1
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice. PLANTA 2024; 259:81. [PMID: 38438662 DOI: 10.1007/s00425-023-04315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
MAIN CONCLUSION Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
2
|
Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W. The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases. Antioxidants (Basel) 2023; 12:antiox12040839. [PMID: 37107214 PMCID: PMC10135305 DOI: 10.3390/antiox12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Large-size subunit catalases (LSCs) have an additional C-terminal domain (CT) that is structurally similar to Hsp31 and DJ-1 proteins, which have molecular chaperone activity. The CT of LSCs derives from a bacterial Hsp31 protein. There are two CT dimers with inverted symmetry in LSCs, one dimer in each pole of the homotetrameric structure. We previously demonstrated the molecular chaperone activity of the CT of LSCs. Like other chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in bacteria and fungi. Here, we analyze the mechanism of the CT of LSCs as an unfolding enzyme. The dimeric form of catalase-3 (CAT-3) CT (TDC3) of Neurospora crassa presented the highest activity as compared to its monomeric form. A variant of the CAT-3 CT lacking the last 17 amino acid residues (TDC3Δ17aa), a loop containing hydrophobic and charged amino acid residues only, lost most of its unfolding activity. Substituting charged for hydrophobic residues or vice versa in this C-terminal loop diminished the molecular chaperone activity in all the mutant variants analyzed, indicating that these amino acid residues play a relevant role in its unfolding activity. These data suggest that the general unfolding mechanism of CAT-3 CT involves a dimer with an inverted symmetry, and hydrophobic and charged amino acid residues. Each tetramer has four sites of interaction with partially unfolded or misfolded proteins. LSCs preserve their catalase activity under different stress conditions and, at the same time, function as unfolding enzymes.
Collapse
|
3
|
Nava Ramírez T, Hansberg W. Características comunes de las chaperonas pequeñas y diméricas. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las chaperonas moleculares constituyen un mecanismo importante para evitar la muerte celular provocada por la agregación de proteínas. Las chaperonas independientes del ATP son un grupo de proteínas de bajo peso molecular que pueden proteger y ayudar a alcanzar la estructura nativa de las proteínas desplegadas o mal plegadas sin necesidad de un gasto energético. Hemos encontrado que el dominio C-terminal de las catalasas de subunidad grande tiene actividad de chaperona. Por ello, en esta revisión analizamos las características más comunes de las chaperonas pequeñas y más estudiadas como: αB-cristalina, Hsp20, Spy, Hsp33 y Hsp31. En particular, se examina la participación de los aminoácidos hidrofóbicos y de los aminoácidos con carga en el reconocimiento de las proteínas sustrato, así como el papel que tiene la forma dimérica y su oligomerización en la actividad de chaperona. En cada una de esas chaperonas revisaremos la estructura de la proteína, su función, localización celular e importancia para la célula.
Collapse
|
4
|
Burschel S, Kreuzer Decovic D, Nuber F, Stiller M, Hofmann M, Zupok A, Siemiatkowska B, Gorka M, Leimkühler S, Friedrich T. Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli
NADH:ubiquinone oxidoreductase (complex I). Mol Microbiol 2018; 111:31-45. [DOI: 10.1111/mmi.14137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Sabrina Burschel
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Doris Kreuzer Decovic
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| | - Franziska Nuber
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Marie Stiller
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Maud Hofmann
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Arkadiusz Zupok
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Beata Siemiatkowska
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Silke Leimkühler
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| |
Collapse
|
5
|
Kim J, Choi D, Cha SY, Oh YM, Hwang E, Park C, Ryu KS. Zinc-mediated Reversible Multimerization of Hsp31 Enhances the Activity of Holding Chaperone. J Mol Biol 2018; 430:1760-1772. [PMID: 29709570 DOI: 10.1016/j.jmb.2018.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Hsp31 protein, belonging to the DJ-1/ThiJ/PfpI superfamily, increases the survival of Escherichia coli under various stresses. While it was reported as a holding chaperone, Hsp31 was also shown to exhibit the glyoxalase III activity in subsequent study. Here, we describe our finding that Hsp31 undergoes a Zn+2-mediated multimerization (HMWZinc), resulting in an enhanced chaperone activity. Furthermore, it was shown that the formation of HMWZinc is reversible such that the oligomer dissociates into the native dimer by EDTA incubation. We attempted to determine the structural change involving the transition between the native dimer and HMWZinc by adding Ni+2, which is Zn+2-mimetic, producing a potential intermediate structure. An analysis of this intermediate revealed a structure with hydrophobic interior exposed, due to an unfolding of the N-terminal loop and the C-terminal β-to-α region. A treatment with hydrogen peroxide accelerated HMWZinc formation, so that the Hsp31C185E mutant rendered the formation of HMWZinc even at 45 °C. However, the presence of Zn+2 in the catalytic site antagonizes the oxidation of C185, implying a negative role. Our results suggest an unprecedented mechanism of the enhancing chaperone activity by Hsp31, in which the reversible formation of HMWZinc occurs in the presence of heat and Zn+2 ion.
Collapse
Affiliation(s)
- Jihong Kim
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Dongwook Choi
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - So-Young Cha
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Young-Mee Oh
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Eunha Hwang
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Chankyu Park
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, South Korea.
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
6
|
Nair DN, Prasad R, Singhal N, Bhattacharjee M, Sudhakar R, Singh P, Thanumalayan S, Kiran U, Sharma Y, Sijwali PS. A conserved human DJ1-subfamily motif (DJSM) is critical for anti-oxidative and deglycase activities of Plasmodium falciparum DJ1. Mol Biochem Parasitol 2018; 222:70-80. [DOI: 10.1016/j.molbiopara.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 02/01/2023]
|
7
|
Structural Biology of the DJ-1 Superfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:5-24. [PMID: 29147900 DOI: 10.1007/978-981-10-6583-5_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DJ-1 (also called the DJ-1/PfpI, ThiJ/PfpI, or DJ-1/ThiJ/PfpI) superfamily is a structural and functional diverse group of proteins that are present in most organisms. Many of these proteins remain poorly characterized at the biochemical level, but include some known chaperones, proteases, and various stress response proteins that remain mechanistically mysterious. This chapter outlines what is known from a structural perspective about the cellular and biochemical functions of many of these proteins from distinct clades of the superfamily in several organisms. In humans, DJ-1 appears to function primarily as a redox-responsive protein that may act as a sensor for imbalances in cellular redox state. Because mutations in human DJ-1 cause certain types of heritable Parkinson's disease, the role of oxidative posttranslational modifications and pathogenic mutations in human DJ-1 is emphasized in the latter sections of this chapter.
Collapse
|
8
|
Kim J, Choi D, Park C, Ryu KS. Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:159-163. [PMID: 28258548 DOI: 10.1007/s12104-017-9739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Dimeric Hsp31 protein was first characterized as a holding chaperone of Escherichia coli (E. coli), and has been suggested as having protease activity due to the presence of a potential catalytic triad, Cys185, His186, and Asp214. However, it has recently been reported that Hsp31 displays a relatively strong glyoxalase III activity that can decompose reactive carbonyl species (methylglyoxal and glyoxal) in the absence of additional cofactor. Hsp31 is a representative member of the DJ-1/ThiJ/PfpI protein superfamily, and the importance of DJ-1 protein in Parkinson's disease has been well known. The structural flexibility of the long loop region, which encompasses from the P- to the A-domain, is important for the chaperone activity of Hsp31. The backbone chemical shifts (CSs) would be useful for studying the structural changes of Hsp31 that are critical for the holding chaperone activity, and also for deciphering the switching mechanism between the glyoxalase III and the chaperone. Here, we report the backbone CSs (HN, N, CO, Cα, and Cβ) of the deuterated Hsp31 protein (62 kDa). The CS analysis showed that the predicted regions of secondary structures are in good agreement with those observed in the previous crystal structure of Hsp31.
Collapse
Affiliation(s)
- Jihong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
| | - Dongwook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-Ro, Osong-Eup, Heungdeok-Gu, Cheongju-Si, Chungcheongbuk-Do, 28160, Republic of Korea
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do, 28119, Republic of Korea.
- Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Das S, Roy Chowdhury S, Dey S, Sen U. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity. PLoS One 2017; 12:e0172629. [PMID: 28235098 PMCID: PMC5325305 DOI: 10.1371/journal.pone.0172629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/07/2017] [Indexed: 11/23/2022] Open
Abstract
Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31.
Collapse
Affiliation(s)
- Samir Das
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanghati Roy Chowdhury
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
| | - Sanjay Dey
- Department of Biotechnology, St. Xavier’s College, Kolkata
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division Saha Institute of Nuclear Physics, Kolkata, India
- * E-mail:
| |
Collapse
|
10
|
Transposon-Sequencing Analysis Unveils Novel Genes Involved in the Generation of Persister Cells in Uropathogenic Escherichia coli. Antimicrob Agents Chemother 2016; 60:6907-6910. [PMID: 27550350 DOI: 10.1128/aac.01617-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Persister cells are highly tolerant to different antibiotics and are associated with relapsing infections. In order to understand this phenomenon further, we exposed a transposon library to a lethal concentration of ampicillin, and mutants that survived were identified by transposon sequencing (Tn-Seq). We determined that mutations related to carbon metabolism, cell envelope (cell wall generation and membrane proteins), and stress response have a role in persister cell generation.
Collapse
|
11
|
Abdallah J, Mihoub M, Gautier V, Richarme G. The DJ-1 superfamily members YhbO and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and glyoxal. Biochem Biophys Res Commun 2016; 470:282-286. [PMID: 26774339 DOI: 10.1016/j.bbrc.2016.01.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/10/2016] [Indexed: 11/28/2022]
Abstract
YhbO and YajL belong to the PfpI/Hsp31/DJ-1 superfamily. Both proteins are involved in protection against environmental stresses. Here, we show that, like DJ-1 and Hsp31, they repair glyoxal- and methylglyoxal-glycated proteins. YhbO and YajL repair glycated serum albumin, collagen, glyceraldehyde-3-phosphate dehydrogenase, and fructose biphosphate aldolase. Bacterial extracts from deglycase mutants display increased glycation levels, whereas deglycase overexpression decreases protein glycation. Moreover, yhbO and yajL mutants display decreased viability in methylglyoxal- or glucose-containing media. Finally, the apparent glyoxalase activities of YhbO and YajL reflect their deglycase activities.
Collapse
Affiliation(s)
- Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France; Lebanese American University, School of Pharmacy, Byblos, Lebanon
| | - Mouadh Mihoub
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France
| | - Valérie Gautier
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France
| | - Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
12
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
13
|
Su Y, Chen C, Huang L, Yan J, Huang Y. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance. PLoS One 2015; 10:e0143888. [PMID: 26624998 PMCID: PMC4666628 DOI: 10.1371/journal.pone.0143888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
The Parkinson′s disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1). Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2) whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.
Collapse
Affiliation(s)
- Yang Su
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Caiping Chen
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Linting Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
14
|
Messaoudi N, Bouloc P, Richarme G, Mihoub M, Lelandais G, Gautier V, Landoulsi A, Dairou J. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism. Microbiology (Reading) 2015; 161:2220-31. [DOI: 10.1099/mic.0.000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Tsai CJ, Aslam K, Drendel HM, Asiago JM, Goode KM, Paul LN, Rochet JC, Hazbun TR. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process. J Biol Chem 2015; 290:24816-34. [PMID: 26306045 DOI: 10.1074/jbc.m115.678367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 12/17/2022] Open
Abstract
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.
Collapse
Affiliation(s)
- Chai-Jui Tsai
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kiran Aslam
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Holli M Drendel
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Josephat M Asiago
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Kourtney M Goode
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Lake N Paul
- the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| | - Tony R Hazbun
- From the Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research and
| |
Collapse
|
16
|
Lee C, Wigren E, Trček J, Peters V, Kim J, Hasni MS, Nimtz M, Lindqvist Y, Park C, Curth U, Lünsdorf H, Römling U. A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains. Environ Microbiol 2015; 17:4511-26. [PMID: 26014207 DOI: 10.1111/1462-2920.12915] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere-like 24-meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide-distributed clone C strains.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Edvard Wigren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Janja Trček
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Verena Peters
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jihong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Muhammad Sharif Hasni
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Manfred Nimtz
- The Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Heinrich Lünsdorf
- The Helmholtz Center for Infection Research, Braunschweig, 38124, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
17
|
Mihoub M, Abdallah J, Gontero B, Dairou J, Richarme G. The DJ-1 superfamily member Hsp31 repairs proteins from glycation by methylglyoxal and glyoxal. Biochem Biophys Res Commun 2015; 463:1305-10. [PMID: 26102038 DOI: 10.1016/j.bbrc.2015.06.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 01/25/2023]
Abstract
Hsp31 belongs to the PfpI/Hsp31/DJ-1 superfamily, and has been reported to display chaperone, peptidase and glutathione-independent glyoxalase activities. Here, we show that Hsp31 repairs glyoxal- and methylglyoxal-glycated amino acids and proteins and releases repaired proteins and lactate or glycolate, respectively. Hsp31 deglycates cysteine, arginine and lysine by acting on early glycation intermediates (hemithioacetals and aminocarbinols) and prevents the formation of Schiff bases and advanced glycation endproducts. Hsp31 repairs glycated serum albumin, glyceraldehyde-3-phosphate dehydrogenase, fructose biphosphate aldolase and aspartate aminotransferase. Moreover, we show that bacterial extracts from the hchA mutant display increased glycation levels and that the apparent glyoxalase activity of Hsp31 reflects its deglycase activity. Our results suggest that other Hsp31 members, previously characterized as glutathione-independent glyoxalases, likely function as protein deglycases.
Collapse
Affiliation(s)
- Mouadh Mihoub
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 Rue Hélène Brion, 75013 Paris, France
| | - Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 Rue Hélène Brion, 75013 Paris, France
| | | | - Julien Dairou
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 Rue Hélène Brion, 75013 Paris, France
| | - Gilbert Richarme
- Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 15 Rue Hélène Brion, 75013 Paris, France.
| |
Collapse
|
18
|
Martínez P, Huedo P, Martinez-Servat S, Planell R, Ferrer-Navarro M, Daura X, Yero D, Gibert I. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839). Front Cell Infect Microbiol 2015; 5:41. [PMID: 26029670 PMCID: PMC4432800 DOI: 10.3389/fcimb.2015.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization—adjacent to hchA gene—indicate that SmoR belongs to the new family “LuxR regulator chaperone HchA-associated.” AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming motility.
Collapse
Affiliation(s)
- Paula Martínez
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pol Huedo
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sònia Martinez-Servat
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Raquel Planell
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Mario Ferrer-Navarro
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Xavier Daura
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Daniel Yero
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Isidre Gibert
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
19
|
Culleton BA, Lall P, Kinsella GK, Doyle S, McCaffrey J, Fitzpatrick DA, Burnell AM. A role for the Parkinson's disease protein DJ-1 as a chaperone and antioxidant in the anhydrobiotic nematode Panagrolaimus superbus. Cell Stress Chaperones 2015; 20:121-37. [PMID: 25318690 PMCID: PMC4255249 DOI: 10.1007/s12192-014-0531-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023] Open
Abstract
Mutations in the human DJ-1/PARK7 gene are associated with familial Parkinson's disease. DJ-1 belongs to a large, functionally diverse family with homologues in all biological kingdoms. Several activities have been demonstrated for DJ-1: an antioxidant protein, a redox-regulated molecular chaperone and a modulator of multiple cellular signalling pathways. The majority of functional studies have focussed on human DJ-1 (hDJ-1), but studies on DJ-1 homologues in Drosophila melanogaster, Caenorhabditis elegans, Dugesia japonica and Escherichia coli also provide evidence of a role for DJ-1 as an antioxidant. Here, we show that dehydration is a potent inducer of a dj-1 gene in the anhydrobiotic nematode Panagrolaimus superbus. Our secondary structure and homology modelling analyses shows that recombinant DJ-1 protein from P. superbus (PsuDJ-1.1) is a well-folded protein, which is similar in structure to the hDJ-1. PsuDJ-1.1 is a heat stable protein; with T1/2 unfolding transition values of 76 and 70 °C obtained from both circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) measurements respectively. We found that PsuDJ-1.1 is an efficient antioxidant that also functions as a 'holdase' molecular chaperone that can maintain its chaperone function in a reducing environment. In addition to its chaperone activity, PsuDJ-1.1 may also be an important non-enzymatic antioxidant, capable of providing protection to P. superbus from oxidative damage when the nematodes are in a desiccated, anhydrobiotic state.
Collapse
Affiliation(s)
- Bridget A. Culleton
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
- />Megazyme International Ireland, Bray Business Park, Bray, Co Wicklow Ireland
| | - Patrick Lall
- />Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Gemma K. Kinsella
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Sean Doyle
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - John McCaffrey
- />Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - David A. Fitzpatrick
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Ann M. Burnell
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| |
Collapse
|
20
|
Richarme G, Mihoub M, Dairou J, Bui LC, Leger T, Lamouri A. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues. J Biol Chem 2014; 290:1885-97. [PMID: 25416785 DOI: 10.1074/jbc.m114.597815] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein.
Collapse
Affiliation(s)
- Gilbert Richarme
- From the Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 75013 Paris, France,
| | - Mouadh Mihoub
- From the Stress Molecules, Institut Jacques Monod, Université Paris 7, CNRS UMR 7592, 75013 Paris, France
| | - Julien Dairou
- the Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative UMR 8251 CNRS, Bioprofiler Facility, F-75205, Paris, France
| | - Linh Chi Bui
- the Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative UMR 8251 CNRS, Bioprofiler Facility, F-75205, Paris, France
| | - Thibaut Leger
- the Proteomics Facility, Institut Jacques Monod, Université Paris 7, CNRS, UMR 7592, 75013 Paris, France, and
| | - Aazdine Lamouri
- the Université Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR 7086 CNRS, 75013 Paris, France
| |
Collapse
|
21
|
Knaus T, Uhl MK, Monschein S, Moratti S, Gruber K, Macheroux P. Structure and stability of an unusual zinc-binding protein from Bacteroides thetaiotaomicron. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2298-305. [PMID: 25263158 DOI: 10.1016/j.bbapap.2014.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
The crystal structure of a putative protease from Bacteroides thetaiotaomicron (ppBat) suggested the presence of a zinc ion in each protomer of the dimer as well as a flavin in the dimer interface. Since the chemical identity of the flavin and the exact mode of binding remained unclear, we have determined the crystal structure of ppBat in complex with riboflavin. The obtained structure revealed that the isoalloxazine ring is sandwiched between two tryptophan residues (Trp164) from both chains and adopts two alternate orientations with the N(10)-ribityl side chain protruding from the binding site in opposite directions. In order to characterize the zinc-binding site, we generated two single variants and one double variant in which the two coordinating cysteine residues (Cys74 and Cys111) were replaced by alanine. All three variants were unable to bind zinc demonstrating that both cysteine residues are essential for binding. Moreover, the lack of zinc binding also resulted in drastically reduced thermal stability (11-15°C). A similar effect was obtained when wild-type protein was incubated with EDTA supporting the conclusion that the zinc-binding site plays an important structural role in ppBat. On the other hand, attempts to identify proteolytic activity failed suggesting that the zinc may not act as a catalytic center in ppBat. Structurally similar zinc binding motives in other proteins were also found to play a structural rather than catalytic role and hence it appears that neither the flavin nor the zinc binding sites possess a catalytic function in ppBat.
Collapse
Affiliation(s)
- Tanja Knaus
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Michael K Uhl
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Stefanie Monschein
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Sabrina Moratti
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria.
| |
Collapse
|
22
|
Biofabrication of ZnS:Mn luminescent nanocrystals using histidine, hexahistidine, and His-tagged proteins: a comparison study. Biochem Eng J 2014; 89:28-32. [PMID: 25013361 DOI: 10.1016/j.bej.2013.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ubiquitous hexahistidine purification tag has been used to conjugate proteins to the shell of CdSe:ZnS quantum dots (QDs) due to its affinity for surface-exposed Zn2+ ions but little attention has been paid to the potential of His-tagged proteins for mineralizing luminescent ZnS nanocrystals. Here, we compare the ability of free histidine, a His tag peptide, His-tagged thioredoxin (TrxA, a monomeric protein), and N- and C-terminally His-tagged versions of Hsp31 (a homodimeric protein) to support the synthesis of Mn-doped ZnS nanocrystals from aqueous precursors under mild conditions of pH (8.2) and temperature (37°C). We find that: (1) it is possible to produce poor quality QDs when histidine is used at high (8 mM) concentration; (2) an increase in local histidine concentration through repetition of the amino acid as a His tag decreases the amount of needed reagent ≈10-fold and improves optical properties; (3) fusion of the same His tag to TrxA allows for ZnS:Mn QDs mineralization at micromolar concentrations; and (4) doubling the local hexahistidine concentration by exploiting Hsp31 dimerization further improves nanocrystal luminescence with the brightest particles obtained when His tags are spatially co-localized at the Hsp31 N-termini. Although hexahistidine tracts are not as efficient as combinatorially selected ZnS binding peptides at QD synthesis, it should be possible to use the large number of available His-tagged proteins and the synthesis approach described herein to produce luminescent nanoparticles whose protein shell carries a broad range of functions.
Collapse
|
23
|
Genetic ablation of plasmoDJ1, a multi-activity enzyme, attenuates parasite virulence and reduces oocyst production. Biochem J 2014; 461:189-203. [DOI: 10.1042/bj20140051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Okada K, Na-Ubol M, Natakuathung W, Roobthaisong A, Maruyama F, Nakagawa I, Chantaroj S, Hamada S. Comparative genomic characterization of a Thailand-Myanmar isolate, MS6, of Vibrio cholerae O1 El Tor, which is phylogenetically related to a "US Gulf Coast" clone. PLoS One 2014; 9:e98120. [PMID: 24887199 PMCID: PMC4045137 DOI: 10.1371/journal.pone.0098120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background The cholera outbreaks in Thailand during 2007–2010 were exclusively caused by the Vibrio cholerae O1 El Tor variant carrying the cholera toxin gene of the classical biotype. We previously isolated a V. cholerae O1 El Tor strain from a patient with diarrhea and designated it MS6. Multilocus sequence-typing analysis revealed that MS6 is most closely related to the U. S. Gulf Coast clone with the exception of two novel housekeeping genes. Methodology/Principal Findings The nucleotide sequence of the genome of MS6 was determined and compared with those of 26 V. cholerae strains isolated from clinical and environmental sources worldwide. We show here that the MS6 isolate is distantly related to the ongoing seventh pandemic V. cholerae O1 El Tor strains. These strains differ with respect to polymorphisms in housekeeping genes, seventh pandemic group-specific markers, CTX phages, two genes encoding predicted transmembrane proteins, the presence of metY (MS6_A0927) or hchA/luxR in a highly conserved region of the V. cholerae O1 serogroup, and a superintegron (SI). We found that V. cholerae species carry either hchA/luxR or metY and that the V. cholerae O1 clade commonly possesses hchA/luxR, except for MS6 and U. S. Gulf Coast strains. These findings illuminate the evolutionary relationships among V. cholerae O1 strains. Moreover, the MS6 SI carries a quinolone-resistance gene cassette, which was closely related with those present in plasmid-borne integrons of other gram-negative bacteria. Conclusions/Significance Phylogenetic analysis reveals that MS6 is most closely related to a U. S. Gulf Coast clone, indicating their divergence before that of the El Tor biotype strains from a common V. cholerae O1 ancestor. We propose that MS6 serves as an environmental aquatic reservoir of V. cholerae O1.
Collapse
Affiliation(s)
- Kazuhisa Okada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Mathukorn Na-Ubol
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Wirongrong Natakuathung
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Amonrattana Roobthaisong
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Fumito Maruyama
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Nakagawa
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Siriporn Chantaroj
- National Institute of Health, Department of Medical Sciences (DMSc), Ministry of Public Health, Nonthaburi, Thailand
| | - Shigeyuki Hamada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
25
|
|
26
|
Zhao Q, Su Y, Wang Z, Chen C, Wu T, Huang Y. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 2014; 14:86. [PMID: 24758716 PMCID: PMC4021431 DOI: 10.1186/1471-2148-14-86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive carbonyl species (RCS), such as methylglyoxal (MG) and glyoxal (GO), are synthesized as toxic metabolites in living systems. Mechanisms of RCS detoxification include the glutathione (GSH)-dependent system consisting of glyoxalase I (GLO1) and glyoxalase II (GLO2), and GSH-independent system involving glyoxalase III (GLO3). Hsp31 and DJ-1 proteins are weakly homologous to each other and belong to two different subfamilies of the DJ-1/Hsp31/PfpI superfamily. Recently, the Escherichia coli Hsp31 protein and the DJ-1 proteins from Arabidopsis thaliana and metazoans have been demonstrated to have GLO3 activity. RESULTS We performed a systematic survey of homologs of DJ-1 and Hsp31 in fungi. We found that DJ-1 proteins have a very limited distribution in fungi, whereas Hsp31 proteins are widely distributed among different fungal groups. Phylogenetic analysis revealed that fungal and metazoan DJ-1 proteins and bacterial YajL proteins are most closely related and together form a sister clade to bacterial and fungal Hsp31 proteins. We showed that two Schizosaccharomyces pombe Hsp31 proteins (Hsp3101 and Hsp3102) and one Saccharomyces cerevisiae Hsp31 protein (ScHsp31) displayed significantly higher in vitro GLO3 activity than S. pombe DJ-1 (SpDJ-1). Overexpression of hsp3101, hsp3102 and ScHSP31 could confer MG and GO resistance on either wild-type S. pombe cells or GLO1 deletion of S. pombe. S. pombe DJ-1 and Hsp31 proteins exhibit different patterns of subcellular localization. CONCLUSIONS Our results suggest that fungal Hsp31 proteins are the major GLO3 that may have some role in protecting cells from RCS toxicity in fungi. Our results also support the view that the GLO3 activity of Hsp31 proteins may have evolved independently from that of DJ-1 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
27
|
Vidovic S, Korber DR. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 2014; 42:83-93. [PMID: 24601836 DOI: 10.3109/1040841x.2014.889654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.
Collapse
Affiliation(s)
- Sinisa Vidovic
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| | - Darren R Korber
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| |
Collapse
|
28
|
Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. J Biol Chem 2013; 289:1662-74. [PMID: 24302734 DOI: 10.1074/jbc.m113.505784] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.
Collapse
|
29
|
Abstract
The discovery of the enzymatic formation of lactic acid from methylglyoxal dates back to 1913 and was believed to be associated with one enzyme termed ketonaldehydemutase or glyoxalase, the latter designation prevailed. However, in 1951 it was shown that two enzymes were needed and that glutathione was the required catalytic co-factor. The concept of a metabolic pathway defined by two enzymes emerged at this time. Its association to detoxification and anti-glycation defence are its presently accepted roles, since methylglyoxal exerts irreversible effects on protein structure and function, associated with misfolding. This functional defence role has been the rationale behind the possible use of the glyoxalase pathway as a therapeutic target, since its inhibition might lead to an increased methylglyoxal concentration and cellular damage. However, metabolic pathway analysis showed that glyoxalase effects on methylglyoxal concentration are likely to be negligible and several organisms, from mammals to yeast and protozoan parasites, show no phenotype in the absence of one or both glyoxalase enzymes. The aim of the present review is to show the evolution of thought regarding the glyoxalase pathway since its discovery 100 years ago, the current knowledge on the glyoxalase enzymes and their recognized role in the control of glycation processes.
Collapse
|
30
|
Global stress response in a prokaryotic model of DJ-1-associated Parkinsonism. J Bacteriol 2013; 195:1167-78. [PMID: 23292772 DOI: 10.1128/jb.02202-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YajL is the most closely related Escherichia coli homolog of Parkinsonism-associated protein DJ-1, a protein with a yet-undefined function in the oxidative-stress response. YajL protects cells against oxidative-stress-induced protein aggregation and functions as a covalent chaperone for the thiol proteome, including FeS proteins. To clarify the cellular responses to YajL deficiency, transcriptional profiling of the yajL mutant was performed. Compared to the parental strain, the yajL mutant overexpressed genes coding for chaperones, proteases, chemical chaperone transporters, superoxide dismutases, catalases, peroxidases, components of thioredoxin and glutaredoxin systems, iron transporters, ferritins and FeS cluster biogenesis enzymes, DNA repair proteins, RNA chaperones, and small regulatory RNAs. It also overexpressed the RNA polymerase stress sigma factors sigma S (multiple stresses) and sigma 32 (protein stress) and activated the OxyR and SoxRS oxidative-stress transcriptional regulators, which together trigger the global stress response. The yajL mutant also overexpressed genes involved in septation and adopted a shorter and rounder shape characteristic of stressed bacteria. Biochemical experiments showed that this upregulation of many stress genes resulted in increased expression of stress proteins and improved biochemical function. Thus, protein defects resulting from the yajL mutation trigger the onset of a robust and global stress response in a prokaryotic model of DJ-1-associated Parkinsonism.
Collapse
|
31
|
Choi D, Ryu KS, Park C. Structural alteration of Escherichia coli Hsp31 by thermal unfolding increases chaperone activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012. [PMID: 23202248 DOI: 10.1016/j.bbapap.2012.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Escherichia coli Hsp31, encoded by hchA, is a heat-inducible molecular chaperone. We found that Hsp31 undergoes a conformational change via temperature-induced unfolding, generating a high molecular weight (HMW) form with enhanced chaperone activity. Although it has previously been reported that some subunits of the Hsp31 crystal structure show structural heterogeneity with increased hydrophobic surfaces, Hsp31 basically forms a dimer. We found that a C-terminal deletion (CΔ19) of Hsp31 exhibited structurally and functionally similar characteristics to that of the HMW form. Both the CΔ19 and HMW forms achieved a structure with considerably more β-sheets and less α-helices than the native dimeric form, exposing a portion of its hydrophobic surfaces. The structural alterations were determined from its spectral changes in circular dichroism, intrinsic fluorescence of tryptophan residues, and fluorescence of bis-ANS binding to a hydrophobic surface. Interestingly, during thermal transition, the dimeric Hsp31 undergoes a conformational change to the HMW species via the CΔ19 structure, as monitored with near-UV CD spectrum, implying that the CΔ19 resembles an intermediate state between the dimer and the HMW form. From these results, we propose that Hsp31 transforms itself into a fully functional chaperone by altering its tertiary and quaternary structures.
Collapse
Affiliation(s)
- Dongwook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Gwahangno 335, Yuseong-Gu, Daejon 305-701, South Korea
| | | | | |
Collapse
|
32
|
Abstract
Molecular chaperones assist de novo protein folding and facilitate the refolding of stress-denatured proteins. The molecular chaperone concept was coined nearly 35 years ago, and since then, tremendous strides have been made in understanding how these factors support protein folding. Here, we focus on how various chaperone proteins were first identified to play roles in protein folding. Examples are used to illustrate traditional routes of chaperone discovery and point out their advantages and limitations. Recent advances, including the development of folding biosensors and promising methods for the stabilization of proteins in vivo, provide new routes for chaperone discovery.
Collapse
Affiliation(s)
- Shu Quan
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
33
|
Gautier V, Le HT, Malki A, Messaoudi N, Caldas T, Kthiri F, Landoulsi A, Richarme G. YajL, the prokaryotic homolog of the Parkinsonism-associated protein DJ-1, protects cells against protein sulfenylation. J Mol Biol 2012; 421:662-70. [PMID: 22321799 DOI: 10.1016/j.jmb.2012.01.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/15/2011] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
Abstract
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently described the oxidative-stress-dependent aggregation of proteins in yajL mutants and the oxidative-stress-dependent formation of mixed disulfides between YajL and members of the thiol proteome. We report here that yajL mutants display increased protein sulfenic acids levels and that formation of mixed disulfides between YajL and its protein substrates in vivo is inhibited by the sulfenic acid reactant dimedone, suggesting that YajL preferentially forms disulfides with sulfenylated proteins. YajL (but not YajL(C106A)) also forms mixed disulfides in vitro with the sulfenylated form of bovine serum albumin. The YajL-serum albumin disulfides can be subsequently reduced by glutathione or dihydrolipoic acid. We also show that DJ-1 can form mixed disulfides with sulfenylated E. coli proteins and with sulfenylated serum albumin. These results suggest that YajL and possibly DJ-1 function as covalent chaperones involved in the detection of sulfenylated proteins by forming mixed disulfides with them and that these disulfides are subsequently reduced by low-molecular-weight thiols.
Collapse
Affiliation(s)
- Valérie Gautier
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jung HJ, Kim S, Kim YJ, Kim MK, Kang SG, Lee JH, Kim W, Cha SS. Dissection of the dimerization modes in the DJ-1 superfamily. Mol Cells 2012; 33:163-71. [PMID: 22228183 PMCID: PMC3887719 DOI: 10.1007/s10059-012-2220-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 11/28/2022] Open
Abstract
The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson's disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I-IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces.
Collapse
Affiliation(s)
- Hoi Jong Jung
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
- Present address: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Anyang 431-810,
Korea
| | - Sangok Kim
- Ewha Research Center for Systems Biology, Division of Molecular and Life Sciences, Ewha Womans University, Seoul 120-750,
Korea
| | - Yun Jae Kim
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
| | - Min-Kyu Kim
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-333,
Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-333,
Korea
| | - Wankyu Kim
- Ewha Research Center for Systems Biology, Division of Molecular and Life Sciences, Ewha Womans University, Seoul 120-750,
Korea
| | - Sun-Shin Cha
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744,
Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon 305-333,
Korea
| |
Collapse
|
35
|
Vidovic S, Mangalappalli-Illathu AK, Xiong H, Korber DR. Heat acclimation and the role of RpoS in prolonged heat shock of Escherichia coli O157. Food Microbiol 2012; 30:457-64. [PMID: 22365361 DOI: 10.1016/j.fm.2011.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/11/2011] [Accepted: 12/28/2011] [Indexed: 11/29/2022]
Abstract
Escherichia coli, a commensal mesophile that primarily inhabits the gastro-intestinal tract, responds to temperature up-shifts with transient expression of stress-response proteins. The goal of this study was to identify adaptive proteins of E. coli O157 crucial for growth resumption of this human pathogen after heat shock, with specific focus on the role of the RpoS sigma factor. Using the comparative proteomic analysis of hyper-thermally acclimatized wild-type strain B-1 and rpoS-mutant strain SV521, we identified 39 proteins that underwent significantly-different induction upon temperature shock at 45°C or rpoS mutation. All identified proteins of the heat post-acclimation stimulon fell into two large sub-groups: (i) stress proteins, including molecular chaperons, proteases, DNA/RNA stabilizing enzymes, and anti-oxidant proteins, and (ii) housekeeping proteins. It was found that in the heat stress stimulon RpoS has significantly (P=0.012) limited control over the key stress proteins involved in translation, translational elongation, protein folding and refolding. However, RpoS showed a significant (P=0.035) control over the cellular metabolic processes that included NADPH regeneration, pentose-phosphate shunt, nicotinamide nucleotide and NADP metabolic processes, reflecting its specific importance in promoting resource utilization (energy, protein synthesis etc.) during proliferation of hyperthermally-adapted cells. Pathogenic strains, like E. coli O157, have the ability to survive a variety of harsh stress conditions, leading to their entry into the food chain, and subsequent pathogenesis. This research offers insights into the physiological response of this pathogen during the critical period following adaptation to thermal stress and subsequent resumption of growth.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | | | | | | |
Collapse
|
36
|
Le HT, Gautier V, Kthiri F, Malki A, Messaoudi N, Mihoub M, Landoulsi A, An YJ, Cha SS, Richarme G. YajL, prokaryotic homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J Biol Chem 2011; 287:5861-70. [PMID: 22157000 DOI: 10.1074/jbc.m111.299198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.
Collapse
Affiliation(s)
- Hai-Tuong Le
- Stress Molecules Group, Institut Jacques Monod, Université Paris 7/CNRS, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Das S, Dey S, Roy T, Sen U. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the 31 kDa Vibrio cholerae heat-shock protein VcHsp31. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1382-5. [PMID: 22102237 PMCID: PMC3212456 DOI: 10.1107/s1744309111032970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/14/2011] [Indexed: 11/10/2022]
Abstract
The Gram-negative bacterium Vibrio cholerae, which is responsible for the diarrhoeal disease cholera in humans, induces the expression of numerous heat-shock genes. VcHsp31 is a 31 kDa putative heat-shock protein that belongs to the DJ-1/PfpI superfamily, functioning as both a chaperone and a protease. VcHsp31 has been cloned, overexpressed and purified by Ni(2+)-NTA affinity chromatography followed by gel filtration. Crystals of VcHsp31 were grown in the presence of PEG 6000 and MPD; they belonged to space group P2(1) and diffracted to 1.9 Å resolution. Assuming the presence of six molecules in the asymmetric unit, the Matthews coefficient was estimated to be 1.97 Å(3) Da(-1), corresponding to a solvent content of 37.4%.
Collapse
Affiliation(s)
- Samir Das
- Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, West Bengal 700 064, India
| | - Sanjay Dey
- Department of Bioinformatics, SRM University, Ramapuram, Chennai 600 089, India
| | - Trina Roy
- PG Department of Biotechnology, St Xavier’s College, 30 Mother Teresa Sarani (Park Street), Kolkata, West Bengal 700 016, India
| | - Udayaditya Sen
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, West Bengal 700 064, India
| |
Collapse
|
38
|
Subedi KP, Choi D, Kim I, Min B, Park C. Hsp31 of Escherichia coli K-12 is glyoxalase III. Mol Microbiol 2011; 81:926-36. [DOI: 10.1111/j.1365-2958.2011.07736.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Translational defects in a mutant deficient in YajL, the bacterial homolog of the parkinsonism-associated protein DJ-1. J Bacteriol 2010; 192:6302-6. [PMID: 20889753 DOI: 10.1128/jb.01077-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that YajL is associated with ribosomes and interacts with many ribosomal proteins and that a yajL mutant of Escherichia coli displays decreased translation accuracy, as well as increased dissociation of 70S ribosomes into 50S and 30S subunits after oxidative stress.
Collapse
|
40
|
Kthiri F, Le HT, Gautier V, Caldas T, Malki A, Landoulsi A, Bohn C, Bouloc P, Richarme G. Protein aggregation in a mutant deficient in yajL, the bacterial homolog of the Parkinsonism-associated protein DJ-1. J Biol Chem 2010; 285:10328-36. [PMID: 20124404 DOI: 10.1074/jbc.m109.077529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
YajL is the closest prokaryotic homolog of the parkinsonism-associated protein DJ-1 (40% sequence identity and similar three-dimensional structure), a protein of unknown function involved in the cellular response to oxidative stress. We report here that a yajL mutant of Escherichia coli displays an increased sensitivity to oxidative stress. It also exhibits a protein aggregation phenotype in aerobiosis, but not in anaerobiosis or in aerobic cells overexpressing superoxide dismutase, suggesting that protein aggregation depends on the presence of reactive oxygen species produced by respiratory chains. The protein aggregation phenotype of the yajL mutant, which can be rescued by the wild-type yajL gene, but not by the corresponding cysteine 106 mutant allele, is similar to that of multiple mutants deficient in superoxide dismutases and catalases, although intracellular hydrogen peroxide levels were not increased in the yajL mutant, suggesting that protein aggregation in this strain does not result from a hydrogen peroxide detoxification defect. Aggregation-prone proteins included 17 ribosomal proteins, the ATP synthase beta subunit, flagellin, and the outer membrane proteins OmpA and PAL; all of them are part of multiprotein complexes, suggesting that YajL might be involved in optimal expression of these complexes, especially during oxidative stress. YajL stimulated the renaturation of urea-unfolded citrate synthase and the solubilization of the urea-unfolded ribosomal proteins S1 and L3 and was more efficient as a chaperone in its oxidized form than in its reduced form. The mRNA levels of several aggregated proteins of the yajL mutant were severely affected, suggesting that YajL also acts at the level of gene expression. These two functions of YajL might explain the protein aggregation phenotype of the yajL mutant.
Collapse
Affiliation(s)
- Fatoum Kthiri
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 15 rue Hélène Brion, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sastry MSR, Zhou W, Baneyx F. Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity. Protein Sci 2009; 18:1439-47. [PMID: 19517531 DOI: 10.1002/pro.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hsp31 is a stress-inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high-affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20-residue-long hexahistidine tag to the N-termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C-termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging.
Collapse
Affiliation(s)
- M S R Sastry
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
42
|
Moen B, Janbu AO, Langsrud S, Langsrud Ø, Hobman JL, Constantinidou C, Kohler A, Rudi K. Global responses ofEscherichia colito adverse conditions determined by microarrays and FT-IR spectroscopy. Can J Microbiol 2009; 55:714-28. [DOI: 10.1139/w09-016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The global gene expression and biomolecular composition in an Escherichia coli model strain exposed to 10 adverse conditions (sodium chloride, ethanol, glycerol, hydrochloric and acetic acid, sodium hydroxide, heat (46 °C), and cold (15 °C), as well as ethidium bromide and the disinfectant benzalkonium chloride) were determined using DNA microarrays and Fourier transform infrared (FT-IR) spectroscopy. In total, approximately 40% of all investigated genes (1682/4279 genes) significantly changed expression, compared with a nonstressed control. There were, however, only 3 genes (ygaW (unknown function), rmf (encoding a ribosomal modification factor), and ghrA (encoding a glyoxylate/hydroxypyruvate reductase)) that significantly changed expression under all conditions (not including benzalkonium chloride). The FT-IR analysis showed an increase in unsaturated fatty acids during ethanol and cold exposure, and a decrease during acid and heat exposure. Cold conditions induced changes in the carbohydrate composition of the cell, possibly related to the upregulation of outer membrane genes (glgAP and rcsA). Although some covariance was observed between the 2 data sets, principle component analysis and regression analyses revealed that the gene expression and the biomolecular responses are not well correlated in stressed populations of E. coli, underlining the importance of multiple strategies to begin to understand the effect on the whole cell.
Collapse
Affiliation(s)
- Birgitte Moen
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Astrid Oust Janbu
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Solveig Langsrud
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Øyvind Langsrud
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Jon L. Hobman
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Chrystala Constantinidou
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Achim Kohler
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| | - Knut Rudi
- Nofima Mat, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Hedmark University College, Holsetgata 22, 2306 Hamar, Norway
| |
Collapse
|
43
|
Wolf C, Hochgräfe F, Kusch H, Albrecht D, Hecker M, Engelmann S. Proteomic analysis of antioxidant strategies of Staphylococcus aureus: diverse responses to different oxidants. Proteomics 2008; 8:3139-53. [PMID: 18604844 DOI: 10.1002/pmic.200701062] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The high resolution 2-D protein gel electrophoresis technique combined with MALDI-TOF MS and a recently developed fluorescence-based thiol modification assay were used to investigate the cellular response of Staphylococcus aureus to oxidative stress. Addition of hydrogen peroxide, diamide, and the superoxide generating agent paraquat to exponentially growing cells revealed complex changes in the protein expression pattern. In particular, proteins involved in detoxification, repair systems, and intermediary metabolism were found to be up-regulated. Interestingly, there is only a small overlap of proteins induced by all these stressors. Exposure to hydrogen peroxide mediated a significant increase of DNA repair enzymes, whereas treatment with diamide affected proteins involved in protein repair and degradation. The activity of proteins under oxidative stress conditions can be modulated by oxidation of thiol groups. In growing cells, protein thiols were found to be mainly present in the reduced state. Diamide mediated a strong increase of reversibly oxidized thiols in a variety of metabolic enzymes. By contrast, hydrogen peroxide resulted in the reversible oxidation especially of proteins with active site cysteines. Moreover, high levels of hydrogen peroxide influenced the pI of three proteins containing cysteines within their active sites (GapA1, AhpC, and HchA) indicating the generation of sulfinic or sulfonic acid by irreversible oxidation of thiols.
Collapse
Affiliation(s)
- Carmen Wolf
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Tagourti J, Malki A, Kern R, d'Alençon E, Richarme G. Membrane docking of an aggregation-prone protein improves its solubilization. Gene 2008; 426:32-8. [PMID: 18809475 DOI: 10.1016/j.gene.2008.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/31/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
We used preS2-S'-beta-galactosidase, a three domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli to search for multicopy suppressors of protein aggregation and inclusion bodies formation, and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C by selecting pink lactose-positive colonies on a background of white lactose-negative colonies after transformation of bacteria with an E. coli gene bank. We found only two multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C, protein isoaspartate methyltransferase (PIMT) and the membrane components ChbBC of the N,N'-diacetylchitobiose phosphotransferase transporter. We have previously shown that PIMT overexpression reduces the level of isoaspartate in preS2-S'-beta-galactosidase, increases its thermal stability and consequently helps in its solubilization at 43 degrees C (Kern et al., J. Bacteriol. 187, 1377-1383). In the present work, we show that ChbBC overexpression targets a fraction of preS2-S'-beta-galactosidase to the membrane, and decreases its amount in inclusion bodies, which results in its decreased thermodenaturation and in a lactose-positive phenotype at 43 degrees C. Cross-linking experiments show that the inner membrane protein ChbC interacts with preS2-S'-beta-galactosidase. Our results suggest that membrane docking of aggregation-prone proteins might be a useful method for their solubilization.
Collapse
Affiliation(s)
- Jihen Tagourti
- Molecules de stress, Institut Jacques Monod, Université Paris 7, 2, place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
45
|
Fioravanti E, Durá MA, Lascoux D, Micossi E, Franzetti B, McSweeney S. Structure of the Stress Response Protein DR1199 from Deinococcus radiodurans: A Member of the DJ-1 Superfamily. Biochemistry 2008; 47:11581-9. [DOI: 10.1021/bi800882v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emanuela Fioravanti
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - M. Asunción Durá
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - David Lascoux
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Elena Micossi
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Bruno Franzetti
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Sean McSweeney
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9, France, and Laboratoire de Biophysique Moléculaire and Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, 41 Rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| |
Collapse
|
46
|
Abdallah J, Caldas T, Kthiri F, Kern R, Richarme G. YhbO protects cells against multiple stresses. J Bacteriol 2007; 189:9140-4. [PMID: 17933887 PMCID: PMC2168597 DOI: 10.1128/jb.01208-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 10/02/2007] [Indexed: 11/20/2022] Open
Abstract
YhbO is a member of the DJ-1/ThiJ/Pfp1 superfamily, which includes chaperones, peptidases, and the Parkinson's disease protein DJ-1. A yhbO-disrupted mutant of Escherichia coli is highly sensitive to oxidative, thermal, UV, and pH stresses, and the putative nucleophilic cysteine C104 of YhbO is required for stress resistance. These results suggest that YhbO affects a central process in stress management.
Collapse
Affiliation(s)
- Jad Abdallah
- Stress Molecules, Institut Jacques Monod, Université Paris 7, 2 Place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
47
|
Kirkland PA, Reuter CJ, Maupin-Furlow JA. Effect of proteasome inhibitor clasto-lactacystin-beta-lactone on the proteome of the haloarchaeon Haloferax volcanii. MICROBIOLOGY-SGM 2007; 153:2271-2280. [PMID: 17600071 DOI: 10.1099/mic.0.2007/005769-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteasomes play key roles in a variety of eukaryotic cell functions, including translation, transcription, metabolism, DNA repair and cell-cycle control. The biological functions of these multicatalytic proteases in archaea, however, are poorly understood. In this study, Haloferax volcanii was used as a model to determine the influence the proteasome-specific inhibitor clasto-lactacystin-beta-lactone (cLbetaL) has on archaeal proteome composition. Addition of 20-30 microM cLbetaL had a widespread effect on the proteome, with a 38-42 % increase in the number of 2-D gel electrophoresis (2-DE) protein spots, from an average of 627 to 1036 spots. Protein identities for 17 of the spots that were easily separated by 2-DE and unique and/or increased 2- to 14-fold in the cLbetaL-treated cells were determined by tandem mass spectrometry (MS/MS). These included protein homologues of the DJ-1/ThiJ family, mobilization of sulfur system, translation elongation factor EF-1 A, ribosomal proteins, tubulin-like FtsZ, divalent metal ABC transporter, dihydroxyacetone kinase DhaL, aldehyde dehydrogenase and 2-oxoacid decarboxylase E1beta. Based on these results, inhibition of H. volcanii proteasomes had a global influence on proteome composition, including proteins involved in central functions of the cell.
Collapse
Affiliation(s)
- P Aaron Kirkland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611, USA
| | - Christopher J Reuter
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
48
|
Rasouly A, Shenhar Y, Ron EZ. Thermoregulation of Escherichia coli hchA transcript stability. J Bacteriol 2007; 189:5779-81. [PMID: 17526696 PMCID: PMC1951820 DOI: 10.1128/jb.00453-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved chaperone Hsp31 of Escherichia coli is transcribed at low temperatures by sigma(S) and repressed by H-NS, whereas at high temperature, transcription is by sigma70 independently of both sigma(S) and H-NS. Here we present evidence for an additional, novel, temperature-dependent control of Hsp31 expression by increased transcript stability.
Collapse
Affiliation(s)
- Aviram Rasouly
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel, 69978
| | | | | |
Collapse
|
49
|
Mujacic M, Baneyx F. Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli. Appl Environ Microbiol 2006; 73:1014-8. [PMID: 17158627 PMCID: PMC1800746 DOI: 10.1128/aem.02429-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hsp31, the product of the sigmaS - and sigmaD -dependent hchA gene, is a heat-inducible chaperone implicated in the management of protein misfolding at high temperatures. We show here that Hsp31 plays an important role in the acid resistance of starved Escherichia coli but that it has little influence on oxidative-stress survival.
Collapse
Affiliation(s)
- Mirna Mujacic
- Department of Bioengineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| | | |
Collapse
|
50
|
Weber A, Kögl SA, Jung K. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 2006; 188:7165-75. [PMID: 17015655 PMCID: PMC1636219 DOI: 10.1128/jb.00508-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli lives in the mammalian gastrointestinal tract anaerobically at high osmolarity as well as in the soil aerobically at varying osmolarities. Adaptation to these varying environmental conditions is crucial for growth and survival of E. coli. Two-dimensional protein gels were used to visualize global time-dependent changes (10 to 60 min) in the proteome of cells responding to osmotic stress (0.4 M NaCl or 0.7 M sorbitol) under aerobic or anaerobic conditions. The protein profiles revealed an induction of 12 proteins (Dps, HchA, HdhA, InfB, OsmC, OsmY, ProX, KatE, PspA, TalA, TktB, and TreF) under osmotic stress in an aerobic milieu. Eleven additional proteins (OtsB, YceI, YciE, YciF, YgaU, YjbJ, AcnA, MetL, PoxB, Ssb, and YhbO) were induced by osmotic stress imposed by NaCl. Most of the accumulated proteins were cross-protecting proteins (e.g., OsmY, OsmC, Dps, and KatE) which are regulated at the transcriptional level predominantly by RpoS and other regulators (e.g., integration host factor, OxyR, H-NS, LRP, and FIS). Comparative analysis of the proteome of E. coli grown under aerobic or anaerobic conditions under osmotic stress (NaCl) revealed an overlap of the up-regulated proteins of more than 50%. Ten proteins (PoxB, AcnA, TalA, TktB, KatE, PspA, Ssb, TreF, MetL, and YhbO) were detectable only under aerobic, high-osmolality conditions. Time-dependent alterations of the proteome were monitored, allowing classification of the up-regulated proteins into early, middle, and long-term phases of adaptation. Only a few proteins were found to be down-regulated upon osmotic stress.
Collapse
Affiliation(s)
- Arnim Weber
- Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany
| | | | | |
Collapse
|