yu B, Meng X, Xia D, Pei B, Tang X, Zhang G, Wei J, Long M, Chen J, Bao J, Li C, Pan G, Zhou Z, Li T. Microsporidian Nosema bombycis hijacks host vitellogenin and restructures ovariole cells for transovarial transmission. PLoS Pathog 2023; 19:e1011859. [PMID: 38060601 PMCID: PMC10729982 DOI: 10.1371/journal.ppat.1011859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.
Collapse
Affiliation(s)
- Chunxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Dan Xia
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Boyan Pei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Xiangyou Tang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Guizheng Zhang
- Guangxi Institute of Sericulture Science, Nanning, People’s Republic of China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Jialing Bao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
- College of Life Sciences, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
7
|
Abstract
Integration between animal reproduction and symbiont inheritance is fundamental in symbiosis biology, but the underlying molecular mechanisms are largely unknown. Vitellogenin (Vg) is critical for oogenesis, and it is also a pathogen pattern recognition molecule in some animals. Previous studies have shown that Vg is involved in the regulation of symbiont abundance and transmission. However, the mechanisms by which an insect and its symbiont contribute to the function of Vg and how Vg impacts the persistence of insect-microbe symbiosis remain largely unclear. Symbionts are transovarially transmitted via maternal inheritance of the bacteriocytes in the whitefly Bemisia tabaci. Surprisingly, Vg is localized in bacteriocytes of whiteflies. Vg could be synthesized in whitefly bacteriocytes by the gene Vg expressed in these cells or exported into bacteriocytes from hemolymph via the Vg receptor. We further found that the juvenile hormone and "Candidatus Portiera aleyrodidarum" (here termed Portiera) control the level and localization of Vg in whiteflies. Immunocapture PCR revealed interactions between Vg and Portiera. Suppressing Vg expression reduced Portiera abundance as well as whitefly oogenesis and fecundity. Thus, we reveal that Vg facilitated the persistence of whitefly-bacteriocyte symbiont associations. This study will provide insight into the key role of Vg in the coevolution of insect reproduction and symbiont inheritance. IMPORTANCE Intracellular heritable symbionts have been incorporated into insect reproductive and developmental biology by various mechanisms. All Bemisia tabaci species harbor the obligate symbiont Portiera in specialized insect cells called bacteriocytes. We report that the whitefly juvenile hormone and Portiera determined vitellogenin (Vg) localization in bacteriocytes of whiteflies. In turn, Vg affected whitefly fecundity as well as fitness and transmission of the symbiont. Our findings show that Vg, a multifunctional protein, is indispensable for symbiont integration into the reproduction and development of insects. This reflects the outcome of long-term coevolution of the insect-microbe symbiosis.
Collapse
|
8
|
Babio L, Damsteegt EL, Lokman PM. Lipoprotein receptors in ovary of eel, Anguilla australis: molecular characterisation of putative vitellogenin receptors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:117-137. [PMID: 36648592 PMCID: PMC9935665 DOI: 10.1007/s10695-023-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lipoprotein receptors, including low-density lipoprotein receptor (LDLr) relatives (Lrs) and LDLr-related proteins (Lrps), belong to the LDLr supergene family and participate in diverse physiological functions. In this study, novel sequences of lr and lrp genes expressed in the ovary of the short-finned eel, Anguilla australis, during early gonadal development are presented. The genes encoding the LDLr-like, Lrp1-like, Lrp1b-like, Lrp3, Lrp4-like, Lrp5-like, Lrp6, Lrp10, Lrp11, Lrp12-like, and Lr11-like proteins were found and identified by sequence and structure analysis, in addition to phylogenetic analysis. Genes encoding proteins previously implicated in follicle development and vitellogenin (Vtg) uptake in oviparous vertebrates were also identified, i.e. lr8 (including lr8 + and lr8- variants) and lrp13; their identification was reinforced by conserved synteny with orthologues in other teleost fish. Compared to other lr/lrp genes, the genes encoding Lr8 + , Lr8-, and Lrp13 were highly expressed in ovary during early development, decreasing as oocyte development advanced when induced by hypophysation. Furthermore, lr8 + , lr8-, and lrp13 were dominantly expressed in the ovary when compared with 17 other tissues. Finally, this study successfully detected the expression of both lr8 variants, which showed different expression patterns to those reported in other oviparous vertebrates and provided the first characterisation of Lrp13 in Anguilla sp. We propose that lr8 + , lr8-, and lrp13 encode putative Vtg receptors in anguillid eels.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - Erin L. Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| |
Collapse
|
9
|
Xu Y, Shen G, Wu J, Mao X, Jia L, Zhang Y, Xia Q, Lin Y. Vitellogenin receptor transports the 30K protein LP1 without cell-penetrating peptide, into the oocytes of the silkworm, Bombyx mori. Front Physiol 2023; 14:1117505. [PMID: 36776972 PMCID: PMC9908958 DOI: 10.3389/fphys.2023.1117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Vitellogenin receptors (VgRs) transport vitellogenin (Vg) into oocytes, thereby promoting egg growth and embryonic development. VgRs recognize and transport multiple ligands in oviparous animals, but their role in insects is rarely reported. In this study, we investigated whether Bombyx mori VgR (BmVgR) binds and transports lipoprotein-1 (BmLP1) and lipoprotein-7 (BmLP7) of the 30 kDa lipoproteins (30 K proteins), which are essential for egg formation and embryonic development in B. mori. Protein sequence analysis showed BmLP7, similar to reported lipoprotein-3 (BmLP3), contains the cell-penetrating peptides and Cysteine position, while BmLP1 has not. Assays using Spodoptera frugiperda ovary cells (sf9) indicated the direct entry of BmLP7 into the cells, whereas BmLP1 failed to enter. However, co-immunoprecipitation (Co-IP) assays indicated that BmVgR could bind BmLP1. Western blotting and immunofluorescence assays further revealed that over-expressed BmVgR could transport BmLP1 into sf9 cells. Co-IP assays showed that SE11C (comprising LBD1+EGF1+OTC domains of BmVgR) or SE22C (comprising LBD2+EGF2+OTC domains of BmVgR) could bind BmLP1. Over-expressed SE11C or SE22C could also transport BmLP1 into sf9 cells. Western blotting revealed that the ability of SE11C to transport BmLP1 might be stronger than that of SE22C. In the vit mutant with BmVgR gene mutation (vit/vit), SDS-PAGE and western blotting showed the content of BmLP1 in the ovary, like BmVg, was lower than that in the normal silkworm. When transgenic with hsp70 promoter over-expressed BmVgR in the vit mutant, we found that the phenotype of the vit mutant was partly rescued after heat treatment. And contents of BmLP1 and BmVg in vit mutant over-expressed BmVgR were higher than in the vit mutant. We conclude that BmVgR and its two repeat domains could bind and transport BmLP1 into the oocytes of the silkworm, besides BmVg. These results will provide a reference for studying the molecular mechanism of VgR transporting ligands in insects.
Collapse
Affiliation(s)
- Yinying Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Jinxin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Xueqin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Linbang Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China,*Correspondence: Ying Lin,
| |
Collapse
|
10
|
Leipart V, Ludvigsen J, Kent M, Sandve S, To T, Árnyasi M, Kreibich CD, Dahle B, Amdam GV. Identification of 121 variants of honey bee Vitellogenin protein sequences with structural differences at functional sites. Protein Sci 2022; 31:e4369. [PMID: 35762708 PMCID: PMC9207902 DOI: 10.1002/pro.4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022]
Abstract
Proteins are under selection to maintain central functions and to accommodate needs that arise in ever-changing environments. The positive selection and neutral drift that preserve functions result in a diversity of protein variants. The amount of diversity differs between proteins: multifunctional or disease-related proteins tend to have fewer variants than proteins involved in some aspects of immunity. Our work focuses on the extensively studied protein Vitellogenin (Vg), which in honey bees (Apis mellifera) is multifunctional and highly expressed and plays roles in immunity. Yet, almost nothing is known about the natural variation in the coding sequences of this protein or how amino acid-altering variants might impact structure-function relationships. Here, we map out allelic variation in honey bee Vg using biological samples from 15 countries. The successful barcoded amplicon Nanopore sequencing of 543 bees revealed 121 protein variants, indicating a high level of diversity in Vg. We find that the distribution of non-synonymous single nucleotide polymorphisms (nsSNPs) differs between protein regions with different functions; domains involved in DNA and protein-protein interactions contain fewer nsSNPs than the protein's lipid binding cavities. We outline how the central functions of the protein can be maintained in different variants and how the variation pattern may inform about selection from pathogens and nutrition.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Jane Ludvigsen
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Fürst Medisinsk LaboratoriumOsloNorway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Simen Sandve
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Thu‐Hien To
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics (CIGENE)Norwegian University of Life SciencesÅsNorway
| | - Claus D. Kreibich
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Bjørn Dahle
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- Norwegian Beekeepers AssociationKløftaNorway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
11
|
Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34. Mol Biol Rep 2022; 49:7367-7376. [PMID: 35715603 DOI: 10.1007/s11033-022-07530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China. METHODS AND RESULTS In this study, firstly, we found that miR-34 can target at 3'-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes. CONCLUSIONS These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3'-UTR of Vtg and VtgR genes and inhibiting their expression.
Collapse
|
12
|
Leipart V, Halskau Ø, Amdam GV. How Honey Bee Vitellogenin Holds Lipid Cargo: A Role for the C-Terminal. Front Mol Biosci 2022; 9:865194. [PMID: 35755821 PMCID: PMC9219001 DOI: 10.3389/fmolb.2022.865194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Vitellogenin (Vg) is a phylogenetically broad glycolipophosphoprotein. A major function of this protein is holding lipid cargo for storage and transportation. Vg has been extensively studied in honey bees (Apis mellifera) due to additional functions in social traits. Using AlphaFold and EM contour mapping, we recently described the protein structure of honey bee Vg. The full-length protein structure reveals a large hydrophobic lipid binding site and a well-defined fold at the C-terminal region. Now, we outline a shielding mechanism that allows the C-terminal region of Vg to cover a large hydrophobic area exposed in the all-atom model. We propose that this C-terminal movement influences lipid molecules' uptake, transport, and delivery. The mechanism requires elasticity in the Vg lipid core as described for homologous proteins in the large lipid transfer protein (LLTP) superfamily to which Vg belongs. Honey bee Vg has, additionally, several structural arrangements that we interpret as beneficial for the functional flexibility of the C-terminal region. The mechanism proposed here may be relevant for the Vg molecules of many species.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Shirai Y, Piulachs MD, Belles X, Daimon T. DIPA-CRISPR is a simple and accessible method for insect gene editing. CELL REPORTS METHODS 2022; 2:100215. [PMID: 35637909 PMCID: PMC9142683 DOI: 10.1016/j.crmeth.2022.100215] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Current approaches for insect gene editing require microinjection of materials into early embryos. This severely limits the application of gene editing to a great number of insect species, especially to those whose reproduction systems preclude access to early embryos for injection. To overcome these limitations, we report a simple and accessible method for insect gene editing, termed "direct parental" CRISPR (DIPA-CRISPR). We show that injection of Cas9 ribonucleoproteins (RNPs) into the haemocoel of adult females efficiently introduces heritable mutations in developing oocytes. Importantly, commercially available standard Cas9 protein can be directly used for DIPA-CRISPR, which makes this approach highly practical and feasible. DIPA-CRISPR enables highly efficient gene editing in the cockroaches, on which conventional approaches cannot be applied, and in the model beetle Tribolium castaneum. Due to its simplicity and accessibility, DIPA-CRISPR will greatly extend the application of gene editing technology to a wide variety of insects.
Collapse
Affiliation(s)
- Yu Shirai
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Salmela H, Harwood GP, Münch D, Elsik CG, Herrero-Galán E, Vartiainen MK, Amdam GV. Nuclear translocation of vitellogenin in the honey bee ( Apis mellifera). APIDOLOGIE 2022; 53:13. [PMID: 35309709 PMCID: PMC8924143 DOI: 10.1007/s13592-022-00914-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/10/2021] [Accepted: 12/18/2021] [Indexed: 05/27/2023]
Abstract
UNLABELLED Vitellogenin (Vg) is a conserved protein used by nearly all oviparous animals to produce eggs. It is also pleiotropic and performs functions in oxidative stress resistance, immunity, and, in honey bees, behavioral development of the worker caste. It has remained enigmatic how Vg affects multiple traits. Here, we asked whether Vg enters the nucleus and acts via DNA-binding. We used cell fractionation, immunohistology, and cell culture to show that a structural subunit of honey bee Vg translocates into cell nuclei. We then demonstrated Vg-DNA binding theoretically and empirically with prediction software and chromatin immunoprecipitation with sequencing (ChIP-seq), finding binding sites at genes influencing immunity and behavior. Finally, we investigated the immunological and enzymatic conditions affecting Vg cleavage and nuclear translocation and constructed a 3D structural model. Our data are the first to show Vg in the nucleus and suggest a new fundamental regulatory role for this ubiquitous protein. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13592-022-00914-9.
Collapse
Affiliation(s)
- Heli Salmela
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Viikinkaari 1, 00014 Helsinki, FI Finland
| | - Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, 320 Morrill Hall 505 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Daniel Münch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Aas, Norway
| | - Christine G. Elsik
- Division of Animal Sciences, University of Missouri, S108 Animal Sciences Research Center (ASRC), Colombia, MO 65211 USA
| | | | - Maria K. Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Aas, Norway
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281 USA
| |
Collapse
|
15
|
De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022; 806:145929. [PMID: 34461150 DOI: 10.1016/j.gene.2021.145929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
The body color of Neocaridina denticulate sinensis is a compelling phenotypic trait, in which a cascade of carotenoid metabolic processes plays an important role. The study was conducted to compare the transcriptome of cephalothoraxes among three pigmentation phenotypes (red, blue, and chocolate) of N. denticulate sinensis. The purpose of this study was to explore the candidate genes associated with different colors of N. denticulate sinensis. Nine cDNA libraries in three groups were constructed from the cephalothoraxes of shrimps. After assembly, 75022 unigenes were obtained in total with an average length of 1026 bp and N50 length of 1876 bp. There were 45977, 25284, 23605, 21913 unigenes annotated in the Nr, Swissprot, KOG, and KEGG databases, respectively. Differential expression analysis revealed that there were 829, 554, and 3194 differentially expressed genes (DEGs) in RD vs BL, RD vs CH, and BL vs CH, respectively. These DEGs may play roles in the absorption, transport, and metabolism of carotenoids. We also emphasized that electron transfer across the inner mitochondrial membrane (IMM) was a key process in pigment metabolism. In addition, a total of 6328 simple sequence repeats (SSRs) were also detected in N. denticulate sinensis. The results laid a solid foundation for further research on the molecular mechanism of integument pigmentation in the crustacean and contributed to developing more attractive aquatic animals.
Collapse
|
16
|
Gut-Expressed Vitellogenin Facilitates the Movement of a Plant Virus across the Midgut Wall in Its Insect Vector. mSystems 2021; 6:e0058121. [PMID: 34100642 PMCID: PMC8269243 DOI: 10.1128/msystems.00581-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant viruses across the midgut barrier remains largely uncharacterized. Begomoviruses, many of which are disease agents of some major crops worldwide, are persistently transmitted by whiteflies (Bemisia tabaci). Here, in order to identify whitefly midgut proteins that interact with a devastating begomovirus, tomato yellow leaf curl virus (TYLCV), we performed midgut-specific TYLCV coat protein (CP) immunoprecipitation followed by high-throughput mass spectrometry proteomic analysis. We find that vitellogenin (Vg), a critical insect reproductive protein that has been considered to be synthesized by the fat body, is also synthesized by and interacts with TYLCV CP in the whitefly midgut. TYLCV appears to be internalized into midgut epithelial cells as a complex with Vg through endocytosis. Virus-containing vesicles then deliver the virus-Vg complexes to early endosomes for intracellular transport. Systematic silencing of Vg or midgut-specific immune blocking of Vg inhibited virus movement across the midgut wall and decreased viral acquisition and transmission by whitefly. Our findings show that a functional Vg protein is synthesized in the midgut of an insect and suggest a novel Vg mechanism that facilitates virus movement across the midgut barrier of its insect vector. IMPORTANCE An essential step in the life cycle of many viruses is transmission to a new host by insect vectors, and one critical step in the transmission of persistently transmitted viruses is overcoming the midgut barrier to enter vectors and complete their cycle. Most viruses enter vector midgut epithelial cells via specific interaction between viral structural proteins and vector cell surface receptor complexes. Tomato yellow leaf curl virus (TYLCV) is persistently transmitted by the whitefly Bemisia tabaci between host plants. Here, we find that TYLCV coat protein interacts with vitellogenin (Vg) in the whitefly midgut. This interaction is required for the movement of the virus crossing the midgut wall and thus facilitates viral acquisition and transmission by whitefly. This study reveals a novel mechanism of virus overcoming the insect midgut barrier and provides new insights into the function of Vg beyond serving as nutrition for developing embryos in insects.
Collapse
|
17
|
Sun W, Li L, Li H, Zhou K, Li W, Wang Q. Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. FISH & SHELLFISH IMMUNOLOGY 2020; 107:480-489. [PMID: 32920203 DOI: 10.1016/j.fsi.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The vitellogenin receptor (Vgr), which is specific for vitellogenin (Vtg), recognises and transports Vtg into the ovaries. Accumulating evidence suggests that Vtg also performs an immune defence function and plays critical roles in innate immunity in oviparous animals. However, whether Vgr is involved in innate immunity in the Chinese mitten crab (Eriocheir sinensis) is unknown. In this study, we obtained a 3009 nucleotide partial cDNA of the E. sinensis vitellogenin receptor gene (Es-vgr) encoding an open reading frame of 1003 amino acid residues. Bioinformatics analysis showed that the domains of Es-vgr were conserved during evolution. Quantitative real-time PCR and western blotting revealed that the highest Es-vgr expression levels occurred in the ovary, and expression was specific. Comparison of the expression levels of Es-vgr and the Vtg gene (Es-vtg1) at different ovary developmental stages suggested that there may be some regulatory relationship between them. Bacterial challenge induced high-level expression of antimicrobial peptide genes and reduced Es-vgr expression in ovaries, resulting in massive accumulation of Vtg in the hemolymph. The survival rate of crabs increased significantly after injection with recombinant Es-vtg1 protein following bacterial infection. Collectively, these results demonstrate that Es-vgr plays critical roles in antimicrobial function by regulating the accumulation of Vtg in the hemolymph.
Collapse
Affiliation(s)
- Weikang Sun
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Khan EA, Zhang X, Hanna EM, Bartosova Z, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site. ENVIRONMENTAL RESEARCH 2020; 189:109906. [PMID: 32980003 DOI: 10.1016/j.envres.2020.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Eileen M Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU, N-7491, Trondheim, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| |
Collapse
|
19
|
Koua ND, Núñez-Rodriguez J, Orjuela J, Zatylny-Gaudin C, Dubos MP, Bernay B, Pontin J, Corre E, Henry J. Identification and structural characterization of the factors involved in vitellogenesis and its regulation in the African Osteoglossiforme of aquacultural interest Heterotis niloticus (Cuvier, 1829). Gen Comp Endocrinol 2020; 296:113532. [PMID: 32535172 DOI: 10.1016/j.ygcen.2020.113532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
The African bonytongue (Heterotis niloticus) is an excellent candidate for fish farming because it has outstanding biological characteristics and zootechnical performances. However, the absence of sexual dimorphism does not favor its reproduction in captivity or the understanding of its reproductive behavior. Moreover, no molecular data related to its reproduction is yet available. This study therefore focuses on the structural identification of the different molecular actors of vitellogenesis expressed in the pituitary gland, the liver and the ovary of H. niloticus. A transcriptomic approach based on de novo RNA sequencing of the pituitary gland, ovary and liver of females in vitellogenesis led to the creation of three transcriptomes. In silico analysis of these transcriptomes identified the sequences of pituitary hormones such as prolactin (PRL), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and their ovarian receptors (PRLR, FSHR, LHR). In the liver and ovary, estrogen receptors (ER) beta and gamma, liver vitellogenins (VtgB and VtgC) and their ovarian receptors (VLDLR) were identified. Finally, the partial transcript of an ovarian Vtg weakly expressed compared to hepatic Vtg was identified based on structural criteria. Moreover, a proteomic approach carried out from mucus revealed the presence of one Vtg exclusively in females in vitellogenesis. In this teleost fish that does not exhibit sexual dimorphism, mucus Vtg could be used as a sexing biomarker based on a non-invasive technique compatible with the implementation of experimental protocols in vivo.
Collapse
Affiliation(s)
- N'Zi Daniel Koua
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France; INP-HB, Département FOREN, BP 1313 Yamoussoukro, Cote d'Ivoire; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | | | | | - Céline Zatylny-Gaudin
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Marie-Pierre Dubos
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France
| | - Benoît Bernay
- NORMANDIE UNIV, UNICAEN, SF ICORE, Proteogen Platform, Esplanade de la paix, 14032 Caen, France
| | - Julien Pontin
- NORMANDIE UNIV, UNICAEN, SF ICORE, Proteogen Platform, Esplanade de la paix, 14032 Caen, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France
| | - Joël Henry
- NORMANDIE UNIV, UNICAEN, CNRS, BOREA, 14000 Caen, France; Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la paix, 14032 Caen Cedex, France.
| |
Collapse
|
20
|
Shirai Y, Daimon T. Mutations in cardinal are responsible for the red-1 and peach eye color mutants of the red flour beetle Tribolium castaneum. Biochem Biophys Res Commun 2020; 529:372-378. [PMID: 32703438 DOI: 10.1016/j.bbrc.2020.05.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
Ommochromes are the major pigments found in the eyes, eggs, wings and epidermis of insects. Here, we report the identification and characterization of the gene responsible for red-1 locus of Tribolium, whose mutants have white eyes due to lack of ommochrome pigments in the eyes. Using a candidate gene approach, we demonstrated that red-1 and peach mutants have molecular defects in the cardinal gene, which encodes a haem peroxidase that is considered to convert 3-hydroxykynurenine into ommochromes in pigment granules. Our experiments showed that the expression pattern of cardinal correlates well with the progression of eye pigmentation during pupal stages. We performed gene editing experiments using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control technique to disrupt the cardinal gene by adult injection, and were able to establish a novel cardinal mutant line. Our complementation test provided definitive genetic evidence that cardinal is located at the red-1 locus. The present study will lead to a greater understanding of the function and diversity of ommochrome pathway genes in insects. Our successful use of ReMOT Control in beetles will facilitate the development of more efficient and versatile systems for insect genome editing by simple adult injection.
Collapse
Affiliation(s)
- Yu Shirai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
21
|
The Desaturase Gene Nlug-desatA2 Regulates the Performance of the Brown Planthopper Nilaparvata lugens and Its Relationship with Rice. Int J Mol Sci 2020; 21:ijms21114143. [PMID: 32532001 PMCID: PMC7312190 DOI: 10.3390/ijms21114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.
Collapse
|
22
|
Iwaizumi M, Yokoi H, Suzuki T. Plasmid delivery by electroporation into fish skeletal muscle for recombinant protein secretion and uptake by oocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1121-1130. [PMID: 32090288 DOI: 10.1007/s10695-020-00775-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
We examined the efficiency of electroporation for the delivery of plasmid into the skeletal muscle and also examined the subsequent secretion of recombinant protein into the circulation system, using zebrafish, Japanese flounder, and bubble-eye goldfish. The expression area of GFP fluorescence was markedly expanded by electroporation. Introduced plasmid was retained in the muscle cells and continued to express GFP for at least 180 days in zebrafish, indicating the long lifespan of plasmid DNA in the muscle cell. Luciferase and a fusion of growth hormone (GH) and luciferase were secreted into the blood from muscle electroporated with CMV:secNluc and CMV:GH-Luc plasmids, respectively, indicating that recombinant proteins such as peptide hormones can be supplied to the blood by plasmid electroporation into muscle. Interestingly, luciferase activity was detected from fertilized eggs laid by zebrafish females that had been electroporated with CMV:secNluc, indicating that maturing oocytes incorporated recombinant protein from the blood stream that had been secreted from the muscle. The plasmid electroporation system reported here also may work for the delivery of recombinant proteins, such as Cas9, into the oocytes. Since the GH-Luc fusion protein was detected in the lymph of the eye-sac of bubble-eye goldfish, this fish may be useful for the production of recombinant protein.
Collapse
Affiliation(s)
- Masaki Iwaizumi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-0845, Japan.
| |
Collapse
|
23
|
Gao XM, Zhang DD, Hou CC, Du C, Luo SY, Zhu JQ. Developmental and mRNA transcript relative abundance pattern of vitellogenin receptors, LR8-/Lrp13, during ovarian development in the large yellow croaker (Larimichthys crocea). Anim Reprod Sci 2020; 213:106271. [DOI: 10.1016/j.anireprosci.2019.106271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
|
24
|
Kuang C, Wang F, Zhou Y, Cao J, Zhang H, Gong H, Zhou R, Zhou J. Molecular characterization of clathrin heavy chain (Chc) in Rhipicephalus haemaphysaloides and its effect on vitellogenin (Vg) expression via the clathrin-mediated endocytic pathway. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:71-89. [PMID: 31828557 DOI: 10.1007/s10493-019-00438-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Clathrin plays an important role in arthropods, but its function in ticks has not been explored. Here, we describe the molecular characteristics of the clathrin heavy chain of the tick Rhipicephalus haemaphysaloides and its effects on yolk development. The open reading frame of the clathrin heavy chain (Chc) (Rh-Chc) gene consists of 5103 nucleotides encoding 670 amino acids, which is most closely related to that of Ixodes scapularis and relatively close to Homo sapiens and Drosophila melanogaster. Real-time qPCR revealed that Rh-Chc was expressed at all developmental stages and organs. After Rh-Chc is silenced, ticks did not feed and mortality rate was 100%. Moreover, Rh-Chc co-localized with Vitellogenin receptor (VgR) on oocyte membrane. Immunofluorescence showed that the expression of Vitellogenin (Vg) (Rh-Vg) was also closely related to Rh-Chc. Immunofluorescence showed that the expression of Vg was also closely related to Rh-Chc, Rh-Chc silencing slowed the development of oocytes in tick, and culture of ovary in vitro silenced Rh-Chc, the development of oocytes in ticks also slowed down. Overall, the results of this study indicated that Rh-Chc is a vital gene in the tick R. haemaphysaloides that plays an important role in its growth, development, and reproduction.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Fangfang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Rongqiong Zhou
- College of Animal Science, Southwest University, Chongqing, 402460, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
25
|
Shen Y, Chen YZ, Lou YH, Zhang CX. Vitellogenin and Vitellogenin-Like Genes in the Brown Planthopper. Front Physiol 2019; 10:1181. [PMID: 31620015 PMCID: PMC6759490 DOI: 10.3389/fphys.2019.01181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenin (Vg) is precursor of vitellin. Here, we identified a Vg (NlVg) and two Vg-likes (NlVg-like1 and NlVg-like2) in the brown planthopper, Nilaparvata lugens. Phylogenetic analyses showed that NlVg-like1 and NlVg-like2 are not clustered with the conventional insect Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that the NlVg and NlVg-like2 transcript levels increased significantly 24 h after emergence and were primarily expressed in female adults. However, NlVg-like1 was expressed during all stages, and in both genders. Tissue-specific analyses showed that all three genes were most highly expressed in the fat body. The injection of double-stranded RNA targeting NlVg showed that NlVg is essential not only for oocyte development but also for nymph development. The knockdown of NlVg-like1 in female adults resulted in failure to hatch or death before eggshell emergence in 18% of offspring embryos, suggesting that NlVg-like1 plays an important role during late embryogenesis. Approximately 65% of eggs laid by females that were treated with double-stranded RNA targeting NlVg-like2 failed to hatch, indicating that NlVg-like2 plays a role in nutrition absorption during oocyte, or embryonic development. Our results illustrate the structural and functional differences among the Vg and Vg-like genes and provide potential targets for RNA-interference-based insect pest management strategies.
Collapse
Affiliation(s)
- Yan Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yuan-Zhi Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yi-Han Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Pousis C, Rodríguez C, De Ruvo P, De Virgilio C, Pérez JA, Mylonas CC, Zupa R, Passantino L, Santamaria N, Valentini L, Corriero A. Vitellogenin receptor and fatty acid profiles of individual lipid classes of oocytes from wild and captive-reared greater amberjack (Seriola dumerili) during the reproductive cycle. Theriogenology 2019; 140:73-83. [PMID: 31465910 DOI: 10.1016/j.theriogenology.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
The greater amberjack Seriola dumerili (Risso, 1810) is a large migratory pelagic fish occurring in tropical and temperate waters with a great potential for the world aquaculture industry. Previous studies showed that wild-caught female greater amberjack reared in sea cages and handled during the reproductive season, underwent extensive ovarian atresia. This atresia, however, was not related to an insufficient liver transcription or oocyte uptake of vitellogenin (Vtg). In the present study, the structure of two greater amberjack vitellogenin receptors, namely Vtgr (Lr8-) and Lrp13, was characterized. Moreover, vtgr and lrp13 gene expression and the fatty acid profiles of specific phospholipids and neutral lipids were compared in the ovaries of wild and captive-reared greater amberjack during different phases of the reproductive cycle (i.e. early gametogenesis, advanced gametogenesis and spawning). Ovarian vtgr and lrp13 transcription was more active during early gametogenesis, suggesting that vitellogenin receptor transcripts were synthesized by previtellogenic oocytes and remained in the cellular mRNA pool until oocytes resumed meiosis and entered into secondary growth (i.e. vitellogenesis). Rearing of wild-caught greater amberjack in captivity together with handling during the reproductive season was associated with a reduced vtgr and lrp13 transcription and with a diminished capacity of oocytes in the early phase of gametogenesis (primary oocyte growth) to enter into vitellogenesis. During early gametogenesis, remarkable differences in the fatty acid composition were observed between wild and captive-reared individuals: all phospholipids of captive fish displayed dramatic increases of saturates (16:0 and 18:0) and decreases of arachidonic acid (ARA) and docosahexaenoic acid (DHA). The present study confirms the susceptibility of greater amberjack reproductive function to handling stress and suggests that the consequent extensive atresia of vitellogenic follicles originated during the primary oocytes growth when the capacity of oocytes to synthesize vitellogenin receptors was reduced. The study also suggests that this reduced capacity was associated with an altered oocyte phospholipid fatty acid composition during early gametogenesis.
Collapse
Affiliation(s)
- Chrysovalentinos Pousis
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy
| | - Covadonga Rodríguez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife, 38071, Spain
| | - Pasquale De Ruvo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4-70124, Bari, Italy
| | - Caterina De Virgilio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4-70124, Bari, Italy
| | - José A Pérez
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife, 38071, Spain
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, 71003, Crete, Greece
| | - Rosa Zupa
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy
| | - Letizia Passantino
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy
| | - Nicoletta Santamaria
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy
| | - Luisa Valentini
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy
| | - Aldo Corriero
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, S.P. per Casamassima km. 3, I-70010, Valenzano, Bari, Italy.
| |
Collapse
|
27
|
Yilmaz O, Patinote A, Nguyen T, Com E, Pineau C, Bobe J. Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio). Mol Reprod Dev 2019; 86:1168-1188. [DOI: 10.1002/mrd.23231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Ozlem Yilmaz
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Amélie Patinote
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Thaovi Nguyen
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| | - Emmanuelle Com
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Charles Pineau
- Protim, Inserm U1085, IrsetCampus de Beaulieu, Université de Rennes 1, Proteomics Core Facility Rennes Cedex France
| | - Julien Bobe
- INRA, UR1037, Laboratory of Fish Physiology and GenomicsCampus de Beaulieu, French National Institute for Agricultural Research Rennes Cedex France
| |
Collapse
|
28
|
Gioacchini G, Marisaldi L, Basili D, Candelma M, Pignalosa P, Aiese Cigliano R, Sanseverino W, Hardiman G, Carnevali O. A de novo transcriptome assembly approach elucidates the dynamics of ovarian maturation in the swordfish (Xiphias gladius). Sci Rep 2019; 9:7375. [PMID: 31089194 PMCID: PMC6517582 DOI: 10.1038/s41598-019-43872-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
The Mediterranean swordfish (Xiphias gladius) has been recently classified as overfished and in 2016, the International Commission for the Conservation of the Atlantic Tunas (ICCAT) established a multi-annual management plan to recover this stock. To successfully achieve this goal, knowledge about swordfish biology is needed. To date, few studies on swordfish have been performed and none of them has provided useful insights into the reproductive biology at molecular level. Here we set to characterise the molecular dynamics underlying ovarian maturation by employing a de novo transcriptome assembly approach. Differential gene expression analysis in mature and immature ovaries identified a number of differentially expressed genes associated with biological processes driving ovarian maturation. Focusing on ovarian steroidogenesis and vitellogenin uptake, we depict the molecular dynamics characterizing these processes while a phylogenetic analysis let us identify a candidate vitellogenin receptor. This is the first swordfish transcriptome assembly and these findings provide in-depth understanding of molecular processes describing ovarian maturation. Moreover, the establishment of a publicly available database containing information on the swordfish transcriptome aims to boost research on this species with the long-term of developing more comprehensive and successful stock management plans.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Luca Marisaldi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Danilo Basili
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | - Michela Candelma
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy
| | | | | | | | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, BT9 5AG, Belfast, UK
| | - Oliana Carnevali
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University (UNIVPM), 60131, Ancona, Italy.
| |
Collapse
|
29
|
Medina-Gali R, Belló-Pérez M, Ciordia S, Mena MC, Coll J, Novoa B, Ortega-Villaizán MDM, Perez L. Plasma proteomic analysis of zebrafish following spring viremia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:892-899. [PMID: 30580041 DOI: 10.1016/j.fsi.2018.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
To better understand spring viremia of carp virus (SVCV) pathogenesis in zebrafish proteomic analysis was used to examine the plasma protein profile in SVCV-infected zebrafish. A total of 3062 proteins were identified. Of those 137, 63 and 31 proteins were enriched in blood samples harvested at 1, 2 and 5 days post SVCV infection, respectively. These altered host proteins were classified based on their biological function: 23 proteins under the response to stimulus term were identified. Interestingly, at the top of the up-regulated proteins during SVCV infection were the proteins of the vitellogenin family (Vtg) and the grass carp reovirus-induced gene (Gig) proteins. Real-time RT-PCR evaluation of samples from internal organs verified that SVCV infection induced vtg and gig2 gene expression already at day 1 post-infection. Western blot analysis revealed the presence of Vtg protein only in blood of SVCV-infected fish. This is the first proteomic study to reveal the involvement of Vtg proteins in adult fish response to viral challenge. It also highlights the role of Gig proteins as important factors in antiviral response in fish. This work provides valuable relevant insight into virus-host interaction and the identification of molecular markers of fish response to virus.
Collapse
Affiliation(s)
- Regla Medina-Gali
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| | - Melissa Belló-Pérez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB), Madrid, Spain.
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB), Madrid, Spain.
| | - Julio Coll
- Instituto Nacional de Investigaciones Agrarias (INIA), 28040, Madrid, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain.
| | | | - Luis Perez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández de Elche (UMH), 03202, Elche, Spain.
| |
Collapse
|
30
|
Hawkings C, Tamborindeguy C. Expression analysis of vitellogenins in the workers of the red imported fire ant ( Solenopsis invicta). PeerJ 2018; 6:e4875. [PMID: 29868280 PMCID: PMC5978388 DOI: 10.7717/peerj.4875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/09/2018] [Indexed: 01/27/2023] Open
Abstract
Vitellogenin has been proposed to regulate division of labor and social organization in social insects. The red imported fire ant (Solenopsis invicta) harbors four distinct, adjacent vitellogenin genes (Vg1, Vg2, Vg3, and Vg4). Contrary to honey bees that have a single Vg ortholog as well as potentially fertile nurses, and to other ant species that lay trophic eggs, S. invicta workers completely lack ovaries or the ability to lay eggs. This provides a unique model to investigate whether Vg duplication in S. invicta was followed by subfunctionalization to acquire non-reproductive functions and whether Vg was co-opted to regulate behavior within the worker caste. To investigate these questions, we compared the expression patterns of S. invicta Vg genes among workers from different morphological subcastes or performing different tasks. RT-qPCRs revealed higher relative expression of Vg1 in major workers compared to both medium and minor workers, and of Vg2 in major workers when compared to minor workers. Relative expression of Vg1 was also higher in carbohydrate foragers when compared to nurses and protein foragers. By contrast, the level of expression of Vg2, Vg3, and Vg4 were not significantly different among the workers performing the specific tasks. Additionally, we analyzed the relationship between the expression of the Vg genes and S-hydroprene, a juvenile hormone analog. No changes in Vg expression were recorded in workers 12 h after application of the analog. Our results suggest that in S. invicta the Vg gene underwent subfunctionalization after duplication to new functions based on the expression bias observed in these data. This may suggest an alternative and still unknown function for Vg in the workers that needs to be investigated further.
Collapse
Affiliation(s)
- Chloe Hawkings
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
31
|
Kwankaew P, Praparatana R, Runsaeng P, Utarabhand P. An alternative function of C-type lectin comprising low-density lipoprotein receptor domain from Fenneropenaeus merguiensis to act as a binding receptor for viral protein and vitellogenin. FISH & SHELLFISH IMMUNOLOGY 2018; 74:295-308. [PMID: 29289654 DOI: 10.1016/j.fsi.2017.12.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
A diversity of C-type lectins (CTLs) was coming reported and they are known to participate in invertebrate innate immunity by act as pattern recognition receptor (PRR). In the present study, a unique CTL containing low-density lipoprotein receptor (LDLR) domain from Fenneropenaeus merguiensis (designated as FmLdlr) was cloned. Its sequence contained a single LDLR domain and one carbohydrate recognition domain (CRD) with a QAP motif putative for galactose-specific binding. The expression of FmLdlr was detected only in hemocytes of healthy shrimp. Its expression was significantly up-regulated by Vibrio parahaemolyticus or white spot syndrome virus (WSSV) challenge. The knockdown by FmLdlr dsRNA resulted in severe gene down-regulation. The gene silencing with pathogenic co-inoculation led to reduction of the median lethal time and increasing in the cumulative mortality including the remained WSSV in WSSV co-challenge group. Recombinant proteins of FmLdlr and two domains could agglutinate various bacterial strains which LDLR domain revealed the lowest activity. Only FmLdlr and CRD could enhance phagocytosis and encapsulation by hemocytes. Both FmLdlr and CRD except LDLR domain exhibited the antibacterial activity by inhibiting the growth of pathogenic V. parahaemolyticus in cultured medium and disk diffusion assay. Only FmLdlr and CRD could bind to WSSV proteins, envelope VP28, tegument VP39A and also capsid VP15, which FmLdlr had the higher binding affinity than that of CRD. Altogether, we concluded that FmLdlr contributed in shrimp immune defense through the main action of CRD in capable of bacterial agglutination, enhancing the phagocytosis and encapsulation, antimicrobial activity and binding to viral proteins. Interestingly, ELISA approach revealed that LDLR domain displayed the highest binding affinity to vitellogenin than whole molecule and CRD. We signified a new function of FmLdlr that it might presumably act as a receptor for vitellogenin transportation in hemolymph during vitellogenesis of shrimp.
Collapse
Affiliation(s)
- Pattamaporn Kwankaew
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rachanida Praparatana
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prapaporn Utarabhand
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
32
|
Huo Y, Yu Y, Chen L, Li Q, Zhang M, Song Z, Chen X, Fang R, Zhang L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathog 2018; 14:e1006909. [PMID: 29474489 PMCID: PMC5849359 DOI: 10.1371/journal.ppat.1006909] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/13/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022] Open
Abstract
Insect vitellogenin (Vg) has been considered to be synthesized in the fat body. Here, we found that abundant Vg protein is synthesized in Laodelphax striatellus hemocytes as well. We also determined that only the hemocyte-produced Vg binds to Rice stripe virus (RSV) in vivo. Examination of the subunit composition of L. striatellus Vg (LsVg) revealed that LsVg was processed differently after its expression in different tissues. The LsVg subunit able to bind to RSV exist stably only in hemocytes, while fat body-produced LsVg lacks the RSV-interacting subunit. Nymph and male L. striatellus individuals also synthesize Vg but only in hemocytes, and the proteins co-localize with RSV. We observed that knockdown of LsVg transcripts by RNA interference decreased the RSV titer in the hemolymph, and thus interfered with systemic virus infection. Our results reveal the sex-independent expression and tissue-specific processing of LsVg and also unprecedentedly connect the function of this protein in mediating virus transmission to its particular molecular forms existing in tissues previously known as non-Vg producing.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Yuanling Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Liying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiyu Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| |
Collapse
|
33
|
Andersen Ø, Xu C, Timmerhaus G, Kirste KH, Naeve I, Mommens M, Tveiten H. Resolving the complexity of vitellogenins and their receptors in the tetraploid Atlantic salmon (Salmo salar
): Ancient origin of the phosvitin-less VtgC in chondrichthyean fishes. Mol Reprod Dev 2017; 84:1191-1202. [DOI: 10.1002/mrd.22881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Øivind Andersen
- Nofima AS; Ås Norway
- Department of Animal and Aquaculture Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Chunxia Xu
- Department of Animal and Aquaculture Sciences; Norwegian University of Life Sciences; Ås Norway
| | | | | | | | | | | |
Collapse
|
34
|
Rungger D, Muster L, Georgiev O, Rungger-Brändle E. Oocyte shuttle, a recombinant protein transporting donor DNA into the Xenopus oocyte in situ. Biol Open 2017; 6:290-295. [PMID: 28202471 PMCID: PMC5312104 DOI: 10.1242/bio.022376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The newly developed oocyte shuttle protein contains a streptavidin moiety that tightly binds biotinylated DNA. Injected intravenously into adult Xenopus females, the protein-DNA complex is rapidly transported through the bloodstream and, within the ovary, the vitellogenin ligand present in the protein binds to the receptors at the surface of the oocytes. The bound complex is internalized and translocates into the oocyte nucleus thanks to an SV40 nuclear localization signal, enhanced by an adjacent casein kinase phosphorylation site. Functioning of the shuttle protein is documented by transporting DNA molecules that, upon intramolecular homologous recombination within the oocyte nucleus, express easily traceable markers such as green fluorescence or tetracycline resistance. Summary: A newly developed oocyte shuttle protein, binding donor DNA and carrying it from the bloodstream to the oocyte nucleus within the ovary, should greatly facilitate production of transgenic Xenopus embryos.
Collapse
Affiliation(s)
- Duri Rungger
- Station de Zoologie expérimentale, Department of Genetics and Evolution, University of Geneva, 154 route de Malagnou, Chêne-Bougeries 1224, Switzerland
| | - Lisbeth Muster
- Station de Zoologie expérimentale, Department of Genetics and Evolution, University of Geneva, 154 route de Malagnou, Chêne-Bougeries 1224, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich-Irchel, Winterthurer Strasse 190, Zurich 8057, Switzerland
| | | |
Collapse
|
35
|
Liu L, Wang Y, Li Y, Lin Y, Hou Y, Zhang Y, Wei S, Zhao P, Zhao P, He H. LBD1 of Vitellogenin Receptor Specifically Binds to the Female-Specific Storage Protein SP1 via LBR1 and LBR3. PLoS One 2016; 11:e0162317. [PMID: 27637099 PMCID: PMC5026343 DOI: 10.1371/journal.pone.0162317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Storage proteins are the major protein synthesized in the fat body, released into hemolymph and re-sequestered into the fat body before pupation in most insect species. Storage proteins are important amino acid and nutrition resources during the non-feeding pupal period and play essential roles for the metamorphosis and oogenesis of insects. The sequestration of storage protein is a selective, specific receptor-mediated process. However, to date, the potential receptor mediating the sequestration of storage protein has not been determined in Bombyx mori. In this study, we expressed and purified the first ligand binding domain of Bombyx mori vitellogenin receptor (BmVgR), LBD1, and found LBD1 could bind with an unknown protein from the hemolymph of the ultimate silkworm larval instar via pull-down assay. This unknown protein was subsequently identified to be the female-specific storage protein SP1 by mass spectrometry. Furthermore, far western blotting assay, immunoprecipitation and isothermal titration calorimetry analysis demonstrated LBD1 specifically bound with the female-specific SP1, rather than another unisex storage protein SP2. The specific binding of LBD1 with SP1 was dependent on the presence of Ca2+ as it was essential for the proper conformation of LBD1. Deletion mutagenesis and ITC analysis revealed the first and third ligand binding repeats LBR1 and LBR3 were indispensable for the binding of LBD1 with SP1, and LBR2 and LBR4 also had a certain contribution to the specific binding. Our results implied BmVgR may mediate the sequestration of SP1 from hemolymph into the fat body during the larval-pupal transformation of Bombyx mori.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuguang Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Peng Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, College of Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- * E-mail: (YW); (HH)
| |
Collapse
|
36
|
Tian HF, Meng Y, Hu QM, Xiao HB. Molecular cloning, characterization and evolutionary analysis of vitellogenin in Chinese giant salamander Andrias davidianus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Development of self-assembling peptide nanovesicle with bilayers for enhanced EGFR-targeted drug and gene delivery. Biomaterials 2015; 82:194-207. [PMID: 26763734 DOI: 10.1016/j.biomaterials.2015.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023]
Abstract
Development of rational vectors for efficient drug and gene delivery is crucial for cancer treatment. In this study, epidermal growth factor receptor (EGFR)-binding peptide amphiphile (PA) were used as the primary bilayer skeleton material to construct ultra-stable self-assembling peptide nanovesicle (SPV). The resulted EGFR-targeted SPV (ESPV) could efficiently encapsulate therapeutic cargos (drugs or small interfering RNAs [siRNAs]) or labelled fluorescent cargo (quantum dots [QDs]) and exhibited excellent affinity for EGFR-positive cancer cells. Moreover, ESPV could deliver more drug or plasmid DNA to tumour sites and promote gene expression (a three-fold ratio of ESPVs vs cationic liposomes). Notably, the individual delivery or co-delivery of doxorubicin (DOX) and the acetylcholinesterase (AChE) gene via the ESPVs resulted in excellent drug/gene delivery both in vitro and in vivo and exerted a significant growth-suppressing effect on a liver cancer xenograft. This nanoscale, targeted cargo-packaging technology may provide a new strategy for the design of highly targeted cancer therapy vectors.
Collapse
|
38
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
39
|
Mushirobira Y, Mizuta H, Luo W, Todo T, Hara A, Reading BJ, Sullivan CV, Hiramatsu N. Molecular cloning and partial characterization of a low‐density lipoprotein receptor‐related protein 13 (Lrp13) involved in vitellogenin uptake in the cutthroat trout (
Oncorhynchus clarki
). Mol Reprod Dev 2015; 82:986-1000. [DOI: 10.1002/mrd.22579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/30/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yuji Mushirobira
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Hiroko Mizuta
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Wenshu Luo
- Graduate School of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Takashi Todo
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Akihiko Hara
- Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
| | - Benjamin J. Reading
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth Carolina
| | | | | |
Collapse
|
40
|
Yilmaz O, Prat F, Ibañez AJ, Amano H, Koksoy S, Sullivan CV. Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: Status and perspectives on multiplicity and functioning of vitellogenins. Gen Comp Endocrinol 2015; 221:16-22. [PMID: 25637672 DOI: 10.1016/j.ygcen.2015.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/30/2014] [Accepted: 01/10/2015] [Indexed: 01/22/2023]
Abstract
The estrogen-inducible egg yolk precursor, vitellogenin, of the European sea bass (Dicentrarchus labrax) has received considerable scientific attention by virtue of its central importance in determination of oocyte growth and egg quality in this important aquaculture species. However, the multiplicity of vitellogenins in the sea bass has only recently been examined. Recent cloning and homology analyses have revealed that the sea bass possesses the three forms of vitellogenin, VtgAa, VtgAb and VtgC, reported to occur in some other highly evolved teleosts. Progress has been made in assessing the relative abundance and special structural features of the three Vtgs and their likely roles in oocyte maturation and embryonic nutrition. This report discusses these findings in the context of our prior knowledge of vitellogenesis in this species and of the latest advances in our understanding of the evolution and function of multiple Vtgs in acanthomorph fishes.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya 07070, Turkey; National Institute of Agrinomic Research, Campus de Beaulieu, 35000 Rennes Cedex, France(1).
| | - Francisco Prat
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Instituto de Ciencias Marinas de Andalucía (CSIC), 11510 Cádiz, Spain(1)
| | - Antonio José Ibañez
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Electron and Confocal Microscopy Service, University of Valencia, 46100 Valencia, Spain(1)
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Sadi Koksoy
- Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Craig V Sullivan
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Carolina AquaGyn, P.O. Box 12914, Raleigh, NC 27605, USA(1)
| |
Collapse
|
41
|
Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity. Exp Gerontol 2015; 71:103-8. [PMID: 26254745 DOI: 10.1016/j.exger.2015.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/22/2022]
Abstract
In comparative gerontology, highly social insects such as honey bees (Apis mellifera) receive much attention due to very different and flexible aging patterns among closely related siblings. While experimental strategies that manipulate socio-environmental factors suggest a causative link between aging and social signals and behaviors, the molecular underpinnings of this linkage are less well understood. Here we study the atypical localization of the egg-yolk protein vitellogenin (Vg) in the brain of the honey bee. Vg is known to influence honey bee social regulation and aging rate. Our findings suggest that Vg immunoreactivity in the brain is specifically localized within the class of non-neuronal glial cells. We discuss how these results can help explain the socially-dependent aging rate of honey bees.
Collapse
|
42
|
Reading BJ, Hiramatsu N, Schilling J, Molloy KT, Glassbrook N, Mizuta H, Luo W, Baltzegar DA, Williams VN, Todo T, Hara A, Sullivan CV. Lrp13 is a novel vertebrate lipoprotein receptor that binds vitellogenins in teleost fishes. J Lipid Res 2014; 55:2287-95. [PMID: 25217480 DOI: 10.1194/jlr.m050286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcripts encoding a novel member of the lipoprotein receptor superfamily, termed LDL receptor-related protein (Lrp)13, were sequenced from striped bass (Morone saxatilis) and white perch (Morone americana) ovaries. Receptor proteins were purified from perch ovary membranes by protein-affinity chromatography employing an immobilized mixture of vitellogenins Aa and Ab. RT-PCR revealed lrp13 to be predominantly expressed in striped bass ovary, and in situ hybridization detected lrp13 transcripts in the ooplasm of early secondary growth oocytes. Quantitative RT-PCR confirmed peak lrp13 expression in the ovary during early secondary growth. Quantitative mass spectrometry revealed peak Lrp13 protein levels in striped bass ovary during late-vitellogenesis, and immunohistochemistry localized Lrp13 to the oolemma and zona radiata of vitellogenic oocytes. Previously unreported orthologs of lrp13 were identified in genome sequences of fishes, chicken (Gallus gallus), mouse (Mus musculus), and dog (Canis lupus familiaris). Zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) lrp13 loci are discrete and share genomic synteny. The Lrp13 appears to function as a vitellogenin receptor and may be an important mediator of yolk formation in fishes and other oviparous vertebrates. The presence of lrp13 orthologs in mammals suggests that this lipoprotein receptor is widely distributed among vertebrates, where it may generally play a role in lipoprotein metabolism.
Collapse
Affiliation(s)
- Benjamin J Reading
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Justin Schilling
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Katelyn T Molloy
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Norm Glassbrook
- Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC
| | - Hiroko Mizuta
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Wenshu Luo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | | | - Valerie N Williams
- Departments of Applied Ecology North Carolina State University, Raleigh, NC
| | - Takashi Todo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Akihiko Hara
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Craig V Sullivan
- Biological Sciences, North Carolina State University, Raleigh, NC Carolina AquaGyn, Raleigh, NC
| |
Collapse
|
43
|
Zhang WN, Xiao HJ, Liang GM, Guo YY, Wu KM. Tradeoff between reproduction and resistance evolution to Bt-toxin in Helicoverpa armigera: regulated by vitellogenin gene expression. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:444-452. [PMID: 24555504 DOI: 10.1017/s0007485314000066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Evolution of resistance to insecticides usually has fitness tradeoffs associated with adaptation to the stress. The basic regulation mechanism of tradeoff between reproduction and resistance evolution to Bacillus thuringiensis (Bt) toxin in the cotton bollworm, Helicoverpa armigera (Ha), based on the vitellogenin (Vg) gene expression was analyzed here. The full-length cDNA of the Vg gene HaVg (JX504706) was cloned and identified. HaVg has 5704 base pairs (bp) with an open reading frame (ORF) of 5265 bp, which encoded 1756 amino acid protein with a predicted molecular mass of 197.28 kDa and a proposed isoelectric point of 8.74. Sequence alignment analysis indicated that the amino acid sequence of HaVg contained all of the conserved domains detected in the Vgs of the other insects and had a high similarity with the Vgs of the Lepidoptera insects, especially Noctuidae. The resistance level to Cry1Ac Bt toxin and relative HaVg mRNA expression levels among the following four groups: Cry1Ac-susceptible strain (96S), Cry1Ac-resistant strain fed on artificial diet with Bt toxin for 135 generations (BtR stands for the Cry1Ac Bt resistance), progeny of the Cry1Ac-resistant strain with a non-Bt-toxin artificial diet for 38 generations (CK1) and the direct descendants of the 135th-generation resistant larvae which were fed on an artificial diet without the Cry1Ac protein (CK2) were analyzed. Compared with the 96S strain, the resistance ratios of the BtR strain, the CK1 strain and the CK2 strain were 2917.15-, 2.15- and 2037.67-fold, respectively. The maximum relative HaVg mRNA expression levels of the BtR strain were approximately 50% less than that of the 96S strain, and the coming of maximum expression was delayed for approximately 4 days. The overall trend of the HaVg mRNA expression levels in the CK1 strain was similar to that in the 96S strain, and the overall trend of the HaVg mRNA expression levels in the CK2 strain was similar to that in the BtR strain. Our results suggest that the changes in reproduction due to the Bt-toxin resistance evolution in the BtR strain may be regulated by the Vg gene expression. The down-regulation of HaVg at the early stages resulted in a period of delayed reproduction and decreased fecundity in the BtR strain. This performance disappeared when the Bt-toxin selection pressure was lost.
Collapse
Affiliation(s)
- W N Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193,China
| | - H J Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193,China
| | - G M Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193,China
| | - Y Y Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193,China
| | - K M Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection, Chinese Academy of Agricultural Sciences,Beijing 100193,China
| |
Collapse
|
44
|
Morandin C, Havukainen H, Kulmuni J, Dhaygude K, Trontti K, Helanterä H. Not only for egg yolk--functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins. Mol Biol Evol 2014; 31:2181-93. [PMID: 24895411 DOI: 10.1093/molbev/msu171] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitellogenin (Vg), a storage protein, has been extensively studied for its egg-yolk precursor role, and it has been suggested to be fundamentally involved in caste differences in social insects. More than one Vg copy has been reported in several oviparous species, including ants. However, the number and function of different Vgs, their phylogenetic relatedness, and their role in reproductive queens and nonreproductive workers have been studied in few species only. We studied caste-biased expression of Vgs in seven Formica ant species. Only one copy of conventional Vg was identified in Formica species, and three Vg homologs, derived from ancient duplications, which represent yet undiscovered Vg-like genes. We show that each of these Vg-like genes is present in all studied Hymenoptera and some of them in other insects as well. We show that after each major duplication event, at least one of the Vg-like genes has experienced a period of positive selection. This, combined with the observation that the Vg-like genes have acquired or lost specific protein domains suggests sub- or neofunctionalization between Vg and the duplicated genes. In contrast to earlier studies, Vg was not consistently queen biased in its expression, and the caste bias of the three Vg-like genes was highly variable among species. Furthermore, a truncated and Hymenoptera-specific Vg-like gene, Vg-like-C, was consistently worker biased. Multispecies comparisons are essential for Vg expression studies, and for gene expression studies in general, as we show that expression and also, putative functions cannot be generalized even among closely related species.
Collapse
Affiliation(s)
- Claire Morandin
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, FinlandTvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - Heli Havukainen
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, FinlandDepartment of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Jonna Kulmuni
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, FinlandDepartment of Biology and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kishor Dhaygude
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, FinlandDepartment of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Helanterä
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, FinlandTvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. QUARTERLY REVIEW OF BIOLOGY 2013; 88:185-218. [PMID: 24053071 DOI: 10.1086/671484] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Collapse
Affiliation(s)
- Thomas Flatt
- Institut für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
46
|
Luo W, Ito Y, Mizuta H, Massaki K, Hiramatsu N, Todo T, Reading BJ, Sullivan CV, Hara A. Molecular cloning and partial characterization of an ovarian receptor with seven ligand binding repeats, an orthologue of low-density lipoprotein receptor, in the cutthroat trout (Oncorhynchus clarki). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:263-71. [DOI: 10.1016/j.cbpa.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 11/25/2022]
|
47
|
Singh NK, Pakkianathan BC, Kumar M, Prasad T, Kannan M, König S, Krishnan M. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent. PLoS One 2013; 8:e73005. [PMID: 24058454 PMCID: PMC3772815 DOI: 10.1371/journal.pone.0073005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/17/2013] [Indexed: 12/04/2022] Open
Abstract
Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | | - Manish Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Tulika Prasad
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Mani Kannan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Simone König
- Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
- * E-mail:
| |
Collapse
|
48
|
Borges P, Medale F, Veron V, Pires MDA, Dias J, Valente LM. Lipid digestion, absorption and uptake in Solea senegalensis. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:26-35. [DOI: 10.1016/j.cbpa.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023]
|
49
|
Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet 2013; 9:e1003730. [PMID: 23966882 PMCID: PMC3744404 DOI: 10.1371/journal.pgen.1003730] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The reproductive ground plan hypothesis (RGPH) proposes that the physiological pathways regulating reproduction were co-opted to regulate worker division of labor. Support for this hypothesis in honeybees is provided by studies demonstrating that the reproductive potential of workers, assessed by the levels of vitellogenin (Vg), is linked to task performance. Interestingly, contrary to honeybees that have a single Vg ortholog and potentially fertile nurses, the genome of the harvester ant Pogonomyrmex barbatus harbors two Vg genes (Pb_Vg1 and Pb_Vg2) and nurses produce infertile trophic eggs. P. barbatus, thus, provides a unique model to investigate whether Vg duplication in ants was followed by subfunctionalization to acquire reproductive and non-reproductive functions and whether Vg reproductive function was co-opted to regulate behavior in sterile workers. To investigate these questions, we compared the expression patterns of P. barbatus Vg genes and analyzed the phylogenetic relationships and molecular evolution of Vg genes in ants. qRT-PCRs revealed that Pb_Vg1 is more highly expressed in queens compared to workers and in nurses compared to foragers. By contrast, the level of expression of Pb_Vg2 was higher in foragers than in nurses and queens. Phylogenetic analyses show that a first duplication of the ancestral Vg gene occurred after the divergence between the poneroid and formicoid clades and subsequent duplications occurred in the lineages leading to Solenopsis invicta, Linepithema humile and Acromyrmex echinatior. The initial duplication resulted in two Vg gene subfamilies preferentially expressed in queens and nurses (subfamily A) or in foraging workers (subfamily B). Finally, molecular evolution analyses show that the subfamily A experienced positive selection, while the subfamily B showed overall relaxation of purifying selection. Our results suggest that in P. barbatus the Vg gene underwent subfunctionalization after duplication to acquire caste- and behavior- specific expression associated with reproductive and non-reproductive functions, supporting the validity of the RGPH in ants. One of the main features of social insects is the division of labor, whereby queens monopolize reproduction while sterile workers perform all of the tasks related to colony maintenance. The workers usually do so in an age-dependent sequence: young workers tend to nurse the brood inside the nest and older workers are more likely to forage for food. Previous studies revealed that vitellogenin, a yolk protein typically involved in the regulation of reproduction in solitary insects, has been co-opted to regulate division of labor in the honeybee. In this study, we investigate such a role of vitellogenin in another group of social insects: the ants. We first use phylogenetic analyses to reveal the existence of multiple vitellogenin genes in most of the sequenced ant genomes. Then we compare the expression of the two vitellogenin genes (Pb_Vg1 and Pb_Vg2) among queens, nurses and foragers in the seed-harvester ant Pogonomyrmex barbatus. Our results suggest that, after the initial duplication in ants, the vitellogenin genes acquired caste and behavioral specific expression associated with reproductive and non-reproductive nutritionally related functions. This study also shows that ants and bees, despite having evolved sociality independently, have conserved similar mechanisms to regulate division of labor.
Collapse
Affiliation(s)
- Miguel Corona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Havukainen H, Münch D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, Amdam GV. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem 2013; 288:28369-81. [PMID: 23897804 DOI: 10.1074/jbc.m113.465021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Large lipid transfer proteins are involved in lipid transportation and diverse other molecular processes. These serum proteins include vitellogenins, which are egg yolk precursors and pathogen pattern recognition receptors, and apolipoprotein B, which is an anti-inflammatory cholesterol carrier. In the honey bee, vitellogenin acts as an antioxidant, and elevated vitellogenin titer is linked to prolonged life span in this animal. Here, we show that vitellogenin has cell and membrane binding activity and that it binds preferentially to dead and damaged cells. Vitellogenin binds directly to phosphatidylcholine liposomes and with higher affinity to liposomes containing phosphatidylserine, a lipid of the inner leaflet of cell membranes that is exposed in damaged cells. Vitellogenin binding to live cells, furthermore, improves cell oxidative stress tolerance. This study can shed more light on why large lipid transfer proteins have a well conserved α-helical domain, because we locate the lipid bilayer-binding ability of vitellogenin largely to this region. We suggest that recognition of cell damage and oxidation shield properties are two mechanisms that allow vitellogenin to extend honey bee life span.
Collapse
Affiliation(s)
- Heli Havukainen
- From the Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, 1432 Aas, Norway
| | | | | | | | | | | | | |
Collapse
|