1
|
van Toorn M, Turkyilmaz Y, Han S, Zhou D, Kim HS, Salas-Armenteros I, Kim M, Akita M, Wienholz F, Raams A, Ryu E, Kang S, Theil AF, Bezstarosti K, Tresini M, Giglia-Mari G, Demmers JA, Schärer OD, Choi JH, Vermeulen W, Marteijn JA. Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Mol Cell 2022; 82:1343-1358.e8. [PMID: 35271816 PMCID: PMC9473497 DOI: 10.1016/j.molcel.2022.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.
Collapse
Affiliation(s)
- Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Yasemin Turkyilmaz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sueji Han
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Irene Salas-Armenteros
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Masaki Akita
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Maria Tresini
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Giuseppina Giglia-Mari
- Institut NeuroMyoGène (INMG), CNRS UMR 5310, INSERM U1217, Université de Lyon, Université Claude Bernard Lyon1, 16 rue Dubois, 69622 Villeurbanne Cedex, France
| | - Jeroen A Demmers
- Proteomics Centre, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-Hyuk Choi
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Kiakos K, Englinger B, Yanow SK, Wernitznig D, Jakupec MA, Berger W, Keppler BK, Hartley JA, Lee M, Patil PC. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA. Bioorg Med Chem Lett 2018; 28:1342-1347. [PMID: 29548574 DOI: 10.1016/j.bmcl.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom; Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Debora Wernitznig
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Walter Berger
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Moses Lee
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| | - Pravin C Patil
- Department of Chemistry, Hope College, Holland, MI 49423, United States
| |
Collapse
|
3
|
Ball LG, Xu X, Blackwell S, Hanna MD, Lambrecht AD, Xiao W. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair (Amst) 2014; 16:74-83. [PMID: 24674630 DOI: 10.1016/j.dnarep.2014.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
Abstract
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated PCNA to signal lesion bypass through template switch, a process thought to be dependent on Mms2-Ubc13 and a RING finger motif of the Rad5 ubiquitin ligase. Previous in vitro studies demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase activity. To investigate the genetic and mechanistic relationship between fork regression in vitro and template switch in vivo, we created and characterized site-specific mutations defective in the Rad5 RING or helicase activity. Our results indicate that both the Rad5 ubiquitin ligase and the helicase activities are exclusively involved in the same error-free PRR pathway. Surprisingly, the Rad5 helicase mutation abolishes its physical interaction with Ubc13 and the K63-linked PCNA polyubiquitin chain assembly. Indeed, physical fusions of Rad5 with Ubc13 bypass the requirement for either the helicase or the RING finger domain. Since the helicase domain overlaps with the SWI/SNF chromatin-remodelling domain, our findings suggest a structural role of this domain and that the Rad5 helicase activity is dispensable for error-free lesion bypass.
Collapse
Affiliation(s)
- Lindsay G Ball
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xin Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susan Blackwell
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle D Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amanda D Lambrecht
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Ciaccioli G, Martins A, Rodrigues C, Vieira H, Calado P. A powerful yeast model to investigate the synergistic interaction of α-synuclein and tau in neurodegeneration. PLoS One 2013; 8:e55848. [PMID: 23393603 PMCID: PMC3564910 DOI: 10.1371/journal.pone.0055848] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022] Open
Abstract
Several studies revealed consistent overlap between synucleinopathies and tauopathies, demonstrating that α-synuclein (ASYN) and tau co-localize in neurofibrillary tangles and in Lewy bodies from Alzheimer’s and Parkinson’s disease patients and corresponding animal models. Additionally, it has been shown that ASYN can act as an initiator of tau aggregation and phosphorylation and that these two proteins directly interact. Despite these evidences, the cellular pathway implicated in this synergistic interaction remains to be clarified. The aim of this study was to create a yeast model where the concomitant expression of ASYN and tau can be used to perform genome wide screenings for the identification of genes that modulate this interaction, in order to shed light into the pathological mechanism of cell dysfunction and to provide new targets for future therapeutic intervention. We started by validating the synergistic toxicity of tau and ASYN co-expression in yeast, by developing episomal and integrative strains expressing WT and mutant forms of both proteins, alone or in combination. The episomal strains showed no differences in growth delay upon expression of ASYN isoforms (WT or A53T) alone or in combination with tau 2N/4R isoforms (WT or P301L). However, in these strains, the presence of ASYN led to increased tau insolubility and correlated with increased tau phosphorylation in S396/404, which is mainly mediated by RIM11, the human homolog of GSK3β in yeast. On the other hand, the integrative strains showed a strong synergistic toxic effect upon co-expression of ASYN WT and tau WT, which was related to high levels of intracellular ASYN inclusions and increased tau phosphorylation and aggregation. Taken together, the strains described in the present study are able to mimic relevant pathogenic features involved in neurodegeneration and are powerful tools to identify potential target genes able to modulate the synergistic pathway driven by ASYN and tau interaction.
Collapse
Affiliation(s)
- Gianmario Ciaccioli
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Martins
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Cátia Rodrigues
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Helena Vieira
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Calado
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
5
|
Abstract
In the yeast Saccharomyces cerevisiae, the Rad6-Rad18 DNA damage tolerance pathway constitutes a major defense system against replication fork blocking DNA lesions. The Rad6-Rad18 ubiquitin-conjugating/ligase complex governs error-free and error-prone translesion synthesis by specialized DNA polymerases, as well as an error-free Rad5-dependent postreplicative repair pathway. For facilitating replication through DNA lesions, translesion synthesis polymerases copy directly from the damaged template, while the Rad5-dependent damage tolerance pathway obtains information from the newly synthesized strand of the undamaged sister duplex. Although genetic data demonstrate the importance of the Rad5-dependent pathway in tolerating DNA damages, there has been little understanding of its mechanism. Also, the conservation of the yeast Rad5-dependent pathway in higher order eukaryotic cells remained uncertain for a long time. Here we summarize findings published in recent years regarding the role of Rad5 in promoting error-free replication of damaged DNA, and we also discuss results obtained with its human orthologs, HLTF and SHPRH.
Collapse
|
6
|
Seitomer E, Balar B, He D, Copeland PR, Kinzy TG. Analysis of Saccharomyces cerevisiae null allele strains identifies a larger role for DNA damage versus oxidative stress pathways in growth inhibition by selenium. Mol Nutr Food Res 2008; 52:1305-15. [PMID: 18496816 PMCID: PMC2650619 DOI: 10.1002/mnfr.200700347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selenium toxicity is a growing environmental concern due to widespread availability of high-dose selenium supplements and the development of high-selenium agricultural drainage basins. To begin to analyze the effects of selenium toxicity at the genetic level, we have systematically determined which genes are involved in responding to high environmental selenium using a collection of viable haploid null allele strains of Saccharomyces cerevisiae representing three major stress pathways: the RAD9-dependent DNA repair pathway, the RAD6/RAD18 DNA damage tolerance pathway, and the oxidative stress pathway. A total of 53 null allele strains were tested for growth defects in the presence of a range of sodium selenite and selenomethionine (SeMet) concentrations. Our results show that approximately 64-72% of the strains lacking RAD9-dependent DNA repair or RAD6/RAD18 DNA damage tolerance pathway genes show reduced growth in sodium selenite versus approximately 28-36% in SeMet. Interestingly both compounds reduced growth in approximately 21-25% of the strains lacking oxidative stress genes. These data suggest that both selenite and SeMet are likely inducing DNA damage by generating reactive species. The anticipated effects of loss of components of the oxidative stress pathway were not observed, likely due to apparent redundancies in these gene products that may keep the damaging effects in check.
Collapse
Affiliation(s)
- Eden Seitomer
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical School, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
7
|
Spicakova T, McCann K, Brown JM. A role for Lsmlp in response to ultraviolet-radiation damage in Saccharomyces cerevisiae. Radiat Res 2008; 170:411-21. [PMID: 19024647 PMCID: PMC2597385 DOI: 10.1667/rr1477.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A genome-wide screen in Saccharomyces cerevisiae identified LSM1 as a new gene affecting sensitivity to ultraviolet (UV) radiation. Lsmlp is a member of a cytoplasmic complex composed of Lsmlp-7p that interacts with the yeast mRNA degradation machinery. To investigate the potential role of Lsmlp in response to UV radiation, we constructed double mutant strains in which LSM1 was deleted in combination with a representative gene from each of three known yeast DNA repair pathways. Our results show that lsm1delta increases the UV-radiation sensitivity of the rad1delta and rad51delta mutants, but not the radl8delta mutant, placing LSM1 within the post-replication repair/damage tolerance pathway (PRR). When combined with other deletions affecting PRR, lsm1delta increases the UV-radiation sensitivity of the rev3delta, rad30delta and pol30-K164R mutants but not rad5delta. Furthermore, the UV-radiation sensitivity phenotype of lsmldelta is partially rescued by mutations in genes involved in 3' to 5' mRNA degradation, and mutations predicted to function in RNA interactions confer the most UV-radiation sensitivity. Together, these results suggest that Lsmlp may confer protection against UV-radiation damage by protecting the 3' ends of mRNAs from exosome-dependent 3' to 5' degradation as part of a novel RAD5-mediated, PCNA-K164 ubiquitylation-independent subpathway of PRR.
Collapse
Affiliation(s)
- Tatiana Spicakova
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Kelly McCann
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - J. Martin Brown
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
8
|
Kiakos K, Sato A, Asao T, McHugh PJ, Lee M, Hartley JA. DNA sequence selective adenine alkylation, mechanism of adduct repair, and in vivo antitumor activity of the novel achiral seco-amino-cyclopropylbenz[e]indolone analogue of duocarmycin AS-I-145. Mol Cancer Ther 2008; 6:2708-18. [PMID: 17938264 DOI: 10.1158/1535-7163.mct-07-0294] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AS-I-145 is a novel achiral seco-amino-cyclopropylbenz[e]indolone (seco-amino-CBI) analogue of duocarmycin that has evolved from an alternative strategy of designing CC-1065/duocarmycin agents lacking the characteristic chiral center of the natural agents. The sequence specificity of this compound was assessed by a Taq polymerase stop assay, identifying the sites of covalent modification on plasmid DNA. The adenine-N3 adducts were confirmed at AT-rich sequences using a thermally induced strand cleavage assay. These studies reveal that this compound retains the inherent sequence selectivity of the related natural compounds. The AS-I-145 sensitivity of yeast mutants deficient in excision and post-replication repair (PRR) pathways was assessed. The sensitivity profile suggests that the sequence-specific adenine-N3 adducts are substrates for nucleotide excision repair (NER) but not base excision repair (BER). Single-strand ligation PCR was employed to follow the induction and repair of the lesions at nucleotide resolution in yeast cells. Sequence specificity was preserved in intact cells, and adduct elimination occurred in a transcription-coupled manner and was dependent on a functional NER pathway and Rad18. The involvement of NER as the predominant excision pathway was confirmed in mammalian DNA repair mutant cells. AS-I-145 showed good in vivo antitumor activity in the National Cancer Institute standard hollow fiber assay and was active against the human breast MDA-MD-435 xenograft when administered i.v. or p.o. Its novel structure and in vivo activity renders AS-I-145 a new paradigm in the design of novel achiral analogues of CC-1065 and the duocarmycins.
Collapse
Affiliation(s)
- Konstantinos Kiakos
- Cancer Research Drug-DNA Interactions Research Group, Department of Oncology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Saffran WA, Ahmed S, Bellevue S, Pereira G, Patrick T, Sanchez W, Thomas S, Alberti M, Hearst JE. DNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways. J Biol Chem 2004; 279:36462-9. [PMID: 15213235 DOI: 10.1074/jbc.m402323200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.
Collapse
Affiliation(s)
- Wilma A Saffran
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Current awareness on yeast. Yeast 2003; 20:455-62. [PMID: 12728936 DOI: 10.1002/yea.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|