1
|
Uppal S, Poliakov E, Gentleman S, Redmond TM. The Amphipathic Helix in Visual Cycle Proteins: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:533-537. [PMID: 37440083 PMCID: PMC11299856 DOI: 10.1007/978-3-031-27681-1_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
3
|
Arne JM, Widjaja-Adhi MAK, Hughes T, Huynh KW, Silvaroli JA, Chelstowska S, Moiseenkova-Bell VY, Golczak M. Allosteric modulation of the substrate specificity of acyl-CoA wax alcohol acyltransferase 2. J Lipid Res 2017; 58:719-730. [PMID: 28096191 DOI: 10.1194/jlr.m073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
The esterification of alcohols with fatty acids is a universal mechanism to form inert storage forms of sterols, di- and triacylglycerols, and retinoids. In ocular tissues, formation of retinyl esters is an essential step in the enzymatic regeneration of the visual chromophore (11-cis-retinal). Acyl-CoA wax alcohol acyltransferase 2 (AWAT2), also known as multifunctional O-acyltransferase (MFAT), is an integral membrane enzyme with a broad substrate specificity that has been shown to preferentially esterify 11-cis-retinol and thus contribute to formation of a readily available pool of cis retinoids in the eye. However, the mechanism by which this promiscuous enzyme can gain substrate specificity is unknown. Here, we provide evidence for an allosteric modulation of the enzymatic activity by 11-cis retinoids. This regulation is independent from cellular retinaldehyde-binding protein (CRALBP), the major cis-retinoid binding protein. This positive-feedback regulation leads to decreased esterification rates for 9-cis, 13-cis, or all-trans retinols and thus enables preferential synthesis of 11-cis-retinyl esters. Finally, electron microscopy analyses of the purified enzyme indicate that this allosteric effect does not result from formation of functional oligomers. Altogether, these data provide the experimental basis for understanding regulation of AWAT2 substrate specificity.
Collapse
Affiliation(s)
- Jason M Arne
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Taylor Hughes
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kevin W Huynh
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Josie A Silvaroli
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sylwia Chelstowska
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Marcin Golczak
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and.
| |
Collapse
|
4
|
Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W. Proc Natl Acad Sci U S A 2009; 106:18545-50. [PMID: 19846785 DOI: 10.1073/pnas.0907454106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellular retinaldehyde-binding protein (CRALBP) is essential for mammalian vision by routing 11-cis-retinoids for the conversion of photobleached opsin molecules into photosensitive visual pigments. The arginine-to-tryptophan missense mutation in position 234 (R234W) in the human gene RLBP1 encoding CRALBP compromises visual pigment regeneration and is associated with Bothnia dystrophy. Here we report the crystal structures of both wild-type human CRALBP and of its mutant R234W as binary complexes complemented with the endogenous ligand 11-cis-retinal, at 3.0 and 1.7 A resolution, respectively. Our structural model of wild-type CRALBP locates R234 to a positively charged cleft at a distance of 15 A from the hydrophobic core sequestering 11-cis-retinal. The R234W structural model reveals burial of W234 and loss of dianion-binding interactions within the cleft with physiological implications for membrane docking. The burial of W234 is accompanied by a cascade of side-chain flips that effect the intrusion of the side-chain of I238 into the ligand-binding cavity. As consequence of the intrusion, R234W displays 5-fold increased resistance to light-induced photoisomerization relative to wild-type CRALBP, indicating tighter binding to 11-cis-retinal. Overall, our results reveal an unanticipated domino-like structural transition causing Bothnia-type retinal dystrophy by the impaired release of 11-cis-retinal from R234W.
Collapse
|
5
|
Welch ID, Cowan MF, Beier F, Underhill TM. The retinoic acid binding protein CRABP2 is increased in murine models of degenerative joint disease. Arthritis Res Ther 2009; 11:R14. [PMID: 19173746 PMCID: PMC2688246 DOI: 10.1186/ar2604] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/04/2008] [Accepted: 01/28/2009] [Indexed: 11/10/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a debilitating disease with poorly defined aetiology. Multiple signals are involved in directing the formation of cartilage during development and the vitamin A derivatives, the retinoids, figure prominently in embryonic cartilage formation. In the present study, we examined the expression of a retinoid-regulated gene in murine models of OA. Methods Mild and moderate forms of an OA-like degenerative disease were created in the mouse stifle joint by meniscotibial transection (MTX) and partial meniscectomy (PMX), respectively. Joint histopathology was scored using an Osteoarthritis Research Society International (OARSI) system and gene expression (Col1a1, Col10a1, Sox9 and Crabp2) in individual joints was determined using TaqMan quantitative PCR on RNA from microdissected articular knee cartilage. Results For MTX, there was a significant increase in the joint score at 10 weeks (n = 4, p < 0.001) in comparison to sham surgeries. PMX surgery was slightly more severe and produced significant changes in joint score at six (n = 4, p < 0.01), eight (n = 4, p < 0.001) and 10 (n = 4, p < 0.001) weeks. The expression of Col1a1 was increased in both surgical models at two, four and six weeks post-surgery. In contrast, Col10a1 and Sox9 for the most part showed no significant difference in expression from two to six weeks post-surgery. Crabp2 expression is induced upon activation of the retinoid signalling pathway. At two weeks after surgery in the MTX and PMX animals, Crabp2 expression was increased about 18-fold and about 10-fold over the sham control, respectively. By 10 weeks, Crabp2 expression was increased about three-fold (n = 7, not significant) in the MTX animals and about five-fold (n = 7, p < 0.05) in the PMX animals in comparison to the contralateral control joint. Conclusions Together, these findings suggest that the retinoid signalling pathway is activated early in the osteoarthritic process and is sustained during the course of the disease.
Collapse
Affiliation(s)
- Ian D Welch
- Department of Animal Care and Veterinary Services, University of Western Ontario, London, Ontario N6A5C1, Canada.
| | | | | | | |
Collapse
|
6
|
Wu Z, Bhattacharya SK, Jin Z, Bonilha VL, Liu T, Nawrot M, Teller DC, Saari JC, Crabb JW. CRALBP ligand and protein interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:477-83. [PMID: 17249612 DOI: 10.1007/0-387-32442-9_66] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhiping Wu
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rózanowska M, Sarna T. Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 2006; 81:1305-30. [PMID: 16120006 DOI: 10.1562/2004-11-13-ir-371] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The presence of the regenerable visual pigment rhodopsin has been shown to be primarily responsible for the acute photodamage to the retina. The photoexcitation of rhodopsin leads to isomerization of its chromophore 11-cis-retinal to all-trans-retinal (ATR). ATR is a potent photosensitizer and its role in mediating photodamage has been suspected for over two decades. However, there was lack of experimental evidence that free ATR exists in the retina in sufficient concentrations to impose a risk of photosensitized damage. Identification in the retina of a retinal dimer and a pyridinium bisretinoid, so called A2E, and determination of its biosynthetic pathway indicate that substantial amounts of ATR do accumulate in the retina. Both light damage and A2E accumulation are facilitated under conditions where efficient retinoid cycle operates. Efficient retinoid cycle leads to rapid regeneration of rhodopsin, which may result in ATR release from the opsin "exit site" before its enzymatic reduction to all-trans-retinol. Here we discuss photodamage to the retina where ATR could play a role as the main toxic and/or phototoxic agent. Moreover, we discuss secondary products of (photo)toxic properties accumulating within retinal lipofuscin as a result of ATR accumulation.
Collapse
|
8
|
Liu T, Jenwitheesuk E, Teller DC, Samudrala R. Structural insights into the cellular retinaldehyde-binding protein (CRALBP). Proteins 2006; 61:412-22. [PMID: 16121400 DOI: 10.1002/prot.20621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cellular retinaldehyde-binding protein (CRALBP) is an essential protein in the human visual cycle without a known three-dimensional structure. Previous studies associate retinal pathologies to specific mutations in the CRALBP protein. Here we use homology modeling and molecular dynamics methods to investigate the structural mechanisms by which CRALBP functions in the visual cycle. We have constructed two conformations of CRALBP representing two states in the process of ligand association and dissociation. Notably, our homology models map the pathology-associated mutations either directly in or adjacent to the putative ligand-binding cavity. Furthermore, six novel residues have been identified to be crucial for the hinge movement of the lipid-exchange loop in CRALBP. We conclude that the binding and release of retinoid involve large conformational changes in the lipid-exchange loop at the entrance of the ligand-binding cavity.
Collapse
Affiliation(s)
- Tianyun Liu
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
9
|
Demirci FYK, Rigatti BW, Mah TS, Gorin MB. A novel compound heterozygous mutation in the cellular retinaldehyde-binding protein gene (RLBP1) in a patient with retinitis punctata albescens. Am J Ophthalmol 2004; 138:171-3. [PMID: 15234312 DOI: 10.1016/j.ajo.2004.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2004] [Indexed: 11/21/2022]
Abstract
PURPOSE To describe a patient with retinitis punctata albescens (RPA) associated with compound heterozygosity for two novel mutations in the RLBP1 encoding cellular retinaldehyde-binding protein (CRALBP). DESIGN Observational case report. METHODS The proband underwent a complete ophthalmic examination and leukocyte genomic DNA samples were obtained from him and his parents. The RLBP1 exons were analyzed by direct sequencing of PCR-amplified fragments. RESULTS The patient had a clinical phenotype suggestive of slowly progressive RPA, characterized by numerous yellow-white dots in the fundus. The RLBP1 sequence analysis revealed a novel compound heterozygotic mutation of Gly145Asp and Ile200Thr transmitted from the mother and father, respectively. Analysis of 100 control chromosomes showed no individuals with these sequence alterations. CONCLUSIONS Only eight RLBP1 mutations have been reported to date, and here we describe two novel mutations. These additional mutations will aid ongoing functional studies and add to our understanding of the molecular pathology pertaining to RLBP1-associated retinopathies.
Collapse
Affiliation(s)
- F Yesim K Demirci
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
10
|
Wu Z, Hasan A, Liu T, Teller DC, Crabb JW. Identification of CRALBP Ligand Interactions by Photoaffinity Labeling, Hydrogen/Deuterium Exchange, and Structural Modeling. J Biol Chem 2004; 279:27357-64. [PMID: 15100222 DOI: 10.1074/jbc.m401960200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular retinaldehyde-binding protein (CRALBP) functions in the retinal pigment epithelium (RPE) as an acceptor of 11-cis-retinol in the isomerization step of the rod visual cycle and as a substrate carrier for 11-cis-retinol dehydrogenase. Toward a better understanding of CRALBP function, the ligand binding cavity in human recombinant CRALBP (rCRALBP) was characterized by photoaffinity labeling with 3-diazo-4-keto-11-cis-retinal and by high resolution mass spectrometric topological analyses. Eight photoaffinity-modified residues were identified in rCRALBP by liquid chromatography tandem mass spectrometry, including Tyr(179), Phe(197), Cys(198), Met(208), Lys(221), Met(222), Val(223), and Met(225). Multiple different adduct masses were found on the photolabeled residues, and the molecular identity of each modification remains unknown. Supporting the specificity of photo-labeling, 50% of the modified residues have been associate with retinoid interactions by independent analyses. In addition, topological analysis of apo- and holo-rCRALBP by hydrogen/deuterium exchange and mass spectrometry demonstrated residues 198-255 incorporate significantly less deuterium when the retinoid binding pocket is occupied with 11-cis-retinal. This hydrophobic region encompasses all but one of the photo-labeled residues. A structural model of CRALBP ligand binding domain was constructed based on the crystal structures of three homologues in the CRAL-TRIO family of lipid-binding proteins. In the model, all of the photolabeled residues line the ligand binding cavity except Met(208), which appears to reside in a flexible loop at the entrance/exit of the ligand cavity. Overall, the results expand to 12 the number of residues proposed to interact with ligand and provide further insight into CRALBP ligand and protein interactions.
Collapse
Affiliation(s)
- Zhiping Wu
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
11
|
Golovleva I, Bhattacharya S, Wu Z, Shaw N, Yang Y, Andrabi K, West KA, Burstedt MSI, Forsman K, Holmgren G, Sandgren O, Noy N, Qin J, Crabb JW. Disease-causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions. J Biol Chem 2003; 278:12397-402. [PMID: 12536144 DOI: 10.1074/jbc.m207300200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human cellular retinaldehyde binding protein (CRALBP) gene cause retinal pathology. To understand the molecular basis of impaired CRALBP function, we have characterized human recombinant CRALBP containing the disease causing mutations R233W or M225K. Protein structures were verified by amino acid analysis and mass spectrometry, retinoid binding properties were evaluated by UV-visible and fluorescence spectroscopy and substrate carrier functions were assayed for recombinant 11-cis-retinol dehydrogenase (rRDH5). The M225K mutant was less soluble than the R233W mutant and lacked retinoid binding capability and substrate carrier function. In contrast, the R233W mutant exhibited solubility comparable to wild type rCRALBP and bound stoichiometric amounts of 11-cis- and 9-cis-retinal with at least 2-fold higher affinity than wild type rCRALBP. Holo-R233W significantly decreased the apparent affinity of rRDH5 for 11-cis-retinoid relative to wild type rCRALBP. Analyses by heteronuclear single quantum correlation NMR demonstrated that the R233W protein exhibits a different conformation than wild type rCRALBP, including a different retinoid-binding pocket conformation. The R233W mutant also undergoes less extensive structural changes upon photoisomerization of bound ligand, suggesting a more constrained structure than that of the wild type protein. Overall, the results show that the M225K mutation abolishes and the R233W mutation tightens retinoid binding and both impair CRALBP function in the visual cycle as an 11-cis-retinol acceptor and as a substrate carrier.
Collapse
Affiliation(s)
- Irina Golovleva
- Department of Medical Biosciences, Umeå University, S-901 85 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|