1
|
Nie Q, Yang J, Zhou X, Li N, Zhang J. The Role of Protein Disulfide Isomerase Inhibitors in Cancer Therapy. ChemMedChem 2025; 20:e202400590. [PMID: 39319369 DOI: 10.1002/cmdc.202400590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Protein disulfide isomerase (PDI) is a member of the mercaptan isomerase family, primarily located in the endoplasmic reticulum (ER). At least 21 PDI family members have been identified. PDI plays a key role in protein folding, correcting misfolded proteins, and catalyzing disulfide bond formation, rearrangement, and breaking. It also acts as a molecular chaperone. Dysregulation of PDI activity is thus linked to diseases such as cancer, infections, immune disorders, thrombosis, neurodegenerative diseases, and metabolic disorders. In particular, elevated intracellular PDI levels can enhance cancer cell proliferation, metastasis, and invasion, making it a potential cancer marker. Cancer cells require extensive protein synthesis, with disulfide bond formation by PDI being a critical producer. Thus, cancer cells have higher PDI levels than normal cells. Targeting PDI can induce ER stress and activate the Unfolded Protein Response (UPR) pathway, leading to cancer cell apoptosis. This review discusses the structure and function of PDI, PDI inhibitors in cancer therapy, and the limitations of current inhibitors, proposing especially future directions for developing new PDI inhibitors.
Collapse
Affiliation(s)
- Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junwei Yang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Na Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Evalt ED, Govindaraj S, Jones MT, Ozsoy N, Chen H, Russell AE. Endoplasmic reticulum stress alters myelin associated protein expression and extracellular vesicle composition in human oligodendrocytes. Front Mol Biosci 2024; 11:1432945. [PMID: 39411401 PMCID: PMC11473301 DOI: 10.3389/fmolb.2024.1432945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Myelination of the central nervous system is mediated by specialized glial cells called oligodendrocytes (OLs). Multiple sclerosis (MS) is characterized by loss of myelination and subsequent clinical symptoms that can severely impact the quality of life and mobility of those affected by the disease. The major protein components of myelin sheaths are synthesized in the endoplasmic reticulum (ER), and ER stress has been observed in patients with MS. Extracellular vesicles (EVs) have been shown to carry bioactive cargo and have the potential to be utilized as noninvasive biomarkers for various diseases. In the current study, we sought to determine how ER stress in OLs affected the production of key myelination proteins and EV release and composition. To achieve this, tunicamycin was used to induce ER stress in a human oligodendroglioma cell line and changes in myelination protein expression and markers of autophagy were assessed. EVs were also separated from the conditioned cell culture media through size exclusion chromatography and characterized. Significant reductions in the expression of myelination proteins and alterations to autophagosome formation were observed in cells undergoing ER stress. EVs released from these cells were slightly smaller relative to controls, and had strong expression of LC3B. We also observed significant upregulation of miR-29a-3p in ER stress EVs when compared to controls. Taken together, these data suggest that ER stress negatively impacts production of key myelination proteins and induces cells to release EVs that may function to preemptively activate autophagic pathways in neighboring cells.
Collapse
Affiliation(s)
- Ethan D. Evalt
- Department of Biology, School of Science, The Behrend College, Erie, PA, United States
| | - Saranraj Govindaraj
- Department of Biology, School of Science, The Behrend College, Erie, PA, United States
| | - Madison T. Jones
- Department of Biology, School of Science, The Behrend College, Erie, PA, United States
| | - Nesve Ozsoy
- Department of Biology, School of Science, The Behrend College, Erie, PA, United States
| | - Han Chen
- The Transmission Electron Microscopy (TEM) Core, Penn State College of Medicine, Hershey, PA, United States
| | - Ashley E. Russell
- Department of Biology, School of Science, The Behrend College, Erie, PA, United States
- Magee Womens Research Institute, Allied Member, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Melo EP, El-Guendouz S, Correia C, Teodoro F, Lopes C, Martel PJ. A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. Antioxid Redox Signal 2024; 41:181-200. [PMID: 38497737 DOI: 10.1089/ars.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.
Collapse
Affiliation(s)
- Eduardo P Melo
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | | - Cátia Correia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Fernando Teodoro
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Carlos Lopes
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | |
Collapse
|
4
|
Sanyasi C, Balakrishnan SS, Chinnasamy T, Venugopalan N, Kandavelu P, Batra-Safferling R, Muthuvel SK. Insights on the dynamic behavior of protein disulfide isomerase in the solution environment through the SAXS technique. In Silico Pharmacol 2024; 12:23. [PMID: 38584776 PMCID: PMC10997565 DOI: 10.1007/s40203-024-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 04/09/2024] Open
Abstract
The dynamic behavior of Protein Disulfide Isomerase (PDI) in an aqueous solution environment under physiologically active pH has been experimentally verified in this study using Small Angle X-ray Scattering (SAXS) technique. The structural mechanism of dimerization for full-length PDI molecules and co-complex with two renowned substrates has been comprehensively discussed. The structure models obtained from the SAXS data of PDI purified from bovine liver display behavior duality between unaccompanied-enzyme and after engaged with substrates. The analysis of SAXS data revealed that PDI exists as a homo-dimer in the solution environment, and substrate induction provoked its segregation into monomer to enable the enzyme to interact systematically with incoming clients. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00198-0.
Collapse
Affiliation(s)
- Chandrasekar Sanyasi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Susmida Seni Balakrishnan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Thirunavukkarasu Chinnasamy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Nagarajan Venugopalan
- GMCA Structural Biology Facility, X-Ray Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Palani Kandavelu
- SER-CAT and The Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30601 USA
| | - Renu Batra-Safferling
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Suresh Kumar Muthuvel
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| |
Collapse
|
5
|
Ye ZW, Zhang J, Aslam M, Blumental-Perry A, Tew KD, Townsend DM. Protein disulfide isomerase family mediated redox regulation in cancer. Adv Cancer Res 2023; 160:83-106. [PMID: 37704292 PMCID: PMC10586477 DOI: 10.1016/bs.acr.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Protein disulfide isomerase (PDI) and its superfamilies are mainly endoplasmic reticulum (ER) resident proteins with essential roles in maintaining cellular homeostasis, via thiol oxidation/reduction cycles, chaperoning, and isomerization of client proteins. Since PDIs play an important role in ER homeostasis, their upregulation supports cell survival and they are found in a variety of cancer types. Despite the fact that the importance of PDI to tumorigenesis remains to be understood, it is emerging as a new therapeutic target in cancer. During the past decade, several PDI inhibitors has been developed and commercialized, but none has been approved for clinical use. In this review, we discuss the properties and redox regulation of PDIs within the ER and provide an overview of the last 5 years of advances regarding PDI inhibitors.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Muhammad Aslam
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Blumental-Perry
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Danyelle M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
7
|
Unravelling the neuroprotective mechanisms of carotenes in differentiated human neural cells: Biochemical and proteomic approaches. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100088. [PMID: 35415676 PMCID: PMC8991711 DOI: 10.1016/j.fochms.2022.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Total mixed carotenes (TMC) protect differentiated human neural cells against 6-hydroxydopamine-induced toxicity. TMC elevated the antioxidant enzymes activities and suppressed generation of reactive oxygen species. TMC augmented the dopamine and tyrosine hydroxylase levels. TMC exerted differential protein expression in human neural cells.
Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/β isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- 6-hydroxydopamine
- AD, Alzheimer’s disease
- BCM, beta-carotene-15,15′-monooxygenase
- CAT, catalase
- DRD2, dopamine receptor D2
- Dopamine
- ER, endoplasmic reticulum
- GO, gene ontology
- HSP, Heat shock protein
- HSPA9, Heat shock protein family A (HSP70) member 9
- HSPD1, Heat shock protein family D (HSP60) member 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS/MS, liquid chromatography-double mass spectrometry
- LDH, lactate dehydrogenase
- MCODE, minimal common oncology data elements
- MS, mass spectrometry
- Mixed carotene
- PD, Parkinson's disease
- PDI, protein disulphide isomerases
- PHB2, prohibitin 2
- PPI, protein–protein interaction
- RAN, Ras-related nuclear protein
- ROS, reactive oxygen species
- RPs, ribosomal proteins
- SH-SY5Y neuroblastoma cells
- SOD, superoxide dismutase
- TH, tyrosine hydroxylase
- TMC, total mixed carotene complex
Collapse
|
8
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Abdrabbo M, Birch CM, Brandt M, Cicigoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrke AC, Gerzema AEL, Hansen A, Henseler EJ, Huelsbeck AC, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, Reynolds JH, Severson NJ, Sherman BA, Sillman HW, Smith MA, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Wackett MJ, Wozney AJ, Bhattacharyya S, Hati S. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Sci 2021; 30:2206-2220. [PMID: 34558135 PMCID: PMC8521296 DOI: 10.1002/pro.4190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease.
Collapse
Affiliation(s)
- Mobeen Abdrabbo
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Cole M Birch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael Brandt
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Kelsey A Cicigoi
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Stephen J Coffey
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Connor C Dolan
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hannah Dvorak
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ava C Gehrke
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Audrey E L Gerzema
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Abby Hansen
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ethan J Henseler
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alyssa C Huelsbeck
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ben LaBerge
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Caterra M Leavens
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Christine N Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Allison C Lindquist
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Rickaela K Ludwig
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Jacob H Reynolds
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Nathaniel J Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Brandon A Sherman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hunter W Sillman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Macey A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Marissa J Snortheim
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Levi M Svaren
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily C Vanderpas
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Miles J Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alec J Wozney
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
11
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J. PDIA3: Structure, functions and its potential role in viral infections. Biomed Pharmacother 2021; 143:112110. [PMID: 34474345 DOI: 10.1016/j.biopha.2021.112110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
12
|
Meng J, Wang L, Wang C, Zhao G, Wang H, Xu B, Guo X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104830. [PMID: 33993956 DOI: 10.1016/j.pestbp.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
PDIA6 is a member of the protein disulfide isomerase (PDI) family, shows disulfide isomerase activity and oxidoreductase activity, and can act as a molecular chaperone. Its biological functions include modulating apoptosis, regulating the proliferation and invasion of cancer cells, supporting thrombosis and modulating insulin secretion. However, the roles of PDIA6 in Apis cerana cerana are poorly understood. Herein, we obtained the PDIA6 gene from A. cerana cerana (AccPDIA6). We investigated the expression patterns of AccPDIA6 in response to oxidative stress induced by H2O2, UV, HgCl2, extreme temperatures (4 °C, 42 °C) and pesticides (thiamethoxam and hexythiazox) and found that AccPDIA6 was upregulated by these treatments. Western blot analysis indicated that AccPDIA6 was also upregulated by oxidative stress at the protein level. In addition, a survival test demonstrated that the survival rate of E. coli cells expressing AccPDIA6 increased under oxidative stress, suggesting a possible antioxidant function of AccPDIA6. In addition, we tested the transcripts of other antioxidant genes and found that some of them were downregulated in AccPDIA6 knockdown samples. It was also discovered that the antioxidant enzymatic activity of superoxide dismutase (SOD) decreased in AccPDIA6-silenced bees. Moreover, the survival rate of AccPDIA6 knockdown bees decreased under oxidative stress, implying that AccPDIA6 may function in the oxidative stress response by enhancing the viability of honeybees. Taken together, these results indicated that AccPDIA6 may play an essential role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Jie Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
13
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
14
|
Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants (Basel) 2021; 10:antiox10030497. [PMID: 33806982 PMCID: PMC8004975 DOI: 10.3390/antiox10030497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. Objectives: To establish whether PDI and Nox-1 cooperate to control platelet function. Methods: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. Results: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1−/− platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. Conclusions: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
Collapse
|
15
|
Powell LE, Foster PA. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med 2021; 10:2812-2825. [PMID: 33742523 PMCID: PMC8026947 DOI: 10.1002/cam4.3836] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
The protein disulphide isomerase (PDI) gene family is a large, diverse group of enzymes recognised for their roles in disulphide bond formation within the endoplasmic reticulum (ER). PDI therefore plays an important role in ER proteostasis, however, it also shows involvement in ER stress, a characteristic recognised in multiple disease states, including cancer. While the exact mechanisms by which PDI contributes to tumorigenesis are still not fully understood, PDI exhibits clear involvement in the unfolded protein response (UPR) pathway. The UPR acts to alleviate ER stress through the activation of ER chaperones, such as PDI, which act to refold misfolded proteins, promoting cell survival. PDI also acts as an upstream regulator of the UPR pathway, through redox regulation of UPR stress receptors. This demonstrates the pro‐protective roles of PDI and highlights PDI as a potential therapeutic target for cancer treatment. Recent research has explored the use of PDI inhibitors with PACMA 31 in particular, demonstrating promising anti‐cancer effects in ovarian cancer. This review discusses the properties and functions of PDI family members and focuses on their potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Lauren E Powell
- Institute of Metabolism and Systems Research (IMSR), Medical and Dental School, University of Birmingham, Birmingham, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), Medical and Dental School, University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
16
|
Poothong J, Jang I, Kaufman RJ. Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:115-143. [PMID: 34050864 DOI: 10.1007/978-3-030-67696-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.
Collapse
Affiliation(s)
- Juthakorn Poothong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Insook Jang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
17
|
Kajihara D, Hon CC, Abdullah AN, Wosniak J, Moretti AIS, Poloni JF, Bonatto D, Hashimoto K, Carninci P, Laurindo FRM. Analysis of splice variants of the human protein disulfide isomerase (P4HB) gene. BMC Genomics 2020; 21:766. [PMID: 33148170 PMCID: PMC7640458 DOI: 10.1186/s12864-020-07164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein Disulfide Isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily with crucial roles in endoplasmic reticulum proteostasis, implicated in many diseases. The family prototype PDIA1 is also involved in vascular redox cell signaling. PDIA1 is coded by the P4HB gene. While forced changes in P4HB gene expression promote physiological effects, little is known about endogenous P4HB gene regulation and, in particular, gene modulation by alternative splicing. This study addressed the P4HB splice variant landscape. RESULTS Ten protein coding sequences (Ensembl) of the P4HB gene originating from alternative splicing were characterized. Structural features suggest that except for P4HB-021, other splice variants are unlikely to exert thiol isomerase activity at the endoplasmic reticulum. Extensive analyses using FANTOM5, ENCODE Consortium and GTEx project databases as RNA-seq data sources were performed. These indicated widespread expression but significant variability in the degree of isoform expression among distinct tissues and even among distinct locations of the same cell, e.g., vascular smooth muscle cells from different origins. P4HB-02, P4HB-027 and P4HB-021 were relatively more expressed across each database, the latter particularly in vascular smooth muscle. Expression of such variants was validated by qRT-PCR in some cell types. The most consistently expressed splice variant was P4HB-021 in human mammary artery vascular smooth muscle which, together with canonical P4HB gene, had its expression enhanced by serum starvation. CONCLUSIONS Our study details the splice variant landscape of the P4HB gene, indicating their potential role to diversify the functional reach of this crucial gene. P4HB-021 splice variant deserves further investigation in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Daniela Kajihara
- Vascular Biology Laboratory, LIM-64, Heart Institute (InCor), University of Sao Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44, Annex 2, 9th floor, Sao Paulo, CEP 05403-000, Brazil.,Laboratory for Transcriptome Technology, Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aimi Naim Abdullah
- Laboratory for Transcriptome Technology, Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - João Wosniak
- Vascular Biology Laboratory, LIM-64, Heart Institute (InCor), University of Sao Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44, Annex 2, 9th floor, Sao Paulo, CEP 05403-000, Brazil
| | - Ana Iochabel S Moretti
- Vascular Biology Laboratory, LIM-64, Heart Institute (InCor), University of Sao Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44, Annex 2, 9th floor, Sao Paulo, CEP 05403-000, Brazil
| | - Joice F Poloni
- Department of Molecular Biology and Biotechnology, Biotechnology Center of the Federal University of Rio Grande do Sul, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Department of Molecular Biology and Biotechnology, Biotechnology Center of the Federal University of Rio Grande do Sul, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Kosuke Hashimoto
- Laboratory for Transcriptome Technology, Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory of Computational Biology, Institute for Protein Research, Osaka University, Osaka, 565-0871, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, Division of Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64, Heart Institute (InCor), University of Sao Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44, Annex 2, 9th floor, Sao Paulo, CEP 05403-000, Brazil.
| |
Collapse
|
18
|
Gansemer ER, McCommis KS, Martino M, King-McAlpin AQ, Potthoff MJ, Finck BN, Taylor EB, Rutkowski DT. NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. iScience 2020; 23:101116. [PMID: 32417402 PMCID: PMC7254477 DOI: 10.1016/j.isci.2020.101116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Many metabolic diseases disrupt endoplasmic reticulum (ER) homeostasis, but little is known about how metabolic activity is communicated to the ER. Here, we show in hepatocytes and other metabolically active cells that decreasing the availability of substrate for the tricarboxylic acid (TCA) cycle diminished NADPH production, elevated glutathione oxidation, led to altered oxidative maturation of ER client proteins, and attenuated ER stress. This attenuation was prevented when glutathione oxidation was disfavored. ER stress was also alleviated by inhibiting either TCA-dependent NADPH production or Glutathione Reductase. Conversely, stimulating TCA activity increased NADPH production, glutathione reduction, and ER stress. Validating these findings, deletion of the Mitochondrial Pyruvate Carrier-which is known to decrease TCA cycle activity and protect the liver from steatohepatitis-also diminished NADPH, elevated glutathione oxidation, and alleviated ER stress. Together, our results demonstrate a novel pathway by which mitochondrial metabolic activity is communicated to the ER through the relay of redox metabolites.
Collapse
Affiliation(s)
- Erica R Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle S McCommis
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Michael Martino
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Abdul Qaadir King-McAlpin
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Obesity Research Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brian N Finck
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| | - Eric B Taylor
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Obesity Research Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Schlotawa L, Wachs M, Bernhard O, Mayer FJ, Dierks T, Schmidt B, Radhakrishnan K. Recognition and ER Quality Control of Misfolded Formylglycine-Generating Enzyme by Protein Disulfide Isomerase. Cell Rep 2019; 24:27-37.e4. [PMID: 29972788 DOI: 10.1016/j.celrep.2018.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 11/19/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a fatal, inherited lysosomal storage disorder characterized by reduced activities of all sulfatases in patients. Sulfatases require a unique post-translational modification of an active-site cysteine to formylglycine that is catalyzed by the formylglycine-generating enzyme (FGE). FGE mutations that affect intracellular protein stability determine residual enzyme activity and disease severity in MSD patients. Here, we show that protein disulfide isomerase (PDI) plays a pivotal role in the recognition and quality control of MSD-causing FGE variants. Overexpression of PDI reduces the residual activity of unstable FGE variants, whereas inhibition of PDI function rescues the residual activity of sulfatases in MSD fibroblasts. Mass spectrometric analysis of a PDI+FGE variant covalent complex allowed determination of the molecular signature for FGE recognition by PDI. Our findings highlight the role of PDI as a disease modifier in MSD, which may also be relevant for other ER-associated protein folding pathologies.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Michaela Wachs
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Olaf Bernhard
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Franz J Mayer
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Karthikeyan Radhakrishnan
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany; Department of Cellular Biochemistry, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
20
|
Trostchansky A, Moore-Carrasco R, Fuentes E. Oxidative pathways of arachidonic acid as targets for regulation of platelet activation. Prostaglandins Other Lipid Mediat 2019; 145:106382. [PMID: 31634570 DOI: 10.1016/j.prostaglandins.2019.106382] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Platelet activation plays an important role in acute and chronic cardiovascular disease states. Multiple pathways contribute to platelet activation including those dependent upon arachidonic acid. Arachidonic acid is released from the platelet membrane by phospholipase A2 action and is then metabolized in the cytosol by specific arachidonic acid oxidation enzymes including prostaglandin H synthase, 12-lipoxygenase, and cytochrome P450 to produce pro- and anti-inflammatory eicosanoids. This review aims to analyze the role of arachidonic acid oxidation on platelet activation, the enzymes that use it as a substrate associated as novel therapeutics target for antiplatelet drugs.
Collapse
Affiliation(s)
- Andres Trostchansky
- Departamento de Bioquimica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca, Chile.
| |
Collapse
|
21
|
Beal DM, Bastow EL, Staniforth GL, von der Haar T, Freedman RB, Tuite MF. Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo. Antioxid Redox Signal 2019; 31:261-274. [PMID: 30880408 PMCID: PMC6602113 DOI: 10.1089/ars.2018.7615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Aims: Efficient oxidative protein folding (OPF) in the endoplasmic reticulum (ER) is a key requirement of the eukaryotic secretory pathway. In particular, protein folding linked to the formation of disulfide bonds, an activity dependent on the enzyme protein disulfide isomerase (PDI), is crucial. For the de novo formation of disulfide bonds, reduced PDI must be reoxidized by an ER-located oxidase (ERO1). Despite some knowledge of this pathway, the kinetic parameters with which these components act and the importance of specific parameters, such as PDI reoxidation by Ero1, for the overall performance of OPF in vivo remain poorly understood. Results: We established an in vitro system using purified yeast (Saccharomyces cerevisiae) PDI (Pdi1p) and ERO1 (Ero1p) to investigate OPF. This necessitated the development of a novel reduction/oxidation processing strategy to generate homogenously oxidized recombinant yeast Ero1p. This new methodology enabled the quantitative assessment of the interaction of Pdi1p and Ero1p in vitro by measuring oxygen consumption and reoxidation of reduced RNase A. The resulting quantitative data were then used to generate a simple model that can describe the oxidizing capacity of Pdi1p and Ero1p in vitro and predict the in vivo effect of modulation of the levels of these proteins. Innovation: We describe a model that can be used to explore the OPF pathway and its control in a quantitative way. Conclusion: Our study informs and provides new insights into how OPF works at a molecular level and provides a platform for the design of more efficient heterologous protein expression systems in yeast.
Collapse
Affiliation(s)
- Dave M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma L. Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gemma L. Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert B. Freedman
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
22
|
Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca 2+ signaling in cell survival and death. Cell Calcium 2019; 79:89-97. [PMID: 30889512 DOI: 10.1016/j.ceca.2019.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Physiological signaling by reactive oxygen species (ROS) and their pathophysiological role in cell death are well recognized. This review focuses on two ROS targets that are key to local Ca2+ signaling at the ER/mitochondrial interface - notably, inositol trisphosphate receptors (IP3Rs) and the mitochondrial calcium uniporter (MCU). Both transport systems are central to molecular mechanisms in cell survival and death. Methods for the measurement of the redox state of these proteins and for the detection of ROS nanodomains are described. Recent results on the redox regulation of these proteins are reviewed.
Collapse
Affiliation(s)
- Suresh K Joseph
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - David M Booth
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael P Young
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
23
|
Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab 2019; 126:83-97. [PMID: 30528228 DOI: 10.1016/j.ymgme.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Small-molecule- enzyme enhancement therapeutics (EETs) have emerged as attractive agents for the treatment of lysosomal storage diseases (LSDs), a broad group of genetic diseases caused by mutations in genes encoding lysosomal enzymes, or proteins required for lysosomal function. The underlying enzyme deficiencies characterizing LSDs cause a block in the stepwise degradation of complex macromolecules (e.g. glycosaminoglycans, glycolipids and others), such that undegraded or partially degraded substrates progressively accumulate in lysosomal and non-lysosomal compartments, a process leading to multisystem pathology via primary and secondary mechanisms. Missense mutations underlie many of the LSDs; the resultant mutant variant enzyme hydrolase is often impaired in its folding and maturation making it subject to rapid disposal by endoplasmic reticulum (ER)-associated degradation (ERAD). Enzyme deficiency in the lysosome is the result, even though the mutant enzyme may retain significant catalytic functioning. Small molecule modulators - pharmacological chaperones (PCs), or proteostasis regulators (PRs) are being identified through library screens and computational tools, as they may offer a less costly approach than enzyme replacement therapy (ERT) for LSDs, and potentially treat neuronal forms of the diseases. PCs, capable of directly stabilizing the mutant protein, and PRs, which act on other cellular elements to enhance protein maturation, both allow a proportion of the synthesized variant protein to reach the lysosome and function. Proof-of-principle for PCs and PRs as therapeutic agents has been demonstrated for several LSDs, yet definitive data of their efficacy in disease models and/or in downstream clinical studies in many cases has yet to be achieved. Basic research to understand the cellular consequences of protein misfolding such as perturbed organellar crosstalk, redox status, and calcium balance is needed. Likewise, an elucidation of the early in cellulo pathogenic events underlying LSDs is vital and may lead to the discovery of new small molecule modulators and/or to other therapeutic approaches for driving proteostasis toward protein rescue.
Collapse
Affiliation(s)
- Ryan Thomas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada.
| |
Collapse
|
24
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
25
|
Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, Booth DM, Hajnóczky G. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. J Biol Chem 2018; 293:17464-17476. [PMID: 30228182 PMCID: PMC6231128 DOI: 10.1074/jbc.ra118.005624] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 μm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells.
Collapse
Affiliation(s)
- Suresh K Joseph
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| | - Michael P Young
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kamil Alzayady
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - David I Yule
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - Mehboob Ali
- the Center for Perinatal Research, Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43205
| | - David M Booth
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - György Hajnóczky
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
26
|
Leichner C, Steinbring C, Baus RA, Baecker D, Gust R, Bernkop-Schnürch A. Reactive keratin derivatives: A promising strategy for covalent binding to hair. J Colloid Interface Sci 2018; 534:533-541. [PMID: 30253354 DOI: 10.1016/j.jcis.2018.09.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
HYPOTHESIS Restoration of damaged hair structure by replacing lost keratin is still of paramount interest. On account of the fact that native keratin is a highly cross-linked protein with numerous disulfide bonds but just a few nucleophilic thiol groups, binding affinity to hair is comparatively low. Hence, the design of reactive keratin derivatives bearing free sulfhydryl groups that are optionally S-protected and preactivated should enhance permanent binding to hair fibers. EXPERIMENTS Keratin was extracted from human Caucasian hair and reduced with NaBH4 to obtain free sulfhydryl groups (keratin-SH). These thiol groups were S-protected via disulfide linkage to 2-mercaptonicotinic acid (keratin-MNA). Hair fibers were either utilized in their natural form or chemically damaged by bleaching. Amount of keratin derivatives being bound to hair fibers was quantified by fluorescence detection of fluorescein isothiocyanate labeled keratins. FINDINGS Both modifications induced higher affinity of keratin to hair fibers, resulting in up to 1.7-fold (keratin-MNA) improved binding to natural hair and up to 3.6-fold (keratin-MNA) improved binding to bleached hair. Confocal laser microscopy confirmed the accumulation of keratin derivatives in distinct regions of the cuticle layer. Thiol functionalization seems therefore to be a promising strategy for efficient durable binding of keratin to hair.
Collapse
Affiliation(s)
- Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Randi Angela Baus
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniel Baecker
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
27
|
Yu T, Laird JR, Prescher JA, Thorpe C. Gaussia princeps luciferase: a bioluminescent substrate for oxidative protein folding. Protein Sci 2018; 27:1509-1517. [PMID: 29696739 DOI: 10.1002/pro.3433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/07/2022]
Abstract
Gaussia princeps luciferase (GLuc) generates an intense burst of blue light when exposed to coelenterazine in the absence of ATP. Here we show that this 5-disulfide containing enzyme can be used as a facile and convenient substrate for studies of oxidative protein folding. Reduced GLuc (rGLuc), with 10 free cysteine residues, is completely inactive as a luciferase but >60% bioluminescence activity, compared to controls, can be recovered using a range of oxidizing regimens in the absence of the exogenous shuffling activity of protein disulfide isomerase (PDI). The sulfhydryl oxidase QSOX1 can be assayed using rGLuc in a simple bioluminescence plate reader format. Similarly, low concentrations of rGLuc can be oxidized by millimolar levels of dehydroascorbate, hydrogen peroxide or much lower concentrations of sodium tetrathionate. The oxidative refolding of rGLuc in the presence of a range of glutathione redox buffers is only marginally accelerated by micromolar levels of PDI. This modest rate enhancement probably results from a relatively simple disulfide connectivity in native GLuc; reflecting two homologous domains each carrying two disulfide bonds with a single interdomain disulfide. When GLuc is reoxidized under denaturing conditions the resulting scrambled protein (sGLuc) can be used in a sensitive bioluminescence assay for reduced PDI in the absence of added exogenous thiols. Finally, the general facility by which rGLuc can recover bioluminescent activity in vitro provides a sensitive method for the assessment of inhibitors of oxidative protein folding.
Collapse
Affiliation(s)
- Tiantian Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716
| | - Joanna R Laird
- Department of Chemistry, University of California at Irvine, Irvine, California, 92697
| | - Jennifer A Prescher
- Department of Chemistry, University of California at Irvine, Irvine, California, 92697
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716
| |
Collapse
|
28
|
Yu S, Ito S, Wada I, Hosokawa N. ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3). J Biol Chem 2018; 293:10663-10674. [PMID: 29784879 DOI: 10.1074/jbc.ra118.003129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Protein folding in the cell is regulated by several quality-control mechanisms. Correct folding of glycoproteins in the endoplasmic reticulum (ER) is tightly monitored by the recognition of glycan signals by lectins in the ER-associated degradation (ERAD) pathway. In mammals, mannose trimming from N-glycans is crucial for disposal of misfolded glycoproteins. The mannosidases responsible for this process are ER mannosidase I and ER degradation-enhancing α-mannosidase-like proteins (EDEMs). However, the molecular mechanism of mannose removal by EDEMs remains unclear, partly owing to the difficulty of reconstituting mannosidase activity in vitro Here, our analysis of EDEM3-mediated mannose-trimming activity on a misfolded glycoprotein revealed that ERp46, an ER-resident oxidoreductase, associates stably with EDEM3. This interaction, which depended on the redox activity of ERp46, involved formation of a disulfide bond between the cysteine residues of the ERp46 redox-active sites and the EDEM3 α-mannosidase domain. In a defined in vitro system consisting of recombinant proteins purified from HEK293 cells, the mannose-trimming activity of EDEM3 toward the model misfolded substrate, the glycoprotein T-cell receptor α locus (TCRα), was reconstituted only when ERp46 had established a covalent interaction with EDEM3. On the basis of these findings, we propose that disposal of misfolded glycoproteins through mannose trimming is tightly connected to redox-mediated regulation in the ER.
Collapse
Affiliation(s)
- Shangyu Yu
- From the Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507
| | - Shinji Ito
- the Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, and
| | - Ikuo Wada
- the Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- From the Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507,
| |
Collapse
|
29
|
Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs. Anim Reprod Sci 2018; 195:16-23. [PMID: 29728275 DOI: 10.1016/j.anireprosci.2018.04.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 11/20/2022]
Abstract
The aim of the study was to investigate the SINE polymorphism in Xiang, Kele, Qianbei black, Jiangkouluobo, Large White, and Duroc pig breeds. The PCR based detection method was conducted to identify the short interspersed nuclear element (SINE) polymorphism in the PDIA4 gene. There were greater frequencies of the SINE-/- genotypes in Xiang pigs (55.9%) as compared with other pig breed groups. There was an association between this 275 bp SINE polymorphism and litter size (P = 0.003). The homozygous SINE+/+ genotype of the PDIA4 gene had a 1.45-piglets larger litter sizes compared to those with the homozygous SINE-/- genotype. Furthermore, there were assessments of mRNA and protein abundances as a result of PDIA4 gene expression in the ovaries of Xiang pigs for the three different SINE genotypes, and the results indicated that relative abundances of PDIA4 mRNA and protein was greater for the SINE-/- and SINE-/+ genotypes compared with the SINE+/+ genotype (P < 0.05). These findings suggested that the 275 bp SINE polymorphism might change the expression of the PDIA4 gene and could be used as a candidate DNA marker for the selection for litter size in Xiang pigs.
Collapse
|
30
|
Peixoto ÁS, Geyer RR, Iqbal A, Truzzi DR, Soares Moretti AI, Laurindo FRM, Augusto O. Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase. J Biol Chem 2018; 293:1450-1465. [PMID: 29191937 PMCID: PMC5787819 DOI: 10.1074/jbc.m117.807016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
Protein-disulfide isomerase (PDI) is a ubiquitous dithiol-disulfide oxidoreductase that performs an array of cellular functions, such as cellular signaling and responses to cell-damaging events. PDI can become dysfunctional by post-translational modifications, including those promoted by biological oxidants, and its dysfunction has been associated with several diseases in which oxidative stress plays a role. Because the kinetics and products of the reaction of these oxidants with PDI remain incompletely characterized, we investigated the reaction of PDI with the biological oxidant peroxynitrite. First, by determining the rate constant of the oxidation of PDI's redox-active Cys residues (Cys53 and Cys397) by hydrogen peroxide (k = 17.3 ± 1.3 m-1 s-1 at pH 7.4 and 25 °C), we established that the measured decay of the intrinsic PDI fluorescence is appropriate for kinetic studies. The reaction of these PDI residues with peroxynitrite was considerably faster (k = (6.9 ± 0.2) × 104 m-1 s-1), and both Cys residues were kinetically indistinguishable. Limited proteolysis, kinetic simulations, and MS analyses confirmed that peroxynitrite preferentially oxidizes the redox-active Cys residues of PDI to the corresponding sulfenic acids, which reacted with the resolving thiols at the active sites to produce disulfides (i.e. Cys53-Cys56 and Cys397-Cys400). A fraction of peroxynitrite, however, decayed to radicals that hydroxylated and nitrated other active-site residues (Trp52, Trp396, and Tyr393). Excess peroxynitrite promoted further PDI oxidation, nitration, inactivation, and covalent oligomerization. We conclude that these PDI modifications may contribute to the pathogenic mechanism of several diseases associated with dysfunctional PDI.
Collapse
Affiliation(s)
- Álbert Souza Peixoto
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - R Ryan Geyer
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Asif Iqbal
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Daniela R Truzzi
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| | - Ana I Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, CEP 05403-000, Brazil
| | - Ohara Augusto
- From the Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05508-000, Brazil and
| |
Collapse
|
31
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Cheng CH, Liang HY, Luo SW, Wang AL, Ye CX. The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress. J Therm Biol 2017; 71:128-135. [PMID: 29301681 DOI: 10.1016/j.jtherbio.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/21/2017] [Accepted: 11/12/2017] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate the protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish under low temperature stress. Six diets were formulated to contain 2.60, 48.90, 95.50, 189.83, 382.40, 779.53mg/kg vitamin C. After 8-week feeding trial, fish were exposed to low temperature challenge. The results showed that pufferfish receiving vitamin C diet exhibited a significant decrease in ROS production (48.9-189.83mg/kg vitamin C diet groups), cytoplasmic free-Ca2+ concentration (48.9-779.53mg/kg vitamin C diet groups), apoptotic cell ratio (95.5-779.53mg/kg vitamin C diet groups) and DNA damage (189.83-779.53mg/kg vitamin C diet groups) under low temperature stress in comparison with those of control. We also investigated the alteration in protein expression under low temperature stress by a comparative proteomic analysis. The results demonstrated that 24 protein spots showed significantly differential expression in the cold-stress-treated group compared with those of the control group, and 5 protein spots were successfully identified. Furthermore, comparative proteomic analysis revealed that vitamin C could increase expressed proteins related to energy metabolism, immune responses and cytoskeleton. These findings would be helpful to understand the protective effects of vitamin C against cold stress.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Hai-Yan Liang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Chao-Xia Ye
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
33
|
Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase. Proc Natl Acad Sci U S A 2017; 114:E4724-E4733. [PMID: 28559343 DOI: 10.1073/pnas.1618985114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We explore the enzymatic mechanism of the reduction of glutathione disulfide (GSSG) by the reduced a domain of human protein disulfide isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations at the mPW1N/6-311+G(2d,2p):FF99SB//mPW1N/6-31G(d):FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide exchange through nucleophilic attack of the Cys53-thiolate to the GSSG-disulfide followed by the deprotonation of Cys56-thiol by Glu47-carboxylate and (ii) a second thiol-disulfide exchange between the Cys56-thiolate and the mixed disulfide intermediate formed in the first step. The Gibbs activation energy for the first stage was 18.7 kcal·mol-1, and for the second stage, it was 7.2 kcal·mol-1, in excellent agreement with the experimental barrier (17.6 kcal·mol-1). Our results also suggest that the catalysis by protein disulfide isomerase (PDI) and thiol-disulfide exchange is mostly enthalpy-driven (entropy changes below 2 kcal·mol-1 at all stages of the reaction). Hydrogen bonds formed between the backbone of His55 and Cys56 and the Cys56-thiol result in an increase in the Gibbs energy barrier of the first thiol-disulfide exchange. The solvent plays a key role in stabilizing the leaving glutathione thiolate formed. This role is not exclusively electrostatic, because an explicit inclusion of several water molecules at the density-functional theory level is a requisite to form the mixed disulfide intermediate. In the intramolecular oxidation of PDI, a transition state is only observed if hydrogen bond donors are nearby the mixed disulfide intermediate, which emphasizes that the thermochemistry of thiol-disulfide exchange in PDI is influenced by the presence of hydrogen bond donors.
Collapse
|
34
|
Cheng HP, Liu Q, Li Y, Li XD, Zhu CY. The Inhibitory Effect of PDIA6 Downregulation on Bladder Cancer Cell Proliferation and Invasion. Oncol Res 2017; 25:587-593. [PMID: 27760590 PMCID: PMC7841030 DOI: 10.3727/096504016x14761811155298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerases A6 (PDIA6) belongs to the PDI family. Recently, PDIA6 was found to have a close association with various cancers. However, there has been little investigation into the biological functions of PDIA6 in bladder cancer (BC). In this study, we explored the expression pattern and functional significance of PDIA6 in BC. We found that PDIA6 was overexpressed in BC tissues and cell lines. The in vitro study showed that PDIA6 downregulation significantly inhibited BC proliferation and invasion. In addition, the in vivo experiment demonstrated that PDIA6 downregulation decreased the volume, weight, and metastasis of tumors. Furthermore, PDIA6 downregulation reduced the protein expression of β-catenin, cyclin D1, and c-Myc and thus suppressed the Wnt/β-catenin signaling pathway. In conclusion, we suggest that PDIA6 could be targeted for the treatment of BC.
Collapse
Affiliation(s)
- He-Peng Cheng
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Qian Liu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Xiao-Dong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Chao-Yang Zhu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
35
|
Nitroarachidonic acid (NO 2AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines. Biochim Biophys Acta Gen Subj 2017; 1861:1131-1139. [PMID: 28215702 DOI: 10.1016/j.bbagen.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.
Collapse
|
36
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
37
|
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2423547. [PMID: 28053690 PMCID: PMC5174184 DOI: 10.1155/2016/2423547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.
Collapse
|
38
|
Liu G, Wang J, Hou Y, Huang YB, Li CZ, Li L, Hu SQ. Improvements of Modified Wheat Protein Disulfide Isomerases with Chaperone Activity Only on the Processing Quality of Flour. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1840-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
40
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Bekendam RH, Flaumenhaft R. Inhibition of Protein Disulfide Isomerase in Thrombosis. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:42-48. [DOI: 10.1111/bcpt.12573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/19/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Roelof H. Bekendam
- Division of Hemostasis and Thrombosis; Department of Medicine; BIDMC; Harvard Medical School; Boston MA USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis; Department of Medicine; BIDMC; Harvard Medical School; Boston MA USA
| |
Collapse
|
42
|
Niu Y, Zhang L, Yu J, Wang CC, Wang L. Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1. J Biol Chem 2016; 291:8283-94. [PMID: 26846856 DOI: 10.1074/jbc.m115.694257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
The formation of disulfide bonds in the endoplasmic reticulum (ER) of eukaryotic cells is catalyzed by the sulfhydryl oxidase, ER oxidoreductin 1 (Ero1), and protein-disulfide isomerase (PDI). PDI is oxidized by Ero1 to continuously introduce disulfides into substrates, and feedback regulates Ero1 activity by manipulating the regulatory disulfides of Ero1. In this study we find that yeast Ero1p is enzymatically active even with its regulatory disulfides intact, and further activation of Ero1p by reduction of the regulatory disulfides requires the reduction of non-catalytic Cys(90)-Cys(97)disulfide in Pdi1p. The principal client-binding site in the Pdi1pb' domain is necessary not only for the functional Ero1p-Pdi1p disulfide relay but also for the activation of Ero1p. We also demonstrate by complementary activation assays that the regulatory disulfides in Ero1p are much more stable than those in human Ero1α. These new findings on yeast Ero1p-Pdi1p interplay reveal significant differences from our previously identified mode of human Ero1α-PDI interplay and provide insights into the evolution of the eukaryotic oxidative protein folding pathway.
Collapse
Affiliation(s)
- Yingbo Niu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihui Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaojiao Yu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chih-Chen Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and
| | - Lei Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and
| |
Collapse
|
43
|
Hu C, Yu C, Liu Y, Hou X, Liu X, Hu Y, Jin C. A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction. J Biol Chem 2015. [PMID: 26224634 DOI: 10.1074/jbc.m115.659896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family.
Collapse
Affiliation(s)
- Cuiyun Hu
- From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center
| | - Caifang Yu
- From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center
| | - Yanhua Liu
- From the College of Chemistry and Molecular Engineering
| | - Xianhui Hou
- From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center
| | - Xiaoyun Liu
- From the College of Chemistry and Molecular Engineering
| | - Yunfei Hu
- From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center,
| | - Changwen Jin
- From the College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, College of Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Parakh S, Atkin JD. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 2015; 3:30. [PMID: 26052512 PMCID: PMC4439577 DOI: 10.3389/fcell.2015.00030] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.
Collapse
Affiliation(s)
- Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia ; Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University Bundoora, VIC, Australia
| |
Collapse
|
45
|
Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 2015; 80:171-82. [PMID: 25091901 PMCID: PMC4312752 DOI: 10.1016/j.freeradbiomed.2014.07.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022]
Abstract
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDI(red):PDI(ox). The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
46
|
Sapra A, Ramadan D, Thorpe C. Multivalency in the inhibition of oxidative protein folding by arsenic(III) species. Biochemistry 2014; 54:612-21. [PMID: 25506675 PMCID: PMC4303313 DOI: 10.1021/bi501360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
renewed use of arsenicals as chemotherapeutics has rekindled
interest in the biochemistry of As(III) species. In this work, simple
bis- and tris-arsenical derivatives were synthesized with the aim
of exploiting the chelate effect in the inhibition of thiol-disulfide
oxidoreductases (here, Quiescin sulfhydryl oxidase, QSOX, and protein
disulfide isomerase, PDI) that utilize two or more CxxC motifs in
the catalysis of oxidative protein folding. Coupling 4-aminophenylarsenoxide
(APAO) to acid chloride or anhydride derivatives yielded two bis-arsenical
prototypes, BA-1 and BA-2, and a tris-arsenical, TA-1. Unlike the
monoarsenical, APAO, these new reagents proved to be strong inhibitors
of oxidative protein folding in the presence of a realistic intracellular
concentration of competing monothiol (here, 5 mM reduced glutathione,
GSH). However, this inhibition does not reflect direct inactivation
of QSOX or PDI, but avid binding of MVAs to the reduced unfolded protein
substrates themselves. Titrations of reduced riboflavin-binding protein
with MVAs show that all 18 protein −SH groups can be captured
by these arsenicals. With reduced RNase, addition of substoichiometric
levels of MVAs is accompanied by the formation of Congo Red- and Thioflavin
T-positive fibrillar aggregates. Even with Kd values of ∼50 nM, MVAs are ineffective inhibitors
of PDI in the presence of millimolar levels of competing GSH. These
results underscore the difficulties of designing effective and specific
arsenical inhibitors for folded enzymes and proteins. Some of the
cellular effects of arsenicals likely reflect their propensity to
associate very tightly and nonspecifically to conformationally mobile
cysteine-rich regions of proteins, thereby interfering with folding
and/or function.
Collapse
Affiliation(s)
- Aparna Sapra
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
47
|
Shishkin SS, Eremina LS, Kovalev LI, Kovaleva MA. AGR2, ERp57/GRP58, and some other human protein disulfide isomerases. BIOCHEMISTRY (MOSCOW) 2014; 78:1415-30. [PMID: 24490732 DOI: 10.1134/s000629791313004x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review considers the major features of human proteins AGR2 and ERp57/GRP58 and of other members of the protein disulfide isomerase (PDI) family. The ability of both AGR2 and ERp57/GRP58 to catalyze the formation of disulfide bonds in proteins is the parameter most important for assigning them to a PDI family. Moreover, these proteins and also other members of the PDI family have specific structural features (thioredoxin-like domains, special C-terminal motifs characteristic for proteins localized in the endoplasmic reticulum, etc.) that are necessary for their assignment to a PDI family. Data demonstrating the role of these two proteins in carcinogenesis are analyzed. Special attention is given to data indicating the presence of biomarker features in AGR2 and ERp57/GRP58. It is now thought that there is sufficient reason for studies of AGR2 and ERp57/GRP58 for possible use of these proteins in diagnosis of tumors. There are also prospects for studies on AGR2 and ERp57/GRP58 leading to developments in chemotherapy. Thus, we suppose that further studies on different members of the PDI family using modern postgenomic technologies will broaden current concepts about functions of these proteins, and this will be helpful for solution of urgent biomedical problems.
Collapse
Affiliation(s)
- S S Shishkin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | |
Collapse
|
48
|
Mattoo RUH, Farina Henriquez Cuendet A, Subanna S, Finka A, Priya S, Sharma SK, Goloubinoff P. Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK. Front Mol Biosci 2014; 1:7. [PMID: 25988148 PMCID: PMC4428491 DOI: 10.3389/fmolb.2014.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/13/2014] [Indexed: 11/17/2022] Open
Abstract
The role of bacterial Hsp40, DnaJ, is to co-chaperone the binding of misfolded or alternatively folded proteins to bacterial Hsp70, DnaK, which is an ATP-fuelled unfolding chaperone. In addition to its DnaK targeting activity, DnaJ has a weak thiol-reductase activity. In between the substrate-binding domain and the J-domain anchor to DnaK, DnaJ has a unique domain with four conserved CXXC motives that bind two Zn2+ and partly contribute to polypeptide binding. Here, we deleted in DnaJ this Zn-binding domain, which is characteristic to type I but not of type II or III J-proteins. This caused a loss of the thiol-reductase activity and strongly reduced the ability of DnaJ to mediate the ATP- and DnaK-dependent unfolding/refolding of mildly oxidized misfolded polypeptides, an inhibition that was alleviated in the presence of thioredoxin or DTT. We suggest that in addition to their general ability to target misfolded polypeptide substrates to the Hsp70/Hsp110 chaperone machinery, Type I J-proteins carry an ancillary protein dithiol-isomerase function that can synergize the unfolding action of the chaperone, in the particular case of substrates that are further stabilized by non-native disulfide bonds. Whereas the unfoldase can remain ineffective without the transient untying of disulfide bonds by the foldase, the foldase can remain ineffective without the transient ATP-fuelled unfolding of wrong local structures by the unfoldase.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | | | - Sujatha Subanna
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Andrija Finka
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Smriti Priya
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Sandeep K Sharma
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| | - Pierre Goloubinoff
- DBMV, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
49
|
Tsunoda S, Avezov E, Zyryanova A, Konno T, Mendes-Silva L, Pinho Melo E, Harding HP, Ron D. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. eLife 2014; 3:e03421. [PMID: 25073928 PMCID: PMC4109312 DOI: 10.7554/elife.03421] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/03/2014] [Indexed: 12/16/2022] Open
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1(CtoS) purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER.DOI: http://dx.doi.org/10.7554/eLife.03421.001.
Collapse
Affiliation(s)
- Satoshi Tsunoda
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Edward Avezov
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Tasuku Konno
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Leonardo Mendes-Silva
- Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Faro, Portugal
| | - Eduardo Pinho Melo
- Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Faro, Portugal
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom Wellcome Trust MRC Institute of Metabolic Science, Cambridge, United Kingdom NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
50
|
Tufo G, Jones AWE, Wang Z, Hamelin J, Tajeddine N, Esposti DD, Martel C, Boursier C, Gallerne C, Migdal C, Lemaire C, Szabadkai G, Lemoine A, Kroemer G, Brenner C. The protein disulfide isomerases PDIA4 and PDIA6 mediate resistance to cisplatin-induced cell death in lung adenocarcinoma. Cell Death Differ 2014; 21:685-95. [PMID: 24464223 PMCID: PMC3978299 DOI: 10.1038/cdd.2013.193] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Intrinsic and acquired chemoresistance are frequent causes of cancer eradication failure. Thus, long-term cis-diaminedichloroplatine(II) (CDDP) or cisplatin treatment is known to promote tumor cell resistance to apoptosis induction via multiple mechanisms involving gene expression modulation of oncogenes, tumor suppressors and blockade of pro-apoptotic mitochondrial membrane permeabilization. Here, we demonstrate that CDDP-resistant non-small lung cancer cells undergo profound remodeling of their endoplasmic reticulum (ER) proteome (>80 proteins identified by proteomics) and exhibit a dramatic overexpression of two protein disulfide isomerases, PDIA4 and PDIA6, without any alteration in ER-cytosol Ca(2+) fluxes. Using pharmacological and genetic inhibition, we show that inactivation of both proteins directly stimulates CDDP-induced cell death by different cellular signaling pathways. PDIA4 inactivation restores a classical mitochondrial apoptosis pathway, while knockdown of PDIA6 favors a non-canonical cell death pathway sharing some necroptosis features. Overexpression of both proteins has also been found in lung adenocarcinoma patients, suggesting a clinical importance of these proteins in chemoresistance.
Collapse
Affiliation(s)
- G Tufo
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - A W E Jones
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Z Wang
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - J Hamelin
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - N Tajeddine
- INSERM U848, Institut Gustave Roussy, Université Paris-Sud 11, PR1, 39 rue Camille Desmoulins, Villejuif, France
| | - D D Esposti
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - C Martel
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
- Montreal Heart Institute, Centre de Recherche, Montreal, Quebec, Canada
| | | | - C Gallerne
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| | - C Migdal
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
- INSERM U 996, Châtenay-Malabry, France
| | - C Lemaire
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Department of Biology, University of Versailles–St Quentin, Versailles, France
| | - G Szabadkai
- Department of Cell and Developmental Biology, University College London, London, UK
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - A Lemoine
- APHP Hôpital P. Brousse, Biochimie et oncogénétique, INSERM U1004, Villejuif, France
| | - G Kroemer
- INSERM U848, Institut Gustave Roussy, Université Paris-Sud 11, PR1, 39 rue Camille Desmoulins, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - C Brenner
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, France
| |
Collapse
|