1
|
Li H, Sun S, Guo W, Wang L, Zhang Z, Zhang Y, Zhang C, Liu M, Zhang S, Niu Y, Dong N, Wu Q. Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention. Commun Biol 2025; 8:89. [PMID: 39833422 PMCID: PMC11756421 DOI: 10.1038/s42003-025-07545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology. We found that the positively charged residue at the cytoplasm-membrane interface of corin was not a primary determinant in membrane topology but probably served as a charge-repulsion mechanism in the endoplasmic reticulum (ER) to prevent interactions with proteins in the ER, including the signal peptidase. Substitution of the positively charged residue with a neutral or acidic residue resulted in corin secretion likely due to signal peptidase cleavage. In signal peptidase-deficient cells, the mutant corin proteins were not secreted but retained in the ER. Similar results were found in the low-density lipoprotein receptor and matriptase-2 that have positively charged residues at and near the cytoplasm-membrane interface. These results provide important insights into the role of the positively charged cytoplasmic residues in mammalian single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Hui Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Wenjun Guo
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zihao Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Ce Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
3
|
Regulation of Translation, Translocation, and Degradation of Proteins at the Membrane of the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23105576. [PMID: 35628387 PMCID: PMC9147092 DOI: 10.3390/ijms23105576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) of mammalian cells is the central organelle for the maturation and folding of transmembrane proteins and for proteins destined to be secreted into the extracellular space. The proper folding of target proteins is achieved and supervised by a complex endogenous chaperone machinery. BiP, a member of the Hsp70 protein family, is the central chaperone in the ER. The chaperoning activity of BiP is assisted by ER-resident DnaJ (ERdj) proteins due to their ability to stimulate the low, intrinsic ATPase activity of BiP. Besides their co-chaperoning activity, ERdj proteins also regulate and tightly control the translation, translocation, and degradation of proteins. Disturbances in the luminal homeostasis result in the accumulation of unfolded proteins, thereby eliciting a stress response, the so-called unfolded protein response (UPR). Accumulated proteins are either deleterious due to the functional loss of the respective protein and/or due to their deposition as intra- or extracellular protein aggregates. A variety of metabolic diseases are known to date, which are associated with the dysfunction of components of the chaperone machinery. In this review, we will delineate the impact of ERdj proteins in controlling protein synthesis and translocation under physiological and under stress conditions. A second aspect of this review is dedicated to the role of ERdj proteins in the ER-associated degradation pathway, by which unfolded or misfolded proteins are discharged from the ER. We will refer to some of the most prominent diseases known to be based on the dysfunction of ERdj proteins.
Collapse
|
4
|
Kumar T, Maitra S, Rahman A, Bhattacharjee S. A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog 2021; 17:e1009595. [PMID: 34780541 PMCID: PMC8629386 DOI: 10.1371/journal.ppat.1009595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite. Tail-anchored (TA) membrane proteins are known to play essential cellular functions in the eukaryotes. These proteins are trafficked to their respective destinations by post-translational translocation pathways that are evolutionarily conserved from yeast to human. However, they remain unidentified in the malaria parasite Plasmodium falciparum. We have used bioinformatic prediction algorithms in conjunction with functional validation studies to identify the candidate TA repertoire and some of the homologs of the trafficking machinery in P. falciparum. Initially, we predicted the presence of 63 putative TA proteins localized to distinct compartments within this parasite, including a few confirmed TA homologs in other eukaryotic systems. We then identified and characterized PfGet3 as a central component in the Guided-Entry of TA (GET) translocation machinery, and our bacterial co-expression and pulldown assays with two selected recombinant TA proteins, PfBOS1 and PfUSE1, showed co-association with PfGet3. We also identified PfGet2 and PfGet4 as the other two components of the GET machinery in P. falciparum using proximity biotinylation followed by mass spectrometry. Interestingly, we also found six TA proteins in the parasite enriched in this fraction. We further validated the direct interactions between a few TA candidates, PfGet4 and PfGet2 with PfGet3 using recombinant-based pulldown studies. In conclusion, this study classified a subset of membrane proteins with the TA nomenclature and implicated a previously unidentified GET pathway for their translocation in this apicomplexan parasite.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
SMIM1, carrier of the Vel blood group, is a tail-anchored transmembrane protein and readily forms homodimers in a cell-free system. Biosci Rep 2021; 40:222673. [PMID: 32301496 PMCID: PMC7953501 DOI: 10.1042/bsr20200318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Antibodies to the Vel blood group antigen can cause adverse hemolytic reactions unless Vel-negative blood units are transfused. Since the genetic background of Vel-negativity was discovered in 2013, DNA-based typing of the 17-bp deletion causing the phenotype has facilitated identification of Vel-negative blood donors. SMIM1, the gene underlying Vel, encodes a 78-amino acid erythroid transmembrane protein of unknown function. The transmembrane orientation of SMIM1 has been debated since experimental data supported both the N- and C-termini being extracellular. Likewise, computational predictions of its orientation were divided and potential alternatives such as monotopic or dual-topology have been discussed but not investigated. We used a cell-free system to explore the topology of SMIM1 when synthesized in the endoplasmic reticulum (ER). SMIM1 was tagged with an opsin-derived N-glycosylation reporter at either the N- or C-terminus and synthesized in vitro using rabbit reticulocyte lysate supplemented with canine pancreatic microsomes as a source of ER membrane. SMIM1 topology was then determined by assessing the N-glycosylation of its N- or C-terminal tags. Complementary experiments were carried out by expressing the same SMIM1 variants in HEK293T/17 cells and establishing their membrane orientation by immunoblotting and flow cytometry. Our data consistently indicate that SMIM1 has its short C-terminus located extracellularly and that it most likely belongs to the tail-anchored class of membrane proteins with the bulk of the polypeptide located in the cytoplasm. Having established its membrane orientation in an independent model system, future work can now focus on functional aspects of SMIM1 as a potential regulator of erythropoiesis.
Collapse
|
6
|
Haßdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R. Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier. Cell Rep 2019; 23:1373-1386. [PMID: 29719251 PMCID: PMC5946456 DOI: 10.1016/j.celrep.2018.03.122] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transport into the mammalian endoplasmic reticulum (ER) is mediated by the heterotrimeric Sec61 channel. The signal recognition particle (SRP) and TRC systems and Sec62 have all been characterized as membrane-targeting components for small presecretory proteins, whereas Sec63 and the lumenal chaperone BiP act as auxiliary translocation components. Here, we report the transport requirements of two natural, small presecretory proteins and engineered variants using semipermeabilized human cells after the depletion of specific ER components. Our results suggest that hSnd2, Sec62, and SRP and TRC receptor each provide alternative targeting pathways for short secretory proteins and define rules of engagement for the actions of Sec63 and BiP during their membrane translocation. We find that the Sec62/Sec63 complex plus BiP can facilitate Sec61 channel opening, thereby allowing precursors that have weak signal peptides or other inhibitory features to translocate. A Sec61 inhibitor can mimic the effect of BiP depletion on Sec61 gating, suggesting that they both act at the same essential membrane translocation step. Small human presecretory proteins use all known targeting routes to the Sec61 complex Their insertion into Sec61 is selectively facilitated by BiP, Sec62, and Sec63 Selectivity is driven by weak signal peptides plus downstream inhibitory features Cyclic heptadepsipeptides phenocopy the effect of BiP depletion on Sec61 gating
Collapse
Affiliation(s)
- Sarah Haßdenteufel
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Nicholas Johnson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Adrienne W Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C Paton
- Research Centre for Infectious Disease, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen High
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
7
|
Guna A, Volkmar N, Christianson JC, Hegde RS. The ER membrane protein complex is a transmembrane domain insertase. Science 2018; 359:470-473. [PMID: 29242231 PMCID: PMC5788257 DOI: 10.1126/science.aao3099] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.
Collapse
Affiliation(s)
- Alina Guna
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - John C Christianson
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Ramanujan S Hegde
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Shing JC, Lindquist LD, Borgese N, Bram RJ. CAML mediates survival of Myc-induced lymphoma cells independent of tail-anchored protein insertion. Cell Death Discov 2017; 3:16098. [PMID: 28580168 PMCID: PMC5447128 DOI: 10.1038/cddiscovery.2016.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022] Open
Abstract
Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.
Collapse
Affiliation(s)
- Jennifer C Shing
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lonn D Lindquist
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nica Borgese
- Consiglio Nazionale delle Ricerche Institute of Neuroscience, Milan, Italy
| | - Richard J Bram
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
9
|
Cui XA, Zhang H, Ilan L, Liu AX, Kharchuk I, Palazzo AF. mRNA encoding Sec61β, a tail-anchored protein, is localized on the endoplasmic reticulum. J Cell Sci 2015; 128:3398-410. [PMID: 26272916 PMCID: PMC4582399 DOI: 10.1242/jcs.168583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
Although one pathway for the post-translational targeting of tail-anchored proteins to the endoplasmic reticulum (ER) has been well defined, it is unclear whether additional pathways exist. Here, we provide evidence that a subset of mRNAs encoding tail-anchored proteins, including Sec61β and nesprin-2, is partially localized to the surface of the ER in mammalian cells. In particular, Sec61b mRNA can be targeted to, and later maintained on, the ER using both translation-dependent and -independent mechanisms. Our data suggests that this process is independent of p180 (also known as RRBP1), a known mRNA receptor on the ER, and the transmembrane domain recognition complex (TRC) pathway components, TRC40 (also known as ASNA1) and BAT3 (also known as BAG6). In addition, our data indicates that Sec61b mRNA might access translocon-bound ribosomes. Our results show that certain tail-anchored proteins are likely to be synthesized directly on the ER, and this facilitates their membrane insertion. Thus, it is clear that mammalian cells utilize multiple mechanisms to ensure efficient targeting of tail-anchored proteins to the surface of the ER. Highlighted Article: The mRNA encoding certain tail-anchored proteins is directly localized to the surface of the endoplasmic reticulum, facilitating the insertion of newly synthesized proteins into the membrane.
Collapse
Affiliation(s)
- Xianying A Cui
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| | - Hui Zhang
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| | - Lena Ilan
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| | - Ai Xin Liu
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| | - Iryna Kharchuk
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| | - Alexander F Palazzo
- University of Toronto, Department of Biochemistry, 1 King's College Circle, MSB Room 5336, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
10
|
Kappes MA, Miller CL, Faaberg KS. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes. Virology 2015; 481:51-62. [PMID: 25768891 DOI: 10.1016/j.virol.2015.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/15/2015] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA; Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
11
|
Marty NJ, Teresinski HJ, Hwang YT, Clendening EA, Gidda SK, Sliwinska E, Zhang D, Miernyk JA, Brito GC, Andrews DW, Dyer JM, Mullen RT. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:426. [PMID: 25237314 PMCID: PMC4154396 DOI: 10.3389/fpls.2014.00426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/12/2014] [Indexed: 05/21/2023]
Abstract
Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X({X≠E})) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b 5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins.
Collapse
Affiliation(s)
- Naomi J. Marty
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Howard J. Teresinski
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Yeen Ting Hwang
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Eric A. Clendening
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Elwira Sliwinska
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- Department of Plant Genetics, Physiology and Biotechnology, University of Technology and Life Sciences in BydgoszczBydgoszcz, Poland
| | - Daiyuan Zhang
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Ján A. Miernyk
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, University of MissouriColumbia, MO, USA
| | - Glauber C. Brito
- Instituto do Cancer do Estado de Sao Paulo, Fundacao Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - David W. Andrews
- Sunnybrook Research Institute and Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - John M. Dyer
- United States Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research CenterMaricopa, AZ, USA
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
- *Correspondence: Robert T. Mullen, Department of Molecular and Cellular, Biology, University of Guelph, Room 4470 Science Complex, 488 Gordon Street, Guelph, ON N1G 2W1, Canada e-mail:
| |
Collapse
|
12
|
Post-translational translocation into the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:2403-9. [PMID: 23266354 DOI: 10.1016/j.bbamcr.2012.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/26/2023]
Abstract
Proteins destined for the endomembrane system of eukaryotic cells are typically translocated into or across the membrane of the endoplasmic reticulum and this process is normally closely coupled to protein synthesis. However, it is becoming increasingly apparent that a significant proportion of proteins are targeted to and inserted into the ER membrane post-translationally, that is after their synthesis is complete. These proteins must be efficiently captured and delivered to the target membrane, and indeed a failure to do so may even disrupt proteostasis resulting in cellular dysfunction and disease. In this review, we discuss the mechanisms by which various protein precursors can be targeted to the ER and either inserted into or translocated across the membrane post-translationally. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
13
|
Mades A, Gotthardt K, Awe K, Stieler J, Döring T, Füser S, Prange R. Role of human sec63 in modulating the steady-state levels of multi-spanning membrane proteins. PLoS One 2012; 7:e49243. [PMID: 23166619 PMCID: PMC3499540 DOI: 10.1371/journal.pone.0049243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
The Sec61 translocon of the endoplasmic reticulum (ER) membrane forms an aqueous pore, allowing polypeptides to be transferred across or integrated into membranes. Protein translocation into the ER can occur co- and posttranslationally. In yeast, posttranslational translocation involves the heptameric translocase complex including its Sec62p and Sec63p subunits. The mammalian ER membrane contains orthologs of yeast Sec62p and Sec63p, but their function is poorly understood. Here, we analyzed the effects of excess and deficit Sec63 on various ER cargoes using human cell culture systems. The overexpression of Sec63 reduces the steady-state levels of viral and cellular multi-spanning membrane proteins in a cotranslational mode, while soluble and single-spanning ER reporters are not affected. Consistent with this, the knock-down of Sec63 increases the steady-state pools of polytopic ER proteins, suggesting a substrate-specific and regulatory function of Sec63 in ER import. Overexpressed Sec63 exerts its down-regulating activity on polytopic protein levels independent of its Sec62-interacting motif, indicating that it may not act in conjunction with Sec62 in human cells. The specific action of Sec63 is further sustained by our observations that the up-regulation of either Sec62 or two other ER proteins with lumenal J domains, like ERdj1 and ERdj4, does not compromise the steady-state level of a multi-spanning membrane reporter. A J domain-specific mutation of Sec63, proposed to weaken its interaction with the ER resident BiP chaperone, reduces the down-regulating capacity of excess Sec63, suggesting an involvement of BiP in this process. Together, these results suggest that Sec63 may perform a substrate-selective quantity control function during cotranslational ER import.
Collapse
Affiliation(s)
- Andreas Mades
- Department of Medicine III, Hematology and Oncology, Johannes Gutenberg-University School of Medicine, Mainz, Germany
| | - Katherina Gotthardt
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karin Awe
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jens Stieler
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tatjana Döring
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabine Füser
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Reinhild Prange
- Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
14
|
Brambillasca S, Altkrueger A, Colombo SF, Friederich A, Eickelmann P, Mark M, Borgese N, Solimena M. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail-anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J Biol Chem 2012; 287:41808-19. [PMID: 23048041 DOI: 10.1074/jbc.m112.376558] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome-wide association studies have led to the identification of numerous susceptibility genes for type 2 diabetes. Among them is Cdkal1, which is associated with reduced β-cell function and insulin release. Recently, CDKAL1 has been shown to be a methylthiotransferase that modifies tRNA(Lys) to enhance translational fidelity of transcripts, including the one encoding proinsulin. Here, we report that out of several CDKAL1 isoforms deposited in public databases, only isoform 1, which migrates as a 61-kDa protein by SDS-PAGE, is expressed in human islets and pancreatic insulinoma INS-1 and MIN6 cells. We show that CDKAL1 is a novel member of the tail-anchored protein family and exploits the TCR40/Get3-assisted pathway for insertion of its C-terminal transmembrane domain into the endoplasmic reticulum. Using endo-β-N-acetylglucosaminidase H and peptide:N-glycosidase F sensitivity assays on CDKAL1 constructs carrying an N-glycosylation site within the luminal domain, we further established that CDKAL1 is an endoplasmic reticulum-resident protein. Moreover, we observed that silencing CDKAL1 in INS-1 cells reduces the expression of secretory granule proteins prochromogranin A and proICA512/ICA512-TMF, in addition to proinsulin and insulin. This correlated with reduced glucose-stimulated insulin secretion. Taken together, our findings provide new insight into the role of CDKAL1 in insulin-producing cells and help to understand its involvement in the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Silvia Brambillasca
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Haßdenteufel S, Tatzelt J, Kreutzer B, Edelmann L, Krause E, Rettig J, Somlo S, Zimmermann R, Dudek J. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 2012; 125:1958-69. [PMID: 22375059 PMCID: PMC4074215 DOI: 10.1242/jcs.096727] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2011] [Indexed: 01/06/2023] Open
Abstract
Co-translational transport of polypeptides into the endoplasmic reticulum (ER) involves the Sec61 channel and additional components such as the ER lumenal Hsp70 BiP and its membrane-resident co-chaperone Sec63p in yeast. We investigated whether silencing the SEC61A1 gene in human cells affects co- and post-translational transport of presecretory proteins into the ER and post-translational membrane integration of tail-anchored proteins. Although silencing the SEC61A1 gene in HeLa cells inhibited co- and post-translational transport of signal-peptide-containing precursor proteins into the ER of semi-permeabilized cells, silencing the SEC61A1 gene did not affect transport of various types of tail-anchored protein. Furthermore, we demonstrated, with a similar knockdown approach, a precursor-specific involvement of mammalian Sec63 in the initial phase of co-translational protein transport into the ER. By contrast, silencing the SEC62 gene inhibited only post-translational transport of a signal-peptide-containing precursor protein.
Collapse
Affiliation(s)
- Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Julia Benedix
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Sorin V. Fedeles
- Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8029, USA
| | - Stefan Schorr
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Claudia Schirra
- Institute of Physiology, Saarland University, D-66421, Homburg, Germany
| | - Nico Schäuble
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Carolin Jalal
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Markus Greiner
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Sarah Haßdenteufel
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University and German Center for Neurodegenerative Diseases, D-80336 Munich, Germany
| | - Birgit Kreutzer
- Clinic of Urology and Pediatric Urology, Saarland University Hospital, D-66421 Homburg, Germany
| | - Ludwig Edelmann
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg, Germany
| | - Elmar Krause
- Institute of Physiology, Saarland University, D-66421, Homburg, Germany
| | - Jens Rettig
- Institute of Physiology, Saarland University, D-66421, Homburg, Germany
| | - Stefan Somlo
- Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8029, USA
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland UniversityD-66421, Homburg, Germany
| |
Collapse
|
16
|
Johnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, High S. TRC40 can deliver short secretory proteins to the Sec61 translocon. J Cell Sci 2012; 125:3612-20. [PMID: 22505607 PMCID: PMC3445324 DOI: 10.1242/jcs.102608] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Whilst the co-translational translocation of nascent proteins across the mammalian endoplasmic reticulum (ER) is well defined, the capacity of this organelle for post-translational translocation is poorly delineated. Here we identify two human secretory protein precursors, apelin and statherin, as bona fide substrates for post-translational translocation across the ER membrane. Further studies, in combination with Hyalophora cecropia preprocecropin A (ppcecA), show that all three proteins bind to TRC40 and can utilise this component for their delivery to the ER membrane in a well-established in vitro system. However, ppcecA is not an obligate TRC40 substrate, and it can also be delivered to the ER by an alternative TRC40-independent pathway. Upon arrival at the ER membrane, these short secretory proteins appear to be ubiquitously transported across the ER membrane through the Sec61 translocon, apparently irrespective of their delivery route. We speculate that the post-translational translocation of secretory proteins in higher eukaryotes is more prevalent than previously acknowledged.
Collapse
Affiliation(s)
- Nicholas Johnson
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
17
|
Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 2011; 12:787-98. [PMID: 22086371 DOI: 10.1038/nrm3226] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each.
Collapse
|
18
|
Abell BM, Mullen RT. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells. PLANT CELL REPORTS 2011; 30:137-51. [PMID: 20878326 DOI: 10.1007/s00299-010-0925-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 05/24/2023]
Abstract
Tail-anchored (TA) proteins are special class of integral membrane proteins that in recent years have received a considerable amount of attention due to their diverse cellular functions and unique targeting and insertion mechanisms. Defined by the presence of a single, hydrophobic membrane-spanning domain at or near their C terminus, TA proteins must be inserted into membranes post-translationally and are orientated such that their larger N-terminal domain (most often the functional domain) faces the cytosol, while their shorter C-terminal domain faces the interior of the organelle. The C-terminal domain of TA proteins also usually contains the information responsible for their selective targeting to the proper subcellular membrane, a process that, based primarily on studies with yeasts and mammals, appears to be highly complex due to the presence of multiple pathways. Within this context, we discuss here the biogenesis of plant TA proteins and the potential for hundreds of new TA proteins identified via bioinformatics screens to contribute to the already remarkable number of roles that this class of membrane proteins participates in throughout plant growth and development.
Collapse
Affiliation(s)
- Ben M Abell
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK.
| | | |
Collapse
|
19
|
Rabu C, Schmid V, Schwappach B, High S. Biogenesis of tail-anchored proteins: the beginning for the end? J Cell Sci 2010; 122:3605-12. [PMID: 19812306 DOI: 10.1242/jcs.041210] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tail-anchored proteins are a distinct class of integral membrane proteins located in several eukaryotic organelles, where they perform a diverse range of functions. These proteins have in common the C-terminal location of their transmembrane anchor and the resulting post-translational nature of their membrane insertion, which, unlike the co-translational membrane insertion of most other proteins, is not coupled to ongoing protein synthesis. The study of tail-anchored proteins has provided a paradigm for understanding the components and pathways that mediate post-translational biogenesis of membrane proteins at the endoplasmic reticulum. In this Commentary, we review recent studies that have converged at a consensus regarding the molecular mechanisms that underlie this process--namely, that multiple pathways underlie the biogenesis of tail-anchored proteins at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Catherine Rabu
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
20
|
Abstract
The default pathway of cell-surface T-cell receptor (TCR) complex formation, and the subsequent transport to the membrane, is thought to entail endoplasmic reticulum (ER) localization followed by proteasome degradation of the unassembled chains. We show herein an alternative pathway: short, incomplete peptide versions of TCRbeta naturally occur in the thymus. Such peptides, which have minimally lost the leader sequence or have been massively truncated, leaving only the very C terminus intact, are sorted preferentially to the mitochondrion. As a consequence of the mitochondrial localization, apoptotic cell death is induced. Structure function analysis showed that both the specific localization and induction of apoptosis depend on the transmembrane domain (TMD) and associated residues at the COOH-terminus of TCR. Truncated forms of TCR, such as the short peptides that we detected in the thymus, may be products of protein degradation within thymocytes. Alternatively, they may occur through the translation of truncated mRNAs resulting from unfruitful rearrangement or from germline transcription. It is proposed that mitochondria serve as a subcellular sequestration site for incomplete TCR molecules.
Collapse
|
21
|
Rabu C, Wipf P, Brodsky JL, High S. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J Biol Chem 2008; 283:27504-27513. [PMID: 18667436 PMCID: PMC2562055 DOI: 10.1074/jbc.m804591200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Indexed: 11/06/2022] Open
Abstract
Tail-anchored (TA) protein synthesis at the endoplasmic reticulum (ER) represents a distinct and novel process that provides a paradigm for understanding post-translational membrane insertion in eukaryotes. The major route for delivering TA proteins to the ER requires both ATP and one or more cytosolic factors that facilitate efficient membrane insertion. Until recently, the identity of these cytosolic components was elusive, but two candidates have now been suggested to promote ATP-dependent TA protein integration. The first is the cytosolic chaperone complex of Hsp40/Hsc70, and the second is a novel ATPase denoted Asna-1 or TRC40. In this study we focus on the role of the Hsp40/Hsc70 complex in promoting TA protein biogenesis at the ER. We show that the membrane integration of most TA proteins is stimulated by Hsp40/Hsc70 when using purified components and a reconstituted system. In contrast, when both Hsp40/Hsc70 and Asna-1/TRC40 are provided as a complete system, small molecule inhibition of Hsp40/Hsc70 indicates that only a subset of TA proteins are obligatory clients for this chaperone-mediated delivery route. We show that the hydrophobicity of the TA region dictates whether a precursor is delivered to the ER via the Hsp40/Hsc70 or Asna-1/TRC40-dependent route, and we conclude that these distinct cytosolic ATPases are responsible for two different ATP-dependent pathways of TA protein biogenesis.
Collapse
Affiliation(s)
- Catherine Rabu
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
22
|
Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D. Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 2008; 121:1990-8. [DOI: 10.1242/jcs.024034] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tail-anchored proteins form a distinct class of membrane proteins that are found in all intracellular membranes exposed to the cytosol. These proteins have a single membrane insertion sequence at their C-terminus and display a large N-terminal portion to the cytosol. Despite their importance for various cellular processes, the mechanisms by which these proteins are recognized at and inserted into their corresponding target membrane remained largely unclear. Here we address this issue and investigate the biogenesis of tail-anchored proteins residing in the mitochondrial outer membrane. To that goal we developed a highly specific assay to monitor the membrane insertion of the model tail-anchored protein Fis1. Using this assay, we show that in contrast to all other import pathways in yeast mitochondria, none of the import components at the outer membrane is involved in the insertion process of Fis1. Both the steady-state levels of Fis1 and its in vitro insertion into isolated mitochondria were unaffected when mitochondria mutated in known import factors were analyzed. Fis1 was inserted into lipid vesicles, and importantly, elevated ergosterol contents in these vesicles inhibited this insertion. Collectively, these results suggest that Fis1 is inserted into mitochondria in a novel pathway where the unique lipid composition of the mitochondrial outer membrane contributes to the selectivity of the process. Thus, this work demonstrates a novel role for lipids in the biogenesis of mitochondrial protein.
Collapse
Affiliation(s)
- Christian Kemper
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Shukry J. Habib
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Gertraud Engl
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | - Petra Heckmeyer
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Kai S. Dimmer
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Favaloro V, Spasic M, Schwappach B, Dobberstein B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J Cell Sci 2008; 121:1832-40. [PMID: 18477612 PMCID: PMC2727622 DOI: 10.1242/jcs.020321] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tail-anchored (TA) proteins are characterised by a C-terminal transmembrane region that mediates post-translational insertion into the membrane of the endoplasmic reticulum (ER). We have investigated the requirements for membrane insertion of three TA proteins, RAMP4, Sec61beta and cytocrome b5. We show here that newly synthesised RAMP4 and Sec61beta can accumulate in a cytosolic, soluble complex with the ATPase Asna1 before insertion into ER-derived membranes. Membrane insertion of these TA proteins is stimulated by ATP, sensitive to redox conditions and blocked by alkylation of SH groups by N-ethylmaleimide (NEM). By contrast, membrane insertion of cytochrome b5 is not found to be mediated by Asna1, not stimulated by ATP and not affected by NEM or an oxidative environment. The Asna1-mediated pathway of membrane insertion of RAMP4 and Sec61beta may relate to functions of these proteins in the ER stress response.
Collapse
Affiliation(s)
| | | | | | - Bernhard Dobberstein
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Allianz, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Rehman S, Kapur N, Durgapal H, Panda SK. Subcellular localization of hepatitis E virus (HEV) replicase. Virology 2007; 370:77-92. [PMID: 17904184 DOI: 10.1016/j.virol.2007.07.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 06/07/2007] [Accepted: 07/31/2007] [Indexed: 11/20/2022]
Abstract
Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of approximately 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication.
Collapse
Affiliation(s)
- Shagufta Rehman
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|
25
|
Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 2007; 19:368-75. [PMID: 17629691 DOI: 10.1016/j.ceb.2007.04.019] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/18/2007] [Indexed: 11/28/2022]
Abstract
A large group of diverse, functionally important, and differently localized transmembrane proteins shares a particular membrane topology, consisting of a cytosolic N-terminal region, followed by a transmembrane domain close to the C-terminus. Because of their structure, these C-tail-anchored (TA) proteins must insert into all their target membranes by post-translational pathways. Recent work, based on the development of stringent and sensitive biochemical assays, has demonstrated that novel unexplored mechanisms underlie these post-translational targeting and membrane insertion pathways. Unravelling these pathways will shed light on the biosynthesis and regulation of an important group of membrane proteins and is likely to lead to new concepts in the field of membrane biogenesis.
Collapse
Affiliation(s)
- Nica Borgese
- National Research Council Institute for Neuroscience and Department of Medical Pharmacology, University of Milan, via Vanvitelli 32, 20129 Milano, Italy
| | | | | |
Collapse
|
26
|
Abstract
The integration of tail-anchored membrane proteins at the endoplasmic reticulum occurs via a specialised ATP-dependent pathway, but the cytosolic factors involved have proven elusive. A novel ATPase that mediates this process has now been identified.
Collapse
Affiliation(s)
- Catherine Rabu
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | |
Collapse
|
27
|
Abell BM, Rabu C, Leznicki P, Young JC, High S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J Cell Sci 2007; 120:1743-51. [PMID: 17456552 DOI: 10.1242/jcs.002410] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tail-anchored (TA) proteins provide an ideal model for studying post-translational integration at the endoplasmic reticulum (ER) of eukaryotes. There are multiple pathways for delivering TA proteins from the cytosol to the ER membrane yet, whereas an ATP-dependent route predominates, none of the cytosolic components involved had been identified. In this study we have directly addressed this issue and identify novel interactions between a model TA protein and the two cytosolic chaperones Hsp40 and Hsc70. To investigate their function, we have reconstituted the membrane integration of TA proteins using purified components. Remarkably, we find that a combination of Hsc70 and Hsp40 can completely substitute for the ATP-dependent factors present in cytosol. On the basis of this in vitro analysis, we conclude that this chaperone pair can efficiently facilitate the ATP-dependent integration of TA proteins.
Collapse
Affiliation(s)
- Benjamin M Abell
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
28
|
Stefanovic S, Hegde RS. Identification of a Targeting Factor for Posttranslational Membrane Protein Insertion into the ER. Cell 2007; 128:1147-59. [PMID: 17382883 DOI: 10.1016/j.cell.2007.01.036] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/08/2006] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Hundreds of proteins are anchored in intracellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although these tail-anchored (TA) proteins serve numerous essential roles in cells, components of their targeting and insertion pathways have long remained elusive. Here we reveal a cytosolic TMD recognition complex (TRC) that targets TA proteins for insertion into the ER membrane. The highly conserved, 40 kDa ATPase subunit of TRC (which we termed TRC40) was identified as Asna-1. TRC40/Asna-1 interacts posttranslationally with TA proteins in a TMD-dependent manner for delivery to a proteinaceous receptor at the ER membrane. Subsequent release from TRC40/Asna-1 and insertion into the membrane depends on ATP hydrolysis. Consequently, an ATPase-deficient mutant of TRC40/Asna-1 dominantly inhibited TA protein insertion selectively without influencing other translocation pathways. Thus, TRC40/Asna-1 represents an integral component of a posttranslational pathway of membrane protein insertion whose targeting is mediated by TRC.
Collapse
Affiliation(s)
- Sandra Stefanovic
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Henderson M, Hwang Y, Dyer J, Mullen R, Andrews D. The C-terminus of cytochrome b5 confers endoplasmic reticulum specificity by preventing spontaneous insertion into membranes. Biochem J 2007; 401:701-9. [PMID: 16984229 PMCID: PMC1770840 DOI: 10.1042/bj20060990] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular mechanisms that determine the correct subcellular localization of proteins targeted to membranes by tail-anchor sequences are poorly defined. Previously, we showed that two isoforms of the tung oil tree [Vernicia (Aleurites) fordii] tail-anchored Cb5 (cytochrome b5) target specifically to ER (endoplasmic reticulum) membranes both in vivo and in vitro [Hwang, Pelitire, Henderson, Andrews, Dyer and Mullen (2004) Plant Cell 16, 3002-3019]. In the present study, we examine the targeting of various tung Cb5 fusion proteins and truncation mutants to purified intracellular membranes in vitro in order to assess the importance of the charged CTS (C-terminal sequence) in targeting to specific membranes. Removal of the CTS from tung Cb5 proteins resulted in efficient binding to both ER and mitochondria. Results from organelle competition, liposome-binding and membrane proteolysis experiments demonstrated that removal of the CTS results in spontaneous insertion of tung Cb5 proteins into lipid bilayers. Our results indicate that the CTSs from plant Cb5 proteins provide ER specificity by preventing spontaneous insertion into incorrect subcellular membranes.
Collapse
Affiliation(s)
- Matthew P. A. Henderson
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | - Yeen Ting Hwang
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - John M. Dyer
- ‡US Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, U.S.A
| | - Robert T. Mullen
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W. Andrews
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Brambillasca S, Yabal M, Makarow M, Borgese N. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J Cell Biol 2006; 175:767-77. [PMID: 17130291 PMCID: PMC2064676 DOI: 10.1083/jcb.200608101] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/31/2006] [Indexed: 11/22/2022] Open
Abstract
Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.
Collapse
Affiliation(s)
- Silvia Brambillasca
- Cellular and Molecular Pharmacology Section, Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milan, 20129 Milan, Italy
| | | | | | | |
Collapse
|
31
|
O'Toole N, Min XJ, Butler G, Storms R, Tsang A. Sequence-Based Analysis of Fungal Secretomes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1874-5334(06)80015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
32
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
33
|
Brambillasca S, Yabal M, Soffientini P, Stefanovic S, Makarow M, Hegde RS, Borgese N. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J 2005; 24:2533-42. [PMID: 15973434 PMCID: PMC1176458 DOI: 10.1038/sj.emboj.7600730] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/06/2005] [Indexed: 11/08/2022] Open
Abstract
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.
Collapse
Affiliation(s)
- Silvia Brambillasca
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Monica Yabal
- Program of Cellular Biotechnology, Institute of Biotechnology and Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Paolo Soffientini
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
| | - Sandra Stefanovic
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marja Makarow
- Program of Cellular Biotechnology, Institute of Biotechnology and Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | - Ramanujan S Hegde
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, 18 Library Drive, Bldg. 18, Room 101, Bethesda, MD 20892, USA. Tel.: +1 301 496 4855; Fax: +1 301 402 0078; E-mail:
| | - Nica Borgese
- CNR Institute of Neuroscience – Cell Mol Pharmacology – and Department of Medical Pharmacology, University of Milan, Milan, Italy
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia (CZ), Italy
- CNR Institute of Neuroscience/Cell Mol Pharmacology, via Vanvitelli 32, 20129 Milano, Italy. Tel.: +39 02 503 16971; Fax: +39 02 749 0574; E-mail:
| |
Collapse
|
34
|
Crawshaw S, Martoglio B, Meacock S, High S. A misassembled transmembrane domain of a polytopic protein associates with signal peptide peptidase. Biochem J 2005; 384:9-17. [PMID: 15373738 PMCID: PMC1134083 DOI: 10.1042/bj20041216] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The endoplasmic reticulum (ER) exerts a quality control over newly synthesized proteins and a variety of components have been implicated in the specific recognition of aberrant or misfolded polypeptides. We have exploited a site-specific cross-linking approach to search for novel ER components that may specifically recognize the misassembled transmembrane domains present in truncated polytopic proteins. We find that a single probe located in the transmembrane domain of a truncated opsin fragment is cross-linked to several ER proteins. These components are distinct from subunits of the Sec61 complex and represent a 'post-translocon' environment. In this study, we identify one of these post-translocon cross-linking partners as the signal peptide peptidase (SPP). We find that the interaction of truncated opsin chains with SPP is mediated by its second transmembrane domain, and propose that this interaction may contribute to the recognition of misassembled transmembrane domains during membrane protein quality control at the ER.
Collapse
Affiliation(s)
- Samuel G. Crawshaw
- *Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Bruno Martoglio
- †Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), ETH-Hoenggerberg, 8093 Zürich, Switzerland
| | - Suzanna L. Meacock
- *Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
| | - Stephen High
- *Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Wilson CM, Kraft C, Duggan C, Ismail N, Crawshaw SG, High S. Ribophorin I associates with a subset of membrane proteins after their integration at the sec61 translocon. J Biol Chem 2004; 280:4195-206. [PMID: 15556939 DOI: 10.1074/jbc.m410329200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of membrane proteins at the endoplasmic reticulum (ER) involves the integration of the polypeptide at the Sec61 translocon together with a number of maturation events, such as N-glycosylation and signal sequence cleavage, that can occur both during and after synthesis. To better understand the events occurring after the release of the nascent chain from the ER translocon, we investigated the ER components adjacent to the transmembrane-spanning domain of a well characterized fragment of the amyloid precursor protein. Using individual cysteine residues as site-specific cross-linking targets, we found that several ER components can be cross-linked to the fully integrated polypeptide. We identified strong adducts with both the ribophorin I subunit of the oligosaccharyltransferase complex and the 25-kDa subunit of the signal peptidase complex. Focusing on the association with ribophorin I, we found that adduct formation occurred exclusively after the exit of the nascent chain from the Sec61 translocon and was unaffected by the N-glycosylation status of the associated precursor. Only a subset of newly made membrane proteins associated with ribophorin I in vitro, and we could recapitulate a specific association between the amyloid precursor protein fragment and ribophorin I in vivo. Taken together, our data suggest a model where ribophorin I may function to retain potential substrates in close proximity to the catalytic subunit of the oligosaccharyltransferase and thereby stochastically improve the efficiency of the N-glycosylation reaction in vivo. Alternatively ribophorin I may be multifunctional and facilitate additional processes, for example, ER quality control.
Collapse
Affiliation(s)
- Cornelia M Wilson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
High S, Abell BM. Tail-anchored protein biosynthesis at the endoplasmic reticulum: the same but different. Biochem Soc Trans 2004; 32:659-62. [PMID: 15493981 DOI: 10.1042/bst0320659] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The post-translational integration of tail-anchored proteins at the endoplasmic reticulum represents a novel and distinct pathway for membrane protein synthesis. Studies of various precursors, exemplified by the synaptobrevins and cytochrome b5, indicate that multiple routes may facilitate their biosynthesis. There is clear evidence that both cytosolic factors and membrane components facilitate the efficient membrane insertion of at least some tail-anchored proteins. However, the nature of these mediators is currently unknown and their identification will be an essential step in defining the molecular basis of tail-anchored protein biogenesis.
Collapse
Affiliation(s)
- S High
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
37
|
Abell BM, Pool MR, Schlenker O, Sinning I, High S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J 2004; 23:2755-64. [PMID: 15229647 PMCID: PMC514945 DOI: 10.1038/sj.emboj.7600281] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 05/28/2004] [Indexed: 11/08/2022] Open
Abstract
Signal recognition particle (SRP) plays a central role in the delivery of classical secretory and membrane proteins to the endoplasmic reticulum (ER). All nascent chains studied to date dissociate from SRP once released from the ribosome, thereby supporting a strictly cotranslational mode of action for eukaryotic SRP. We now report a novel post-translational function for SRP in the targeting of tail-anchored (TA) proteins to the ER. TA proteins possess a hydrophobic membrane insertion sequence at their C-terminus such that it can only emerge from the ribosome after translation is terminated. We show that SRP can associate post-translationally with this type of ER-targeting signal, and deliver newly synthesised TA proteins to the ER membrane by a pathway dependent upon GTP and the SRP receptor. We find that dependency upon this SRP-dependent route is precursor specific, and propose a unifying model to describe the biogenesis of TA proteins in vivo.
Collapse
Affiliation(s)
- Benjamin M Abell
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Martin R Pool
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Oliver Schlenker
- Biochemiezentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Biochemiezentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, UK
- School of Biological Sciences, University of Manchester, Smith Building, Oxford Road, Manchester M13 9PT, UK. Tel.: +44 161 275 5070; Fax: +44 161 275 5082; E-mail:
| |
Collapse
|
38
|
Schinzel A, Kaufmann T, Borner C. Bcl-2 family members: integrators of survival and death signals in physiology and pathology [corrected]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:95-105. [PMID: 14996494 DOI: 10.1016/j.bbamcr.2003.09.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022]
Abstract
The members of the Bcl-2 family of proteins are crucial regulators of apoptosis. In order to determine cell fate, these proteins must be targeted to distinct intracellular membranes, including the mitochondrial outer membrane (MOM), the membrane of the endoplasmic reticulum (ER) and its associated nuclear envelope. The targeting sequences and mechanisms that mediate the specificity of these proteins for a particular cellular membrane remain poorly defined. Several Bcl-2 family members have been reported to be tail-anchored via their predicted hydrophobic COOH-terminal transmembrane domains (TMDs). Tail-anchoring imposes a posttranslational mechanism of membrane insertion on the already folded protein, suggesting that the transient binding of cytosolic chaperone proteins to the hydrophobic TMD may be an important regulatory event in the targeting process. The TMD of certain family members is initially concealed and only becomes available for targeting and membrane insertion in response to apoptotic stimuli. These proteins either undergo a conformational change, posttranslational modification or a combination of these events enabling them to translocate to sites at which they are functional. Some Bcl-2 family members lack a TMD, but nevertheless localize to the MOM or the ER membrane during apoptosis where they execute their functions. In this review, we will focus on the intracellular targeting of Bcl-2 family members and the mechanisms by which they translocate to their sites of action. Furthermore, we will discuss the posttranslational modifications which regulate these events.
Collapse
Affiliation(s)
- Anna Schinzel
- Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Breisachertstrasse 66, D-79106 Fribourg, Germany
| | | | | |
Collapse
|
39
|
Borgese N, Colombo S, Pedrazzini E. The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane. J Cell Biol 2003; 161:1013-9. [PMID: 12821639 PMCID: PMC2173004 DOI: 10.1083/jcb.200303069] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the protein's function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet.
Collapse
Affiliation(s)
- Nica Borgese
- Consiglio Nazionale delle Ricerche Institute for Neuroscience, Cellular and Molecular Pharmacology Section, via Vanvitelli 32, 20129 Milano, Italy.
| | | | | |
Collapse
|