1
|
Eerlings R, Barbakadze N, Nguyen T, Nadaraia N, Smeets E, Moris L, Handle F, El Kharraz S, Devlies W, Voet A, Dehaen W, Claessens F, Helsen C. Small-molecule profiling for steroid receptor activity using a universal steroid receptor reporter assay. J Steroid Biochem Mol Biol 2022; 217:106043. [PMID: 34902544 DOI: 10.1016/j.jsbmb.2021.106043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
A critical step in the development of novel drug candidates for the treatment of steroid related diseases is ensuring the absence of crosstalk with steroid receptors (SRs). Establishing this SR cross-reactivity profile requires multiple reporter assays as each SR associates with its unique enhancer region, a labor intensive and time-consuming approach. To overcome this need for multi-reporter assays, we established a steroid receptor inducible luciferase reporter assay (SRi-Luc) that allows side-by-side examination of agonistic and antagonistic properties of small-molecules on all steroid receptors. This state-of-the-art SRi-Luc consists of a unique alteration of four distinct keto-steroid- and estrogen response elements. As proof of principle, the SRi-Luc assay was used to profile a set of novel designed steroidal 1,2,3-triazoles. These triazolized steroidal compounds were developed via our in-house triazolization methodology, in which an enolizable ketone is converted into a triazolo-fused or -linked analog by treatment with a primary amine or ammonium salt in the presence of 4-nitrophenyl azide. From these designed steroidal 1,2,3-triazoles, six successfully reduced androgen receptor activity by 40 %. Although opted as antiandrogens, their cross-reactivity with other SRs was apparent in our SRi-Luc assay and rendered them unsuited for further antagonist development and clinical use. Overall, the SRi-Luc overcomes the need of multi-reporter assays for the profiling of small-molecules on all SRs. This not only reduces the risk of introducing biases, it as well accelerates early-stage drug discovery when designing particular SR selective (ant)agonists or characterizing off-target effects of lead molecules acting on any drug target.
Collapse
Affiliation(s)
- Roy Eerlings
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nana Barbakadze
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Plant Biopolymers and Chemical Modification of Natural Compounds, TSMU Iovel Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nanuli Nadaraia
- Department of Plant Biopolymers and Chemical Modification of Natural Compounds, TSMU Iovel Kutateladze Institute of Pharmacochemistry, Tbilisi, Georgia
| | - Elien Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Florian Handle
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wout Devlies
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer. Toxicol Appl Pharmacol 2016; 307:91-101. [DOI: 10.1016/j.taap.2016.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023]
|
3
|
Dubois V, Simitsidellis I, Laurent MR, Jardi F, Saunders PTK, Vanderschueren D, Claessens F. Enobosarm (GTx-024) Modulates Adult Skeletal Muscle Mass Independently of the Androgen Receptor in the Satellite Cell Lineage. Endocrinology 2015; 156:4522-33. [PMID: 26393303 DOI: 10.1210/en.2015-1479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Androgens increase skeletal muscle mass, but their clinical use is hampered by a lack of tissue selectivity and subsequent side effects. Selective androgen receptor modulators elicit muscle-anabolic effects while only sparingly affecting reproductive tissues. The selective androgen receptor modulator, GTx-024 (enobosarm), is being investigated for cancer cachexia, sarcopenia, and muscle wasting diseases. Here we investigate the role of muscle androgen receptor (AR) in the anabolic effect of GTx-024. In mice lacking AR in the satellite cell lineage (satARKO), the weight of the androgen-sensitive levator ani muscle was lower but was decreased further upon orchidectomy. GTx-024 was as effective as DHT in restoring levator ani weights to sham levels. Expression of the muscle-specific, androgen-responsive genes S-adenosylmethionine decarboxylase and myostatin was decreased by orchidectomy and restored by GTx-024 and DHT in control mice, whereas the expression was low and unaffected by androgen status in satARKO. In contrast, insulin-like growth factor 1Ea expression was not different between satARKO and control muscle, decreased upon castration, and was restored by DHT and GTx-024 in both genotypes. These data indicate that GTx-024 does not selectively modulate AR in the satellite cell lineage and that cells outside this lineage remain androgen responsive in satARKO muscle. Indeed, residual AR-positive cells were present in satARKO muscle, coexpressing the fibroblast-lineage marker vimentin. AR positive, muscle-resident fibroblasts could therefore be involved in the indirect effects of androgens on muscle. In conclusion, both DHT and GTx-024 target AR pathways in the satellite cell lineage, but cells outside this lineage also contribute to the anabolic effects of androgens.
Collapse
Affiliation(s)
- Vanessa Dubois
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Ioannis Simitsidellis
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Michaël R Laurent
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Ferran Jardi
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Philippa T K Saunders
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Vanderschueren
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Frank Claessens
- Molecular Endocrinology Laboratory (V.D., M.R.L., F.C.), Department of Cellular and Molecular Medicine, Department of Gerontology and Geriatrics (M.R.L.), and Clinical and Experimental Endocrinology (F.J., D.V.), Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; and Medical Research Council Centre for Inflammation Research (I.S., P.T.K.S.), University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
4
|
Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P, Carmeliet G, Vanderschueren D, Claessens F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J 2014; 28:2979-94. [PMID: 24671706 DOI: 10.1096/fj.14-249748] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.
Collapse
Affiliation(s)
| | - Michaël R Laurent
- Molecular Endocrinology Laboratory, Division of Gerontology and Geriatrics
| | | | | | | | | | | | | | - Louise Deldicque
- Exercise Physiology Research Group, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
5
|
Sahu B, Pihlajamaa P, Dubois V, Kerkhofs S, Claessens F, Jänne OA. Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res 2014; 42:4230-40. [PMID: 24459135 PMCID: PMC3985627 DOI: 10.1093/nar/gkt1401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The DNA-binding domains (DBDs) of class I steroid receptors—androgen, glucocorticoid, progesterone and mineralocorticoid receptors—recognize a similar cis-element, an inverted repeat of 5′-AGAACA-3′ with a 3-nt spacer. However, these receptors regulate transcription programs that are largely receptor-specific. To address the role of the DBD in and of itself in ensuring specificity of androgen receptor (AR) binding to chromatin in vivo, we used SPARKI knock-in mice whose AR DBD has the second zinc finger replaced by that of the glucocorticoid receptor. Comparison of AR-binding events in epididymides and prostates of wild-type (wt) and SPARKI mice revealed that AR achieves selective chromatin binding through a less stringent sequence requirement for the 3′-hexamer. In particular, a T at position 12 in the second hexamer is dispensable for wt AR but mandatory for SPARKI AR binding, and only a G at position 11 is highly conserved among wt AR-preferred response elements. Genome-wide AR-binding events agree with the respective transcriptome profiles, in that attenuated AR binding in SPARKI mouse epididymis correlates with blunted androgen response in vivo. Collectively, AR-selective actions in vivo rely on relaxed rather than increased stringency of cis-elements on chromatin. These elements are, in turn, poorly recognized by other class I steroid receptors.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland and Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, Katholieke Universiteit Leuven, Campus Gasthuisberg, BE-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Ottaviani S, Brooke GN, O'Hanlon-Brown C, Waxman J, Ali S, Buluwela L. Characterisation of the androgen regulation of glycine N-methyltransferase in prostate cancer cells. J Mol Endocrinol 2013; 51:301-12. [PMID: 23997240 PMCID: PMC3821059 DOI: 10.1530/jme-13-0169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development and growth of prostate cancer is dependent on androgens; thus, the identification of androgen-regulated genes in prostate cancer cells is vital for defining the mechanisms of prostate cancer development and progression and developing new markers and targets for prostate cancer treatment. Glycine N-methyltransferase (GNMT) is a S-adenosylmethionine-dependent methyltransferase that has been recently identified as a novel androgen-regulated gene in prostate cancer cells. Although the importance of this protein in prostate cancer progression has been extensively addressed, little is known about the mechanism of its androgen regulation. Here, we show that GNMT expression is stimulated by androgen in androgen receptor (AR) expressing cells and that the stimulation occurs at the mRNA and protein levels. We have identified an androgen response element within the first exon of the GNMT gene and demonstrated that AR binds to this element in vitro and in vivo. Together, these studies identify GNMT as a direct transcriptional target of the AR. As this is an evolutionarily conserved regulatory element, this highlights androgen regulation as an important feature of GNMT regulation.
Collapse
Affiliation(s)
| | - Greg N Brooke
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | | | - Simak Ali
- Correspondence should be addressed to L Buluwela or S Ali, or
| | - Laki Buluwela
- Correspondence should be addressed to L Buluwela or S Ali, or
| |
Collapse
|
7
|
Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol 2013; 27:2028-40. [PMID: 24109594 DOI: 10.1210/me.2013-1098] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine KU Leuven, Campus Gasthuisberg O&N1, PO Box 901, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kerkhofs S, Dubois V, De Gendt K, Helsen C, Clinckemalie L, Spans L, Schuit F, Boonen S, Vanderschueren D, Saunders PTK, Verhoeven G, Claessens F. A role for selective androgen response elements in the development of the epididymis and the androgen control of the 5
α
reductase II gene. FASEB J 2012; 26:4360-72. [DOI: 10.1096/fj.11-202283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanie Kerkhofs
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Karel De Gendt
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Christine Helsen
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Liesbeth Clinckemalie
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Lien Spans
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular MedicineKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Steven Boonen
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Dirk Vanderschueren
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences UnitThe Queen's Medical Research InstituteEdinburghUK
| | - Guido Verhoeven
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| |
Collapse
|
9
|
Lawrence MG, Stephens CR, Need EF, Lai J, Buchanan G, Clements JA. Long terminal repeats act as androgen-responsive enhancers for the PSA-kallikrein locus. Endocrinology 2012; 153:3199-210. [PMID: 22597536 DOI: 10.1210/en.2012-1267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) signaling pathway is a common therapeutic target for prostate cancer, because it is critical for the survival of both hormone-responsive and castrate-resistant tumor cells. Most of the detailed understanding that we have of AR transcriptional activation has been gained by studying classical target genes. For more than two decades, Kallikrein 3 (KLK3) (prostate-specific antigen) has been used as a prototypical AR target gene, because it is highly androgen responsive in prostate cancer cells. Three regions upstream of the KLK3 gene, including the distal enhancer, are known to contain consensus androgen-responsive elements required for AR-mediated transcriptional activation. Here, we show that KLK3 is one of a specific cluster of androgen-regulated genes at the centromeric end of the kallikrein locus with enhancers that evolved from the long terminal repeat (LTR) (LTR40a) of an endogenous retrovirus. Ligand-dependent recruitment of the AR to individual LTR-derived enhancers results in concurrent up-regulation of endogenous KLK2, KLK3, and KLKP1 expression in LNCaP prostate cancer cells. At the molecular level, a kallikrein-specific duplication within the LTR is required for maximal androgen responsiveness. Therefore, KLK3 represents a subset of target genes regulated by repetitive elements but is not typical of the whole spectrum of androgen-responsive transcripts. These data provide a novel and more detailed understanding of AR transcriptional activation and emphasize the importance of repetitive elements as functional regulatory units.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The androgen receptor (AR) is a proven clinical target in prostate cancer. Recent research indicates that it is an emerging hormonal target in breast cancer as well, with potential clinical benefit in both estrogen receptor(ER) positive and negative tumors. Compared to the ER, AR contains unique functional domains with relevance to its altered role in human breast cancer. The majority of ER-positive tumors express AR, and a significant percentage of ER-negative tumors might benefit from combined targeting of AR and the ErbB2/HER2 oncogene. Signaling downstream of AR might also affect many clinically important pathways which are also emerging clinical targets in breast cancer. AR expression might also play a role during tumor progression to metastatic disease. The role of AR as a new important biomarker in breast cancer will be reviewed herein.
Collapse
|
11
|
Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol 2012; 348:411-7. [PMID: 21801809 DOI: 10.1016/j.mce.2011.07.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
The gene family of nuclear receptors is characterized by the presence of a typical, well conserved DNA-binding domain. In general, two zinc coordinating modules are folded such that an α-helix is inserted in the major groove of the DNA-helix displaying a sequence similar to one of two hexameric consensus motifs. Both zinc molecules coordinate four cysteines. Although the DNA-binding domains as well as the hormone response elements are very similar, each nuclear receptor will affect transcription of a specific set of target genes. This is in part due to some important receptor-specific variations on the general theme of DNA interaction. For most nuclear receptors, the DNA-binding domain dimerizes on DNA, which explains why most hormone response elements consist of a repeat of two hexamers. The hexamer dimers can be organized either as direct, inverted or everted repeats with spacers of varying lengths. The DNA can be bound by homodimers, heterodimers and for some orphan receptors, as monomer. Another key element for DNA binding by nuclear receptors is the carboxy-terminal extension of the DNA-binding domain extending into the hinge region. This part not only co-determines sequence specificity, but also affects other functions of the receptors like nuclear translocation, intranuclear mobility and transactivation potential. Moreover, allosteric signals passing through towards other receptor domains, explain why to some extent, the DNA elements can also be considered as controlling ligands.
Collapse
Affiliation(s)
- Christine Helsen
- Molecular Endocrinology Laboratory, Department Molecular Cell Biology, Campus GHB, ON1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pihlajamaa P, Zhang FP, Saarinen L, Mikkonen L, Hautaniemi S, Jänne OA. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011; 152:4395-405. [PMID: 21878517 DOI: 10.1210/en.2011-0221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To enable studies of androgen signaling in different tissues in vivo, we generated an androgen receptor (AR) reporter mouse line by inserting a luciferase gene construct into the murine genome. The construct is driven by four copies of androgen-responsive elements from the mouse sex-limited protein gene (slp-HRE2) and a minimal thymidine kinase promoter. Luciferase activity was readily measurable in a number of murine tissues, including prostate, lung, testis, brain, and skeletal muscle, and testosterone administration elicited a significant increase in reporter gene activity in these tissues. Consumption of isoflavonoid genistein is linked to reduced risk of prostate cancer, but direct effects of genistein on the AR pathway are not well understood. To examine androgen-modulating activity of genistein in vivo, male mice received daily doses of genistein (10 mg/kg) for 5 d. In intact males, genistein was antiandrogenic in testis, prostate, and brain, and it attenuated reporter gene activity by 50-80%. In castrated males, genistein exhibited significant androgen agonistic activity in prostate and brain by increasing reporter gene activity over 2-fold in both tissues. No antiandrogenic action was seen in lung or skeletal muscle of intact males. Gene expression profiling of the murine prostate under the same experimental conditions revealed that genistein modulates androgen-dependent transcription program in prostate in a fashion similar to that observed in reporter mice by luciferase expression. In conclusion, genistein is a partial androgen agonist/antagonist in some but not in all mouse tissues and should be considered as a tissue-specific AR modulator.
Collapse
Affiliation(s)
- Päivi Pihlajamaa
- Institute of Biomedicine, Physiology, Biomedicum Helsinki, University of Helsinki, and Department of Clinical Chemistry, Helsinki University Central Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
13
|
De Bruyn R, Bollen R, Claessens F. Identification and characterization of androgen response elements. Methods Mol Biol 2011; 776:81-93. [PMID: 21796522 DOI: 10.1007/978-1-61779-243-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The androgen receptor (AR) has a DNA-binding domain that consists of two zinc coordinating modules. While residues of the first module make most of the sequence-specific contacts, the second module functions as a homodimerization interface (1). This explains why the androgen response elements (AREs) are organized as two 5'-AGAACA-3'-like motifs separated by three basepairs (2). AREs can be located near the promoters of androgen-responsive genes, but are also at considerable distances either upstream or downstream, so the initial steps in locating AREs can be challenging. Traditionally, AR-binding sites were identified by DNA cellulose competition assays (3) or by in vitro footprinting (4). However, the advent of the chromatin immunoprecipitation assays made it possible to identify genomic fragments to which the AR binds either directly or indirectly (5). To enable identification of AREs in such genomic fragments, we developed an in silico approach involving a weight matrix based on all known AREs (6). This will point out candidate AREs, which will still need experimental validation involving a direct interaction assay and a transactivation assay. We describe here the methods most fit to describe an ARE: the electrophoretic mobility shift and the transactivation assays.
Collapse
Affiliation(s)
- Reinhilde De Bruyn
- Department of Molecular Cell Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | |
Collapse
|
14
|
Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F. The rules of DNA recognition by the androgen receptor. Mol Endocrinol 2010; 24:898-913. [PMID: 20304998 DOI: 10.1210/me.2009-0310] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) and glucocorticoid, progestagen, and mineralocorticoid receptors all recognize classical DNA response elements that are organized as inverted repeats of 5'-AGAACA-3'-like motifs with a three-nucleotide spacer. Next to such elements, the AR also recognizes a second type of androgen response element (ARE), the so-called selective AREs, which resemble more the direct repeats of the same hexamer. In this work, we show that not only the AR but also the progestagen receptor can recognize the selective AREs, whereas neither glucocorticoid nor mineralocorticoid receptor can. Recently, genomic AR-binding fragments have been postulated to contain AR-binding sites that diverge considerably from the classical ARE consensus. Extensive mutational analyses of these candidate motifs, however, reinstalls the values of the consensus sequence for the AREs as mentioned above, the importance of their dimeric nature and the presence of exactly three-nucleotide spacing. We developed a position-specific probability matrix that was used to predict with higher accuracy new AREs in different AR-binding regions. So far, all AR-binding genomic fragments that were analyzed contain AREs defined as receptor-dimer binding motifs with the ability to confer responsiveness to a reporter gene.
Collapse
Affiliation(s)
- Sarah Denayer
- Katholieke Universiteit Leuven, Campus Gasthuisberg, O/N1, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
15
|
Khalaf H, Larsson A, Berg H, McCrindle R, Arsenault G, Olsson PE. Diastereomers of the brominated flame retardant 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane induce androgen receptor activation in the hepg2 hepatocellular carcinoma cell line and the lncap prostate cancer cell line. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1853-9. [PMID: 20049203 PMCID: PMC2799458 DOI: 10.1289/ehp.0901065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/03/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Reported incidences of prostate cancer and masculinization of animals indicate a release of compounds with androgenic properties into the environment. Large numbers of environmental pollutants have been screened to identify such compounds; however, not until recently was 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) identified as the first potent activator of the human androgen receptor (hAR). TBECH has been found in beluga whales and bird eggs and has also been found to be maternally transferred in zebrafish. OBJECTIVES In the present study we investigated interaction energies between TBECH diastereomers (alpha, beta, gamma, and delta) and the hAR, and their ability to activate the receptor and induce prostate-specific antigen (PSA) expression in vitro. METHODS We performed computational modeling to determine interaction energies between the ligand and the AR ligand-binding site, and measured in vitro competitive binding assays for AR by polarization fluorometry analysis. We used enzyme-linked immunosorbent assays to determine PSA activity in LNCaP and HepG2 cells. RESULTS We found the gamma and delta diastereomers to be more potent activators of hAR than the alpha and beta diastereomers, which was confirmed in receptor binding studies. All TBECH diastereomers induced PSA expression in LNCaP cells even though the AR present in these cells is mutated (T877A). Modeling studies of LNCaP AR revealed that TBECH diastereomers bound to the receptor with a closer distance to the key amino acids in the ligand-binding domain, indicating stronger binding to the mutated receptor. CONCLUSIONS The present study demonstrates the ability of TBECH to activate the hAR, indicating that it is a potential endocrine disruptor.
Collapse
Affiliation(s)
- Hazem Khalaf
- Örebro Life Science Center, Academy of Science and Technology, Örebro University, Örebro, Sweden
| | - Anders Larsson
- Örebro Life Science Center, Academy of Science and Technology, Örebro University, Örebro, Sweden
| | - Håkan Berg
- Örebro Life Science Center, Academy of Science and Technology, Örebro University, Örebro, Sweden
| | - Robert McCrindle
- Wellington Laboratories Inc., Research Division, Guelph, Ontario, Canada
| | - Gilles Arsenault
- Wellington Laboratories Inc., Research Division, Guelph, Ontario, Canada
| | - Per-Erik Olsson
- Örebro Life Science Center, Academy of Science and Technology, Örebro University, Örebro, Sweden
- Address correspondence to P.-E. Olsson, Biology, Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden. Telephone: 46-19-301244. Fax: 46-19-303566. E-mail:
| |
Collapse
|
16
|
Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes. Biochem J 2008; 411:679-86. [PMID: 18215141 DOI: 10.1042/bj20071352] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The AR (androgen receptor) is known to influence the expression of its target genes by binding to different sets of AREs (androgen-response elements) in the DNA. One set consists of the classical steroid-response elements which are partial palindromic repeats of the 5'-TGTTCT-3' steroid-receptor monomer-binding element. The second set contains motifs that are AR-specific and that are proposed to be partial direct repeats of the same motif. On the basis of this assumption, we used an in silico approach to identify new androgen-selective AREs in the regulatory regions of known androgen-responsive genes. We have used an extension of the NUBIScan algorithm to screen a collection of 85 known human androgen-responsive genes compiled from literature and database searches. We report the evaluation of the most promising hits resulting from this computational search by in vitro DNA-binding assays using full-size ARs and GRs (glucocorticoid receptors) as well as their isolated DBDs (DNA-binding domains). We also describe the ability of some of these motifs to confer androgen-, but not glucocorticoid-, responsiveness to reporter-gene expression. The elements found in the aquaporin-5 and the Rad9 (radiation-sensitive 9) genes showed selective AR versus GR binding in band-shift assays and a strong activity and selectivity in functional assays, both as isolated elements and in their original contexts. Our data indicate the validity of the hypothesis that selective AREs are recognizable as direct 5'-TGTTCT-3' repeats, and extend the list of currently known selective elements.
Collapse
|
17
|
Yazawa T, Uesaka M, Inaoka Y, Mizutani T, Sekiguchi T, Kajitani T, Kitano T, Umezawa A, Miyamoto K. Cyp11b1 is induced in the murine gonad by luteinizing hormone/human chorionic gonadotropin and involved in the production of 11-ketotestosterone, a major fish androgen: conservation and evolution of the androgen metabolic pathway. Endocrinology 2008; 149:1786-92. [PMID: 18162527 DOI: 10.1210/en.2007-1015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have shown previously that Cyp11b1, an 11beta-hydroxylase responsible for glucocorticoid biosynthesis in the adrenal gland, was induced by cAMP in androgen-producing Leydig-like cells derived from mesenchymal stem cells. We found that Cyp11b1 was induced in male Leydig cells, or female theca cells, when human chorionic gonadotropin was administered in immature mice. Expression of Cyp11b1 in rodent gonads caused the production of 11-ketotestosterone (11-KT), a major fish androgen, which induces male differentiation or spermatogenesis in fish. As in teleosts, plasma concentrations of 11-KT were elevated in human chorionic gonadotropin-treated mice. In contrast to teleosts, however, plasma concentrations of 11-KT were similar in both sexes, despite levels of testosterone, a precursor substrate, being about 20 times higher in male mice. Because expression of 11beta-hydroxysteroid dehydrogenase type 2, was much higher in the mouse ovary than in the testis, conversion of testosterone into 11-KT may occur more efficiently in the ovary. In a luciferase reporter system that was responsive to and activated by androgens, 11-KT efficiently activated mammalian androgen receptor-mediated transactivation. Our results suggest that the androgen metabolic pathway is conserved between teleosts and mammals, despite sexual dominance and reproductive functions of 11-KT being altered during evolution.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Eiheiji-cho, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Verrijdt G, Tanner T, Moehren U, Callewaert L, Haelens A, Claessens F. The androgen receptor DNA-binding domain determines androgen selectivity of transcriptional response. Biochem Soc Trans 2007; 34:1089-94. [PMID: 17073757 DOI: 10.1042/bst0341089] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AR (androgen receptor) is a hormone-dependent transcription factor that translates circulating androgen hormone levels into a physiological cellular response by directly regulating the expression of its target genes. It is the key molecule in e.g. the development and maintenance of the male sexual characteristics, spermatocyte production and prostate gland development and growth. It is also a major factor in the onset and maintenance of prostate cancer and a first target for pharmaceutical action against the further proliferation of prostate cancer cells. The AR is a member of the steroid hormone receptors, a group of steroid-inducible transcription factors sharing an identical consensus DNA-binding motif. The problem of how specificity in gene activation is achieved among the different members of this nuclear receptor subfamily is still unclear. In this report, we describe our investigations on how the AR can specifically activate its target genes, while the other steroid hormone receptors do not, despite having the same consensus monomeric DNA-binding motif. In this respect, we describe how the AR interacts with a newly identified class of steroid-response elements to which only the AR and not, for example, the glucocorticoid receptor can bind.
Collapse
Affiliation(s)
- G Verrijdt
- Laboratory of Molecular Endocrinology, Division of Biochemistry, Campus Gasthuisberg O and N1, Catholic University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND An important step in understanding the conditions that specify gene expression is the recognition of gene regulatory elements. Due to high diversity of different types of transcription factors and their DNA binding preferences, it is a challenging problem to establish an accurate model for recognition of functional regulatory elements in promoters of eukaryotic genes. RESULTS We present a method for precise prediction of a large group of transcription factor binding sites - steroid hormone response elements. We use a large training set of experimentally confirmed steroid hormone response elements, and adapt a sequence-based statistic method of position weight matrix, for identification of the binding sites in the query sequences. To estimate the accuracy level, a table of correspondence of sensitivity vs. specificity values is constructed from a number of independent tests. Furthermore, feed-forward neural network is used for cross-verification of the predicted response elements on genomic sequences. CONCLUSION The proposed method demonstrates high accuracy level, and therefore can be used for prediction of hormone response elements de novo. Experimental results support our analysis by showing significant improvement of the proposed method over previous HRE recognition methods.
Collapse
Affiliation(s)
- Maria Stepanova
- Bioinformatics Research Centre, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Feng Lin
- Bioinformatics Research Centre, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Valerie C-L Lin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
20
|
Burd CJ, Petre CE, Morey LM, Wang Y, Revelo MP, Haiman CA, Lu S, Fenoglio-Preiser CM, Li J, Knudsen ES, Wong J, Knudsen KE. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A 2006; 103:2190-5. [PMID: 16461912 PMCID: PMC1413684 DOI: 10.1073/pnas.0506281103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin D1 is a multifaceted regulator of both transcription and cell-cycle progression that exists in two distinct isoforms, cyclin D1a and D1b. In the prostate, cyclin D1a acts through discrete mechanisms to negatively regulate androgen receptor (AR) activity and thus limit androgen-dependent proliferation. Accordingly, cyclin D1a is rarely overexpressed in prostatic adenocarcinoma and holds little prognostic value in this tumor type. However, a common polymorphism (A870) known to facilitate production of cyclin D1b is associated with increased prostate cancer risk. Here we show that cyclin D1b is expressed at high frequency in prostate cancer and is up-regulated in neoplastic disease. Furthermore, our data demonstrate that, although cyclin D1b retains AR association, it is selectively compromised for AR regulation. The altered ability of cyclin D1b to regulate the AR was observed by using both in vitro and in vivo assays and was associated with compromised regulation of AR-dependent proliferation. Consistent with previous reports, expression of cyclin D1a inhibited cell-cycle progression in AR-dependent prostate cancer cells. Strikingly, cyclin D1b significantly stimulated proliferation in this cell type. AR-negative prostate cancer cells were nonresponsive to cyclin D1 (a or b) expression, indicating that defects in AR corepressor function yield a growth advantage specifically in AR-dependent cells. In summary, these studies indicate that the altered AR regulatory capacity of cyclin D1b contributes to its association with increased prostate cancer risk and provide evidence of cyclin D1b-mediated transcriptional regulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher A. Haiman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089
| | - Shan Lu
- Pathology and Laboratory Medicine and
| | | | - Jiwen Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Erik S. Knudsen
- Departments of *Cell Biology and
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH 45267
| | - Jiemin Wong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and
| | - Karen E. Knudsen
- Departments of *Cell Biology and
- Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH 45267
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Olsson PE, Berg AH, von Hofsten J, Grahn B, Hellqvist A, Larsson A, Karlsson J, Modig C, Borg B, Thomas P. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone. Reprod Biol Endocrinol 2005; 3:37. [PMID: 16107211 PMCID: PMC1192819 DOI: 10.1186/1477-7827-3-37] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/17/2005] [Indexed: 11/10/2022] Open
Abstract
Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-beta subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal.
Collapse
Affiliation(s)
- Per-Erik Olsson
- Department of Natural Science, Unit of Molecular Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - A Håkan Berg
- Department of Marine Science, University of Texas Marine Science Institute, University of Texas, Port Aransas, Texas 78373, USA
| | - Jonas von Hofsten
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Birgitta Grahn
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Hellqvist
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Larsson
- Department of Natural Science, Unit of Molecular Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Johnny Karlsson
- Department of Natural Science, Unit of Molecular Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Carina Modig
- Department of Natural Science, Unit of Molecular Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Bertil Borg
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Thomas
- Department of Marine Science, University of Texas Marine Science Institute, University of Texas, Port Aransas, Texas 78373, USA
| |
Collapse
|
22
|
Robins DM. Multiple mechanisms of male-specific gene expression: lessons from the mouse sex-limited protein (Slp) gene. ACTA ACUST UNITED AC 2005; 78:1-36. [PMID: 15210327 DOI: 10.1016/s0079-6603(04)78001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Diane M Robins
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| |
Collapse
|