1
|
Shin BS, Dever TE. Yeast reconstituted translation assays for analysis of eIF5A function. Methods Enzymol 2025; 715:155-182. [PMID: 40382135 DOI: 10.1016/bs.mie.2025.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Polyamines are critically important for protein synthesis. Through their positive ionic charge, polyamines readily bind to ribosomes, as well as to mRNAs and tRNAs. Moreover, the polyamine spermidine serves as a substrate for the synthesis of hypusine, an essential post-translational modification on the translation factor eIF5A. Though originally thought to function in translation initiation, eIF5A is now known to generally promote translation elongation and termination. Moreover, translation of certain motifs like polyproline show a greater dependency on eIF5A. In this chapter, we describe the biochemical assays we use to study eIF5A and its regulation. Owing to the complex nature of protein synthesis, these assays require the purification of over 10 translation factors plus ribosomes, tRNAs, and aminoacyl-tRNA synthetases. We describe the methods used to purify these components, to synthesize the mRNA templates for translation, and to resolve the translation products by electrophoretic thin-layer chromatography. With the recent identification of eIF5A as a key target for regulating the synthesis of polyamine synthesis and transport, and the recent identification of mutations in eIF5A causing a neurodevelopmental disorder, the assays described in this chapter will be useful in further elucidating the function and regulation of this enigmatic protein.
Collapse
Affiliation(s)
- Byung-Sik Shin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Dever
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Houston L, Platten EM, Connelly SM, Wang J, Grayhack EJ. Frameshifting at collided ribosomes is modulated by elongation factor eEF3 and by integrated stress response regulators Gcn1 and Gcn20. RNA (NEW YORK, N.Y.) 2022; 28:320-339. [PMID: 34916334 PMCID: PMC8848926 DOI: 10.1261/rna.078964.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Ribosome stalls can result in ribosome collisions that elicit quality control responses, one function of which is to prevent ribosome frameshifting, an activity that entails the interaction of the conserved yeast protein Mbf1 with uS3 on colliding ribosomes. However, the full spectrum of factors that mediate frameshifting during ribosome collisions is unknown. To delineate such factors in the yeast Saccharomyces cerevisiae, we used genetic selections for mutants that affect frameshifting from a known ribosome stall site, CGA codon repeats. We show that the general translation elongation factor eEF3 and the integrated stress response (ISR) pathway components Gcn1 and Gcn20 modulate frameshifting in opposing manners. We found a mutant form of eEF3 that specifically suppressed frameshifting, but not translation inhibition by CGA codons. Thus, we infer that frameshifting at collided ribosomes requires eEF3, which facilitates tRNA-mRNA translocation and E-site tRNA release in yeast and other single cell organisms. In contrast, we found that removal of either Gcn1 or Gcn20, which bind collided ribosomes with Mbf1, increased frameshifting. Thus, we conclude that frameshifting is suppressed by Gcn1 and Gcn20, although these effects are not mediated primarily through activation of the ISR. Furthermore, we examined the relationship between eEF3-mediated frameshifting and other quality control mechanisms, finding that Mbf1 requires either Hel2 or Gcn1 to suppress frameshifting with wild-type eEF3. Thus, these results provide evidence of a direct link between translation elongation and frameshifting at collided ribosomes, as well as evidence that frameshifting is constrained by quality control mechanisms that act on collided ribosomes.
Collapse
Affiliation(s)
- Lisa Houston
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Evan M Platten
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Sara M Connelly
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Jiyu Wang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
3
|
Sobhany M, Stanley RE. Polysome Profiling without Gradient Makers or Fractionation Systems. J Vis Exp 2021. [PMID: 34152326 DOI: 10.3791/62680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Polysome fractionation by sucrose density gradient centrifugation is a powerful tool that can be used to create ribosome profiles, identify specific mRNAs being translated by ribosomes, and analyze polysome associated factors. While automated gradient makers and gradient fractionation systems are commonly used with this technique, these systems are generally expensive and can be cost-prohibitive for laboratories that have limited resources or cannot justify the expense due to their infrequent or occasional need to perform this method for their research. Here, a protocol is presented to reproducibly generate polysome profiles using standard equipment available in most molecular biology laboratories without specialized fractionation instruments. Moreover, a comparison of polysome profiles generated with and without a gradient fractionation system is provided. Strategies to optimize and produce reproducible polysome profiles are discussed. Saccharomyces cerevisiae is utilized as a model organism in this protocol. However, this protocol can be easily modified and adapted to generate ribosome profiles for many different organisms and cell types.
Collapse
Affiliation(s)
- Mack Sobhany
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
4
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
5
|
Ranjan N, Pochopien AA, Chih-Chien Wu C, Beckert B, Blanchet S, Green R, V Rodnina M, Wilson DN. Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. EMBO J 2021; 40:e106449. [PMID: 33555093 PMCID: PMC7957392 DOI: 10.15252/embj.2020106449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
In addition to the conserved translation elongation factors eEF1A and eEF2, fungi require a third essential elongation factor, eEF3. While eEF3 has been implicated in tRNA binding and release at the ribosomal A and E sites, its exact mechanism of action is unclear. Here, we show that eEF3 acts at the mRNA–tRNA translocation step by promoting the dissociation of the tRNA from the E site, but independent of aminoacyl‐tRNA recruitment to the A site. Depletion of eEF3 in vivo leads to a general slowdown in translation elongation due to accumulation of ribosomes with an occupied A site. Cryo‐EM analysis of native eEF3‐ribosome complexes shows that eEF3 facilitates late steps of translocation by favoring non‐rotated ribosomal states, as well as by opening the L1 stalk to release the E‐site tRNA. Additionally, our analysis provides structural insights into novel translation elongation states, enabling presentation of a revised yeast translation elongation cycle.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Agnieszka A Pochopien
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, Munich, Germany.,Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Beißel C, Neumann B, Uhse S, Hampe I, Karki P, Krebber H. Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Nucleic Acids Res 2019; 47:4798-4813. [PMID: 30873535 PMCID: PMC6511868 DOI: 10.1093/nar/gkz177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 01/16/2023] Open
Abstract
Translation termination requires eRF1 and eRF3 for polypeptide- and tRNA-release on stop codons. Additionally, Dbp5/DDX19 and Rli1/ABCE1 are required; however, their function in this process is currently unknown. Using a combination of in vivo and in vitro experiments, we show that they regulate a stepwise assembly of the termination complex. Rli1 and eRF3-GDP associate with the ribosome first. Subsequently, Dbp5-ATP delivers eRF1 to the stop codon and in this way prevents a premature access of eRF3. Dbp5 dissociates upon placing eRF1 through ATP-hydrolysis. This in turn enables eRF1 to contact eRF3, as the binding of Dbp5 and eRF3 to eRF1 is mutually exclusive. Defects in the Dbp5-guided eRF1 delivery lead to premature contact and premature dissociation of eRF1 and eRF3 from the ribosome and to subsequent stop codon readthrough. Thus, the stepwise Dbp5-controlled termination complex assembly is essential for regular translation termination events. Our data furthermore suggest a possible role of Dbp5/DDX19 in alternative translation termination events, such as during stress response or in developmental processes, which classifies the helicase as a potential drug target for nonsense suppression therapy to treat cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Bettina Neumann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Simon Uhse
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Irene Hampe
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, Germany
| |
Collapse
|
7
|
Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae. Sci Rep 2019; 9:3037. [PMID: 30816176 PMCID: PMC6395859 DOI: 10.1038/s41598-019-39403-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/31/2018] [Indexed: 11/29/2022] Open
Abstract
In addition to the standard set of translation factors common in eukaryotic organisms, protein synthesis in the yeast Saccharomyces cerevisiae requires an ABCF ATPase factor eEF3, eukaryotic Elongation Factor 3. eEF3 is an E-site binder that was originally identified as an essential factor involved in the elongation stage of protein synthesis. Recent biochemical experiments suggest an additional function of eEF3 in ribosome recycling. We have characterised the global effects of eEF3 depletion on translation using ribosome profiling. Depletion of eEF3 results in decreased ribosome density at the stop codon, indicating that ribosome recycling does not become rate limiting when eEF3 levels are low. Consistent with a defect in translation elongation, eEF3 depletion causes a moderate redistribution of ribosomes towards the 5′ part of the open reading frames. We observed no E-site codon- or amino acid-specific ribosome stalling upon eEF3 depletion, supporting its role as a general elongation factor. Surprisingly, depletion of eEF3 leads to a relative decrease in P-site proline stalling, which we hypothesise is a secondary effect of generally decreased translation and/or decreased competition for the E-site with eIF5A.
Collapse
|
8
|
Wang X, Li M, Liu X, Zhang L, Duan Q, Zhang J. Quantitative Proteomic Analysis of Castor ( Ricinus communis L.) Seeds During Early Imbibition Provided Novel Insights into Cold Stress Response. Int J Mol Sci 2019; 20:E355. [PMID: 30654474 PMCID: PMC6359183 DOI: 10.3390/ijms20020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Min Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Xuming Liu
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Lixue Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Qiong Duan
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Jixing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| |
Collapse
|
9
|
Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš M, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance: Structural and Functional Diversification across the Tree of Life. J Mol Biol 2018; 431:3568-3590. [PMID: 30597160 PMCID: PMC6723617 DOI: 10.1016/j.jmb.2018.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
Within the larger ABC superfamily of ATPases, ABCF family members eEF3 in Saccharomyces cerevisiae and EttA in Escherichia coli have been found to function as ribosomal translation factors. Several other ABCFs including biochemically characterized VgaA, LsaA and MsrE confer resistance to antibiotics that target the peptidyl transferase center and exit tunnel of the ribosome. However, the diversity of ABCF subfamilies, the relationships among subfamilies and the evolution of antibiotic resistance (ARE) factors from other ABCFs have not been explored. To address this, we analyzed the presence of ABCFs and their domain architectures in 4505 genomes across the tree of life. We find 45 distinct subfamilies of ABCFs that are widespread across bacterial and eukaryotic phyla, suggesting that they were present in the last common ancestor of both. Surprisingly, currently known ARE ABCFs are not confined to a distinct lineage of the ABCF family tree, suggesting that ARE can readily evolve from other ABCF functions. Our data suggest that there are a number of previously unidentified ARE ABCFs in antibiotic producers and important human pathogens. We also find that ATPase-deficient mutants of all four E. coli ABCFs (EttA, YbiT, YheS and Uup) inhibit protein synthesis, indicative of their ribosomal function, and demonstrate a genetic interaction of ABCFs Uup and YheS with translational GTPase BipA involved in assembly of the 50S ribosome subunit. Finally, we show that the ribosome-binding resistance factor VmlR from Bacillus subtilis is localized to the cytoplasm, ruling out a role in antibiotic efflux.
Collapse
Affiliation(s)
- Victoriia Murina
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Marje Kasari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Mariliis Hinnu
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Chayan Kumar Saha
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - James W Grimshaw
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Takahiro Seki
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 263-8522 Chiba, Japan
| | - Michael Reith
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marta Putrinš
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | | |
Collapse
|
10
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
11
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
12
|
Bernabò P, Tebaldi T, Groen EJN, Lane FM, Perenthaler E, Mattedi F, Newbery HJ, Zhou H, Zuccotti P, Potrich V, Shorrock HK, Muntoni F, Quattrone A, Gillingwater TH, Viero G. In Vivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Rep 2018; 21:953-965. [PMID: 29069603 PMCID: PMC5668566 DOI: 10.1016/j.celrep.2017.10.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/22/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic alterations impacting ubiquitously expressed proteins involved in RNA metabolism often result in neurodegenerative conditions, with increasing evidence suggesting that translation defects can contribute to disease. Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, whose role in pathogenesis remains unclear. Here, we identified in vivo and in vitro translation defects that are cell autonomous and SMN dependent. By determining in parallel the in vivo transcriptome and translatome in SMA mice, we observed a robust decrease in translation efficiency arising during early stages of disease. We provide a catalogue of RNAs with altered translation efficiency, identifying ribosome biology and translation as central processes affected by SMN depletion. This was further supported by a decrease in the number of ribosomes in SMA motor neurons in vivo. Overall, our findings suggest ribosome biology as an important, yet largely overlooked, factor in motor neuron degeneration. Polysomal profiling reveals translation defects in SMA mice Translation defects are SMN dependent and cell autonomous Translation efficiency alterations highlight defects in ribosome biology The number of axonal ribosomes is decreased in SMA in vivo
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Toma Tebaldi
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Fiona M Lane
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Elena Perenthaler
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Francesca Mattedi
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy
| | - Helen J Newbery
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London 30, Guilford Street, WC1N 1EH London, UK
| | - Paola Zuccotti
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Valentina Potrich
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London 30, Guilford Street, WC1N 1EH London, UK
| | - Alessandro Quattrone
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy.
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK; Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, EH8 9XD Edinburgh, UK.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, 38123 Povo (Trento), Italy.
| |
Collapse
|
13
|
Demonstration of translation elongation factor 3 activity from a non-fungal species, Phytophthora infestans. PLoS One 2018; 13:e0190524. [PMID: 29300771 PMCID: PMC5754060 DOI: 10.1371/journal.pone.0190524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023] Open
Abstract
In most eukaryotic organisms, translation elongation requires two highly conserved elongation factors eEF1A and eEF2. Fungal systems are unique in requiring a third factor, the eukaryotic Elongation Factor 3 (eEF3). For decades, eEF3, a ribosome-dependent ATPase, was considered "fungal-specific", however, recent bioinformatics analysis indicates it may be more widely distributed among other unicellular eukaryotes. In order to determine whether divergent eEF3-like proteins from other eukaryotic organisms can provide the essential functions of eEF3 in budding yeast, the eEF3-like proteins from Schizosaccharomyes pombe and an oomycete, Phytophthora infestans, were cloned and expressed in Saccharomyces cerevisiae. Plasmid shuffling experiments showed that both S. pombe and P. infestans eEF3 can support the growth of S. cerevisiae in the absence of endogenous budding yeast eEF3. Consistent with its ability to provide the essential functions of eEF3, P. infestans eEF3 possessed ribosome-dependent ATPase activity. Yeast cells expressing P. infestans eEF3 displayed reduced protein synthesis due to defects in translation elongation/termination. Identification of eEF3 in divergent species will advance understanding of its function and the ribosome specific determinants that lead to its requirement as well as contribute to the identification of functional domains of eEF3 for potential drug discovery.
Collapse
|
14
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
15
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
16
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
17
|
Samra N, Atir-Lande A, Pnueli L, Arava Y. The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol 2015; 16:17. [PMID: 26404137 PMCID: PMC4582935 DOI: 10.1186/s12867-015-0045-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/17/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND mRNA binding proteins (RBPs) constitute 10-15% of the eukaryotic proteome and play important part in post-transcriptional regulation of gene expression. Due to the instability of RNA and the transient nature its interaction with RBPs, identification of novel RBPs is a significant challenge. Recently, a novel methodology for RBP purification and identification (termed RaPID) was presented, which allows high affinity purification of RBPs while associated with mRNA in vivo. RESULTS We performed a RaPID screen for proteins that interact with PMP1 mRNA in order to identify novel mRNA binding proteins. PMP1 mRNA was tagged in its 3' UTR with multiple MS2 loops and co-expressed with MS2-binding protein fused to streptavidin binding protein (SBP). RNA-protein complexes were cross-linked in vivo and isolated through streptavidin beads. The eluted proteins were subjected to mass spectroscopy analysis. The screen identified many proteins, about half of them were previously shown to bind RNA. We focused on eEF3 (YEF3), an essential translation elongation factor that interacts with ribosomes. Purification of TAP-tagged Yef3 with its associated RNAs confirmed that the native PMP1 transcript is associated with it. Intriguingly, high association with Yef3-TAP was observed when purification was performed in the presence of EDTA, and with PMP1 that contains stop codons immediately downstream to the initiation codon. Furthermore, high association was observed with a transcript containing only the 3' UTR of PMP1. Complementary, RaPID isolation of MS2-tagged 3' UTRs with their associated proteins revealed that Yef3 can efficiently interact with these regions. CONCLUSIONS This study identifies many novel proteins that interact with PMP1 mRNA. Importantly, the elongation factor Yef3 was found to interact with mRNA in non-coding regions and in a translation independent manner. These results suggest an additional, non-elongation function for this factor.
Collapse
Affiliation(s)
- Nitzan Samra
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Avigail Atir-Lande
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Lilach Pnueli
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| | - Yoav Arava
- Department of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
18
|
Bernabò P, Lunelli L, Quattrone A, Jousson O, Lencioni V, Viero G. Studying translational control in non-model stressed organisms by polysomal profiling. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:30-35. [PMID: 25796968 DOI: 10.1016/j.jinsphys.2015.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/30/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
In stressed organisms, strategic proteins are selectively translated even if the global process of protein synthesis is compromised. The determination of protein concentrations in tissues of non-model organisms (thus with limited genomic information) is challenging due to the absence of specific antibodies. Moreover, estimating protein levels quantifying transcriptional responses may be misleading, because translational control mechanisms uncouple protein and mRNAs abundances. Translational control is increasingly recognized as a hub where regulation of gene expression converges to shape proteomes, but it is almost completely overlooked in molecular ecology studies. An interesting approach to study translation and its control mechanisms is the analysis of variations of gene-specific translational efficiencies by quantifying mRNAs associated to ribosomes. In this paper, we propose a robust and streamlined pipeline for purifying ribosome-associated mRNAs and calculating global and gene-specific translation efficiencies from non-model insect's species. This method might found applications in molecular ecology to study responses to environmental stressors in non-model organisms.
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Italy; Centre for Integrative Biology, Mattarello, Trento, Italy; Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Trento, Italy
| | | | | | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | | |
Collapse
|
19
|
Bodman JAR, Yang Y, Logan MR, Eitzen G. Yeast translation elongation factor-1A binds vacuole-localized Rho1p to facilitate membrane integrity through F-actin remodeling. J Biol Chem 2015; 290:4705-4716. [PMID: 25561732 DOI: 10.1074/jbc.m114.630764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.
Collapse
Affiliation(s)
- James A R Bodman
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yang Yang
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael R Logan
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Gary Eitzen
- From the Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
20
|
Lui J, Castelli LM, Pizzinga M, Simpson CE, Hoyle NP, Bailey KL, Campbell SG, Ashe MP. Granules harboring translationally active mRNAs provide a platform for P-body formation following stress. Cell Rep 2014; 9:944-54. [PMID: 25437551 PMCID: PMC4536303 DOI: 10.1016/j.celrep.2014.09.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/16/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022] Open
Abstract
The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems.
Collapse
Affiliation(s)
- Jennifer Lui
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Lydia M Castelli
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mariavittoria Pizzinga
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Clare E Simpson
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nathaniel P Hoyle
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kathryn L Bailey
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Susan G Campbell
- Biosciences Department, Faculty of Health and Wellbeing, Sheffield Hallam University, Howards Street, Sheffield S1 1WB, UK
| | - Mark P Ashe
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
21
|
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:4062-76. [PMID: 25154418 DOI: 10.1128/mcb.00799-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.
Collapse
|
22
|
Hirschmann WD, Westendorf H, Mayer A, Cannarozzi G, Cramer P, Jansen RP. Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast. Nucleic Acids Res 2014; 42:4043-55. [PMID: 24445806 PMCID: PMC3973333 DOI: 10.1093/nar/gkt1392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to >1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.
Collapse
Affiliation(s)
- Wolf D Hirschmann
- Interfaculty Institute for Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany, Gene Center Munich and Department of Biochemistry, LMU München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany, Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland and Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Sasikumar AN, Kinzy TG. Mutations in the chromodomain-like insertion of translation elongation factor 3 compromise protein synthesis through reduced ATPase activity. J Biol Chem 2013; 289:4853-60. [PMID: 24379402 DOI: 10.1074/jbc.m113.536201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation elongation is mediated by ribosomes and multiple soluble factors, many of which are conserved across bacteria and eukaryotes. During elongation, eukaryotic elongation factor 1A (eEF1A; EF-Tu in bacteria) delivers aminoacylated-tRNA to the A-site of the ribosome, whereas eEF2 (EF-G in bacteria) translocates the ribosome along the mRNA. Fungal translation elongation is striking in its absolute requirement for a third factor, the ATPase eEF3. eEF3 binds close to the E-site of the ribosome and has been proposed to facilitate the removal of deacylated tRNA from the E-site. eEF3 has two ATP binding cassette (ABC) domains, the second of which carries a unique chromodomain-like insertion hypothesized to play a significant role in its binding to the ribosome. This model was tested in the current study using a mutational analysis of the Sac7d region of the chromodomain-like insertion. Specific mutations in this domain result in reduced growth rate as well as slower translation elongation. In vitro analysis demonstrates that these mutations do not affect the ability of eEF3 to interact with the ribosome. Kinetic analysis revealed a larger turnover number for ribosomes in comparison to eEF3, indicating that the partial reactions involving the ribosome are significantly faster than that of eEF3. Mutations in the chromodomain-like insertion severely compromise the ribosome stimulated ATPase of eEF3, strongly suggesting that it exerts an allosteric effect on the hydrolytic activity of eEF3. The chromodomain-like insertion is, therefore, vital to eEF3 function and may be targeted for developing novel antifungal drugs.
Collapse
Affiliation(s)
- Arjun N Sasikumar
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-5635
| | | |
Collapse
|
24
|
Kurata S, Shen B, Liu JO, Takeuchi N, Kaji A, Kaji H. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res 2012; 41:264-76. [PMID: 23087377 PMCID: PMC3592416 DOI: 10.1093/nar/gks958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3’s known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.
Collapse
Affiliation(s)
- Shinya Kurata
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
25
|
Couttas TA, Raftery MJ, Padula MP, Herbert BR, Wilkins MR. Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics 2012; 12:960-72. [PMID: 22522802 DOI: 10.1002/pmic.201100570] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study aimed to identify sites of lysine methylation in Saccharomyces cerevisiae and the associated methyltransferases. Hexapeptide ligand affinity chromatography was used to normalize the abundance levels of proteins in whole cell lysate. MS/MS, in association with antibody-based detection, was then used to identify lysine methylated proteins and the precise sites of modification. Lysine methylation was found on the proteins elongation factor (EF) 1-α, 2, and 3A, as well as ribosomal proteins 40S S18-A/B, 60S L11-A/B, L18-A/B, and L42-A/B. Precise sites were mapped in all cases. Single-gene knockouts of known and putative methyltransferase(s), in association with MS/MS, showed that EF1-α is monomethylated by Efm1 at lysin 30 and dimethylated by See1 at lysine 316. Methyltransferase Rkm1 was found to monomethylate 40S ribosomal protein S18-A/B at lysine 48. Knockout analysis also revealed that putative methyltransferase YBR271W affects the methylation of proteins EF2 and 3A; this was detected by Western blotting and immunodetection. This methyltransferase shows strong interspecies conservation and a tryptophan-containing motif associated with its active site. We suggest that enzyme YBR271W is named EF methyltransferase 2 (Efm2), in line with the recent naming of YHL039W as Efm1.
Collapse
Affiliation(s)
- Timothy A Couttas
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | | | | | | | | |
Collapse
|
26
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
27
|
|
28
|
Abstract
Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.
Collapse
Affiliation(s)
- Eva Greganova
- Institute for Biochemistry and Molecular Medicine, University of Berne, Berne, Switzerland
| | | | | |
Collapse
|
29
|
Esposito AM, Mateyak M, He D, Lewis M, Sasikumar AN, Hutton J, Copeland PR, Kinzy TG. Eukaryotic polyribosome profile analysis. J Vis Exp 2010:1948. [PMID: 20567211 PMCID: PMC3149985 DOI: 10.3791/1948] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Protein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs. Studies of protein synthesis frequently utilize polyribosome analysis to shed light on the mechanisms of translation regulation or defects in protein synthesis. In this assay, mRNA/ribosome complexes are isolated from eukaryotic cells. A sucrose density gradient separates mRNAs bound to multiple ribosomes known as polyribosomes from mRNAs bound to a single ribosome or monosome. Fractionation of the gradients allows isolation and quantification of the different ribosomal populations and their associated mRNAs or proteins. Differences in the ratio of polyribosomes to monosomes under defined conditions can be indicative of defects in either translation initiation or elongation/termination. Examination of the mRNAs present in the polyribosome fractions can reveal whether the cohort of individual mRNAs being translated changes with experimental conditions. In addition, ribosome assembly can be monitored by analysis of the small and large ribosomal subunit peaks which are also separated by the gradient. In this video, we present a method for the preparation of crude ribosomal extracts from yeast cells, separation of the extract by sucrose gradient and interpretation of the results. This procedure is readily adaptable to mammalian cells.
Collapse
Affiliation(s)
- Anthony M Esposito
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc Natl Acad Sci U S A 2010; 107:10854-9. [PMID: 20534490 DOI: 10.1073/pnas.1006247107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.
Collapse
|
31
|
A structural domain mediates attachment of ethanolamine phosphoglycerol to eukaryotic elongation factor 1A in Trypanosoma brucei. PLoS One 2010; 5:e9486. [PMID: 20209157 PMCID: PMC2830473 DOI: 10.1371/journal.pone.0009486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/10/2010] [Indexed: 11/19/2022] Open
Abstract
Ethanolamine phosphoglycerol (EPG) represents a protein modification that so far has only been found in eukaryotic elongation factor 1A (eEF1A). In mammals and plants, EPG is covalently attached to two conserved glutamate residues located in domains II and III of eEF1A. In contrast, Trypanosoma brucei eEF1A contains a single EPG attached to Glu362 in domain III. The sequence and/or structural requirements for covalent linkage of EPG to eEF1A have not been determined for any organism. Using a combination of biosynthetic labelling of parasites with tritiated ethanolamine and mass spectrometry analyses, we demonstrate that replacement of Glu362 in T. brucei eEF1A by site-directed mutagenesis prevents EPG attachment, whereas single or multiple amino acid substitutions around the attachment site are not critical. In addition, by expressing a series of eEF1A deletion mutants in T. brucei procyclic forms, we demonstrate that a peptide consisting of 80 amino acids of domain III of eEF1A is sufficient for EPG attachment to occur. Furthermore, EPG addition also occurs if domain III of eEF1A is fused to a soluble reporter protein. To our knowledge, this is the first report addressing amino acid sequence, or structure, requirements for EPG modification of eEF1A in any organism. Using T. brucei as a model organism, we show that amino acid substitutions around the modification site are not critical for EPG attachment and that a truncated version of domain III of eEF1A is sufficient to mediate EPG addition.
Collapse
|
32
|
Van Dyke N, Pickering BF, Van Dyke MW. Stm1p alters the ribosome association of eukaryotic elongation factor 3 and affects translation elongation. Nucleic Acids Res 2009; 37:6116-25. [PMID: 19666721 PMCID: PMC2764444 DOI: 10.1093/nar/gkp645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Delta) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Delta yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.
Collapse
Affiliation(s)
- Natalya Van Dyke
- Department of Molecular and Cellular Oncology, Unit 079, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
33
|
Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature 2009; 459:118-21. [PMID: 19424157 PMCID: PMC3140696 DOI: 10.1038/nature08034] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 03/23/2009] [Indexed: 01/25/2023]
Abstract
Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesis-a model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation. Hypusine is required for eIF5A to associate with ribosomes and to stimulate methionyl-puromycin synthesis. Because eIF5A did not stimulate earlier steps of translation initiation, and depletion of eIF5A in yeast only modestly impaired protein synthesis, it was proposed that eIF5A function was limited to stimulating synthesis of the first peptide bond or that eIF5A functioned on only a subset of cellular messenger RNAs. However, the precise cellular role of eIF5A is unknown, and the protein has also been linked to mRNA decay, including the nonsense-mediated mRNA decay pathway, and to nucleocytoplasmic transport. Here we use molecular genetic and biochemical studies to show that eIF5A promotes translation elongation. Depletion or inactivation of eIF5A in the yeast S. cerevisiae resulted in the accumulation of polysomes and an increase in ribosomal transit times. Addition of recombinant eIF5A from yeast, but not a derivative lacking hypusine, enhanced the rate of tripeptide synthesis in vitro. Moreover, inactivation of eIF5A mimicked the effects of the eEF2 inhibitor sordarin, indicating that eIF5A might function together with eEF2 to promote ribosomal translocation. Because eIF5A is a structural homologue of the bacterial protein EF-P, we propose that eIF5A/EF-P is a universally conserved translation elongation factor.
Collapse
Affiliation(s)
- Preeti Saini
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel E. Eyler
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Thomas E. Dever
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Gregio APB, Cano VPS, Avaca JS, Valentini SR, Zanelli CF. eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 2009; 380:785-90. [PMID: 19338753 DOI: 10.1016/j.bbrc.2009.01.148] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 11/23/2022]
Abstract
The putative translation factor eIF5A is essential for cell viability and is highly conserved throughout evolution. Here, we describe genetic interactions between an eIF5A mutant and a translation initiation mutant (eIF4E) or a translation elongation mutant (eEF2). Polysome profile analysis of single and double mutants revealed that mutation in eIF5A reduces polysome run-off, contrarily to translation initiation mutants. Moreover, the polysome profile of an eIF5A mutant alone is very similar to that of a translation elongation mutant. Furthermore, depletion of eIF5A causes a significant decrease in total protein synthesis and an increase of the average ribosome transit time. Finally, we demonstrate that the formation of P bodies is inhibited in an eIF5A mutant, similarly to the effect of the translation elongation inhibitor cycloheximide. Taken together, these results not only reinforce a role for eIF5A in translation but also strongly support a function for eIF5A in the elongation step of protein synthesis.
Collapse
Affiliation(s)
- Ana P B Gregio
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Faculdade de Ciências Farmacêuticas, Rodovia Araraquara-Jaú, km 01, Araraquara, SP 14801-902, Brazil
| | | | | | | | | |
Collapse
|
35
|
Najafabadi HS, Salavati R. Sequence-based prediction of protein-protein interactions by means of codon usage. Genome Biol 2008; 9:R87. [PMID: 18501006 PMCID: PMC2441473 DOI: 10.1186/gb-2008-9-5-r87] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/01/2008] [Accepted: 05/23/2008] [Indexed: 12/24/2022] Open
Abstract
A new approach based on similarity in codon usage is used to predict protein-protein interactions. We introduce a novel approach to predict interaction of two proteins solely by analyzing their coding sequences. We found that similarity in codon usage is a strong predictor of protein-protein interactions and, for high specificity values, is as sensitive as the most powerful current prediction methods. Furthermore, combining codon usage with other predictors results in a 75% increase in sensitivity at a precision of 50%, compared to prediction without considering codon usage.
Collapse
Affiliation(s)
- Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, Lakeshore Road, Ste, Anne de Bellevue, Montreal, Quebec H9X 3V9, Canada.
| | | |
Collapse
|
36
|
Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 2008; 28:860-70. [PMID: 18082610 DOI: 10.1016/j.molcel.2007.09.021] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/26/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Transcriptional and posttranslational signals are known mechanisms that promote efficient responses to DNA damage. We have identified Saccharomyces cerevisiae tRNA methyltransferase 9 (Trm9) as an enzyme that prevents cell death via translational enhancement of DNA damage response proteins. Trm9 methylates the uridine wobble base of tRNAARG(UCU) and tRNAGLU(UUC). We used computational and molecular approaches to predict that Trm9 enhances the translation of some transcripts overrepresented with specific arginine and glutamic acid codons. We found that translation elongation factor 3 (YEF3) and the ribonucleotide reductase (RNR1 and RNR3) large subunits are overrepresented with specific arginine and glutamic acid codons, and we demonstrated that Trm9 significantly enhances Yef3, Rnr1, and Rnr3 protein levels. Additionally, we identified 425 genes, which included YEF3, RNR1, and RNR3, with a unique codon usage pattern linked to Trm9. We propose that Trm9-specific tRNA modifications enhance codon-specific translation elongation and promote increased levels of key damage response proteins.
Collapse
Affiliation(s)
- Ulrike Begley
- Department of Biomedical Sciences, GenNYsis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fission yeast mitogen-activated protein kinase Sty1 interacts with translation factors. EUKARYOTIC CELL 2007; 7:328-38. [PMID: 18065650 DOI: 10.1128/ec.00358-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signaling by stress-activated mitogen-activated protein kinase (MAPK) pathways influences translation efficiency in mammalian cells and budding yeast. We have investigated the stress-activated MAPK from fission yeast, Sty1, and its downstream protein kinase, Mkp1/Srk1, for physically associated proteins using tandem affinity purification tagging. We find Sty1, but not Mkp1, to bind to the translation elongation factor eukaryotic elongation factor 2 (eEF2) and the translation initiation factor eukaryotic initiation factor 3a (eIF3a). The Sty1-eIF3a interaction is weakened under oxidative or hyperosmotic stress, whereas the Sty1-eEF2 interaction is stable. Nitrogen deprivation causes a transient strengthening of both the Sty1-eEF2 and the Sty1-Mkp1 interactions, overlapping with the time of maximal Sty1 activation. Analysis of polysome profiles from cells under oxidative stress, or after hyperosmotic shock or nitrogen deprivation, shows that translation in sty1 mutant cells recovers considerably less efficiently than that in the wild type. Cells lacking the Sty1-regulated transcription factor Atf1 are deficient in maintaining and recovering translational activity after hyperosmotic shock but not during oxidative stress or nitrogen starvation. In cells lacking Sty1, eIF3a levels are decreased, and phosphorylation of eIF3a is reduced. Taken together, our data point to a central role in translational adaptation for the stress-activated MAPK pathway in fission yeast similar to that in other investigated eukaryotes, with the exception that fission yeast MAPK-activated protein kinases seem not to be directly involved in this process.
Collapse
|
38
|
Plant EP, Nguyen P, Russ JR, Pittman YR, Nguyen T, Quesinberry JT, Kinzy TG, Dinman JD. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae. PLoS One 2007; 2:e517. [PMID: 17565370 PMCID: PMC1885216 DOI: 10.1371/journal.pone.0000517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022] Open
Abstract
Background Decoding of mRNAs is performed by aminoacyl tRNAs (aa-tRNAs). This process is highly accurate, however, at low frequencies (10−3 – 10−4) the wrong aa-tRNA can be selected, leading to incorporation of aberrant amino acids. Although our understanding of what constitutes the correct or cognate aa-tRNA:mRNA interaction is well defined, a functional distinction between near-cognate or single mismatched, and unpaired or non-cognate interactions is lacking. Methodology/Principal Findings Misreading of several synonymous codon substitutions at the catalytic site of firefly luciferase was assayed in Saccharomyces cerevisiae. Analysis of the results in the context of current kinetic and biophysical models of aa-tRNA selection suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons, enabling stimulation of GTPase activity of eukaryotic Elongation Factor 1A (eEF1A). Paromomycin specifically stimulated misreading of near-cognate but not of non-cognate aa-tRNAs, providing a functional probe to distinguish between these two classes. Deletion of the accessory elongation factor eEF1Bγ promoted increased misreading of near-cognate, but hyperaccurate reading of non-cognate codons, suggesting that this factor also has a role in tRNA discrimination. A mutant of eEF1Bα, the nucleotide exchange factor for eEF1A, promoted a general increase in fidelity, suggesting that the decreased rates of elongation may provide more time for discrimination between aa-tRNAs. A mutant form of ribosomal protein L5 promoted hyperaccurate decoding of both types of codons, even though it is topologically distant from the decoding center. Conclusions/Signficance It is important to distinguish between near-cognate and non-cognate mRNA:tRNA interactions, because such a definition may be important for informing therapeutic strategies for suppressing these two different categories of mutations underlying many human diseases. This study suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons in the ribosomal decoding center. An aminoglycoside and a ribosomal factor can be used to distinguish between near-cognate and non-cognate interactions.
Collapse
Affiliation(s)
- Ewan P. Plant
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Phuc Nguyen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jonathan R. Russ
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Yvette R. Pittman
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Thai Nguyen
- The Science and Technology Center at Eleanor Roosevelt High School, Greenbelt, Maryland, United States of America
| | | | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Watanabe S, Tomizaki KY, Takahashi T, Usui K, Kajikawa K, Mihara H. Interactions between peptides containing nucleobase amino acids and T7 phages displaying S. cerevisiae proteins. Biopolymers 2007; 88:131-40. [PMID: 17206624 DOI: 10.1002/bip.20662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The importance of high-throughput analyses of protein abundances and functions is interestingly increasing in genomic/proteomic studies. In such postgenome sequencing era, a protein-detecting chip, in which a large number of molecules specifically capturing target proteins (capturing agents) such as antibodies, recombinant proteins, and small molecules are arrayed onto solid, wet, or semi-wet substrates, enables comprehensive analysis of proteomes by a single experiment. However, whole proteomes are generally complicated for comprehensive analyses so that alternative approaches to subproteome analysis categorized by protein functions and binding properties (focused proteome) would be effective. Approaching the goal of development of designed peptide chip for protein analysis, diversity increases in peptide structures and validation of target proteins are needed. We herein describe design and synthesis of nucleobase amino acid (NBA)-containing peptides, selection of nucleic acid-related proteins derived from S. cerevisiae, and detection of interactions between NBA-containing peptides and T7 phages displaying proteins by both enzyme-linked immunosorbent assays (ELISA) and label-free anomalous reflection of gold (AR) measurements. Twenty-eight phage clones were obtained by the phage-display method and sequenced. Ten of 28 clones were expected to be nucleic acid-related proteins including initiation factor, TYB protein, ribosomal proteins, elongation factor, ATP synthase subunit, GTP-binding protein, and ribonuclease. Other phage clones encoded several classes of enzymes such as reductase, oxidase, aldolase, metalloprotease, and hexokinase. Both ELISA and AR measurements suggested that the methodology of in vitro selection for recognition of the NBA-containing peptide presented in this study was successfully established. Such a combination of NBA and phage display technologies would be potential to efficiently confirm valuable target proteins binding specifically to capturing agents, to be arrayed onto solid surfaces to develop the designed peptide chip.
Collapse
Affiliation(s)
- Sinya Watanabe
- The COE21 Program and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Gross SR, Kinzy TG. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Mol Cell Biol 2007; 27:1974-89. [PMID: 17178834 PMCID: PMC1820457 DOI: 10.1128/mcb.00832-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/14/2006] [Accepted: 12/07/2006] [Indexed: 11/20/2022] Open
Abstract
Although the actin cytoskeleton and the translation machinery are considered to be separate cellular complexes, growing evidence supports overlapping regulation of the two systems. Because of its interaction with actin, the eukaryotic translation elongation factor 1A (eEF1A) is proposed to be a regulator or link between these processes. Using a genetic approach with the yeast Saccharomyces cerevisiae, specific regions of eEF1A responsible for actin interactions and bundling were identified. Five new mutations were identified along one face of eEF1A. Dramatic changes in cell growth, cell morphology, and actin cable and patch formation as well as a unique effect on total translation in strains expressing the F308L or S405P eEF1A mutant form were observed. The translation effects do not correlate with reduced translation elongation but instead include an initiation defect. Biochemical analysis of the eEF1A mutant forms demonstrated reduced actin-bundling activity in vitro. Reduced total translation and/or the accumulation of 80S ribosomes in strains with either a mutation or a null allele of genes encoding actin itself or actin-regulating proteins Tpm1p, Mdm20p, and Bnirp/Bni1p was observed. Our data demonstrate that eEF1A, other actin binding proteins, and actin mutants affect translation initiation through the actin cytoskeleton.
Collapse
Affiliation(s)
- Stephane R Gross
- Department of Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
41
|
Abstract
This chapter describes phenotypic assays on specific and general aspects of translation using yeast Saccharomyces cerevisiae as a model eukaryote. To study the effect on start codon selection stringency, a his4(-) or his4-lacZ allele altering the first AUG to AUU is employed. Mutations relaxing the stringent selection confer the His(+) phenotype in the his4(-) strain background or increase expression from his4-lacZ compared to that from wild-type HIS4-lacZ (Sui(-) phenotype). Translation of the Gcn4p transcription activator is strictly regulated by amino acid availability depending on upstream ORF (uORF) elements in the GCN4 mRNA leader. Mutations reducing the eIF2/GTP/Met-tRNA(i)(Met) complex level or the rate of its binding to the 40S subunit derepress GCN4 translation by allowing ribosomes to bypass inhibitory uORFs in the absence of the starvation signal (Gcd(-) phenotype). Mutations impairing scanning or AUG recognition generally impair translational GCN4 induction during amino acid starvation (Gcn(-) phenotype). Different amino acid analogs or amino acid enzyme inhibitors are used to study Gcd(-) or Gcn(-) phenotypes. The method of polysome profiling is also described to gain an ultimate "phenotypic" proof for translation defects.
Collapse
Affiliation(s)
- Bumjun Lee
- Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | | | | |
Collapse
|
42
|
Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 2006; 281:32318-26. [PMID: 16954224 DOI: 10.1074/jbc.m601899200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
43
|
Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 2006; 20:1294-307. [PMID: 16702403 PMCID: PMC1472904 DOI: 10.1101/gad.1422006] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/15/2006] [Indexed: 11/24/2022]
Abstract
Translation regulation is a critical means by which cells control growth, division, and apoptosis. To gain further insight into translation and related processes, we performed multifaceted mass spectrometry-based proteomic screens of yeast ribosomal complexes and discovered an association of 77 uncharacterized yeast proteins with ribosomes. Immunoblotting revealed an EDTA-dependent cosedimentation with ribosomes in sucrose gradients for 11 candidate translation-machinery-associated (TMA) proteins. Tandem affinity purification linked one candidate, LSM12, to the RNA processing proteins PBP1 and PBP4. A second candidate, TMA46, interacted with RBG1, a GTPase that interacts with ribosomes. By adapting translation assays to high-throughput screening methods, we showed that null yeast strains harboring deletions for several of the TMA genes had alterations in protein synthesis rates (TMA7 and TMA19), susceptibility to drugs that inhibit translation (TMA7), translation fidelity (TMA20), and polyribosome profiles (TMA7, TMA19, and TMA20). TMA20 has significant sequence homology with the oncogene MCT-1. Expression of human MCT-1 in the Deltatma20 yeast mutant complemented translation-related defects, strongly implying that MCT-1 functions in translation-related processes. Together these findings implicate the TMA proteins and, potentially, their human homologs, in translation related processes.
Collapse
Affiliation(s)
- Tracey C Fleischer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
44
|
Sauvage V, Millot JM, Aubert D, Visneux V, Marle-Plistat M, Pinon JM, Villena I. Identification and expression analysis of ABC protein-encoding genes in Toxoplasma gondii. Toxoplasma gondii ATP-binding cassette superfamily. Mol Biochem Parasitol 2006; 147:177-92. [PMID: 16600400 DOI: 10.1016/j.molbiopara.2006.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/09/2006] [Accepted: 02/10/2006] [Indexed: 11/22/2022]
Abstract
The ATP-binding cassette (ABC) transporters are one of the largest evolutionarily conserved families of proteins. They are characterized by the presence of nucleotide-binding domains (NBDs), which are highly conserved among organisms. In the present study, we used human and protozoan ABC sequences, and ATP-binding consensus motifs to screen the Toxoplasma gondii TwinScan2 predicted proteins database. We identified 24 ABC open reading frames (ORFs), whose deduced amino acid sequences exhibited all the typical biochemical features of the ABC family members. Fifteen of them clustered into five of the seven families of human ABC proteins: six ABCBs (drug, peptides and lipid export), two ABCCs (organic anion conjugates and drug export), one ABCE (Rnase L inhibitor, RLI, antibiotic resistance and translation regulation), one ABCF (drug resistance and regulation of gene expression) and five ABCGs (drug export and resistance). The nine other ORFs were represented by four ABCHs (energy-generating subunits), four SMCs (structural maintenance of chromosomes) and one member of unclear origin, whose closest homologue was the yeast Elf1 protein (mRNA export factor). A notable feature of the Toxoplasma ABC superfamily seems to be the absence of genes encoding ABCA and ABCD members. Expression analysis of ABC genes in tachyzoite and bradyzoite stages revealed the presence of ABC transcripts for all genes studied. Further research on the implication of these ABC proteins will increase our knowledge of the basic biology of Toxoplasma and provide the opportunity to identify novel therapeutic targets. To our knowledge, this is the first report of ABC transporters in T. gondii.
Collapse
Affiliation(s)
- Virginie Sauvage
- EA 3800, Interactions Cellules-Parasites, UFR de Médecine, IFR53, Reims, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu H, Kiledjian M. Scavenger decapping activity facilitates 5' to 3' mRNA decay. Mol Cell Biol 2005; 25:9764-72. [PMID: 16260594 PMCID: PMC1280280 DOI: 10.1128/mcb.25.22.9764-9772.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/08/2005] [Accepted: 09/01/2005] [Indexed: 01/25/2023] Open
Abstract
mRNA degradation occurs through distinct pathways, one primarily from the 5' end of the mRNA and the second from the 3' end. Decay from the 3' end generates the m7GpppN cap dinucleotide, which is subsequently hydrolyzed to m7Gp and ppN in Saccharomyces cerevisiae by a scavenger decapping activity termed Dcs1p. Although Dcs1p functions in the last step of mRNA turnover, we demonstrate that its activity modulates earlier steps of mRNA decay. Disruption of the DCS1 gene manifests a threefold increase of the TIF51A mRNA half-life. Interestingly, the hydrolytic activity of Dcs1p was essential for the altered mRNA turnover, as Dcs1p, but not a catalytically inactive Dcs1p mutant, complemented the increased mRNA stability. Mechanistic analysis revealed that 5' to 3' exoribonucleolytic activity was impeded in the dcs1Delta strain, resulting in the accumulation of uncapped mRNA. These data define a new role for the Dcs1p scavenger decapping enzyme and demonstrate a novel mechanism whereby the final step in the 3' mRNA decay pathway can influence 5' to 3' exoribonucleolytic activity.
Collapse
Affiliation(s)
- Hudan Liu
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | | |
Collapse
|
46
|
Ortiz PA, Kinzy TG. Dominant-negative mutant phenotypes and the regulation of translation elongation factor 2 levels in yeast. Nucleic Acids Res 2005; 33:5740-8. [PMID: 16214807 PMCID: PMC1253829 DOI: 10.1093/nar/gki882] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The eukaryotic translation elongation factor 2 (eEF2), a member of the G-protein superfamily, catalyzes the post-peptidyl transferase translocation of deacylated tRNA and peptidyl tRNA to the ribosomal E- and P-sites. eEF2 is modified by a unique post-translational modification: the conversion of His699 to diphthamide at the tip of domain IV, the region proposed to mimic the anticodon of tRNA. Structural models indicate a hinge is important for conformational changes in eEF2. Mutations of V488 in the hinge region and H699 in the tip of domain IV produce non-functional mutants that when co-expressed with the wild-type eEF2 result in a dominant-negative growth phenotype in the yeast Saccharomyces cerevisiae. This phenotype is linked to reduced levels of the wild-type protein, as total eEF2 levels are unchanged. Changes in the promoter, 5′-untranslated region (5′-UTR) or 3′-UTR of the EFT2 gene encoding eEF2 do not allow overexpression of the protein, showing that eEF2 levels are tightly regulated. The H699K mutant, however, also alters translation phenotypes. The observed regulation suggests that the cell needs an optimum amount of active eEF2 to grow properly. This provides information about a new mechanism by which translation is efficiently maintained.
Collapse
Affiliation(s)
| | - Terri Goss Kinzy
- To whom correspondence should be addressed. Tel: +1 732 235 5450; Fax: +1 732 235 5223;
| |
Collapse
|
47
|
Gross SR, Kinzy TG. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 2005; 12:772-8. [PMID: 16116436 DOI: 10.1038/nsmb979] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 07/25/2005] [Indexed: 11/09/2022]
Abstract
The binding of eukaryotic translation elongation factor 1A (eEF1A) to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. Using the yeast Saccharomyces cerevisiae, we have established an in vivo assay that directly identifies specific regions and residues of eEF1A responsible for actin interactions and bundling. Using a unique genetic screen, we isolated a series of eEF1A mutants with reduced actin bundling activity. These mutations alter actin cytoskeleton organization but not translation, indicating that these are separate functions of eEF1A. This demonstrates for the first time a direct consequence of eEF1A on cytoskeletal organization in vivo and the physiological significance of this interaction.
Collapse
Affiliation(s)
- Stephane R Gross
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
48
|
Magazinnik T, Anand M, Sattlegger E, Hinnebusch AG, Kinzy TG. Interplay between GCN2 and GCN4 expression, translation elongation factor 1 mutations and translational fidelity in yeast. Nucleic Acids Res 2005; 33:4584-92. [PMID: 16100380 PMCID: PMC1185573 DOI: 10.1093/nar/gki765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Genetic screens in Saccharomyces cerevisiae have identified the roles of ribosome components, tRNAs and translation factors in translational fidelity. These screens rely on the suppression of altered start codons, nonsense codons or frameshift mutations in genes involved in amino acid or nucleotide metabolism. Many of these genes are regulated by the General Amino Acid Control (GAAC) pathway. Upon amino acid starvation, the kinase GCN2 induces the GAAC cascade via increased translation of the transcriptional activator GCN4 controlled by upstream open reading frames (uORFs). Overexpression of the GCN2 or GCN4 genes enhances the sensitivity of translation fidelity assays that utilize genes regulated by GCN4, such as the suppression of a +1 insertion by S.cerevisiae translation elongation factor 1A (eEF1A) mutants. Paromomycin and the prion [PSI+], which reduce translational fidelity, do not increase GCN4 expression to induce the suppression phenotype and in fact reduce derepression. eEF1A mutations that reduce translation, however, reduce expression of GCN4 under non-starvation conditions. These eEF1A mutants also reduce HIS4 mRNA expression. Taken together, this system improves in vivo strategies for the analysis of translational fidelity and further provides new information on the interplay among translation fidelity, altered elongation and translational control via uORFs.
Collapse
Affiliation(s)
- Tanya Magazinnik
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
| | - Evelyn Sattlegger
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Alan G. Hinnebusch
- Laboratory of Gene Regulation and Development, NICHD, National Institutes of HealthBethesda, MD 20892, USA
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical SchoolPiscataway, NJ 08854, USA
- The Cancer Institute of New Jersey, NICHD, National Institutes of HealthBethesda, MD 20892, USA
- To whom correspondence should be addressed. Tel: +1 732 235 5450; Fax: +1 732 235 5223;
| |
Collapse
|
49
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
50
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|