1
|
Spike CA, Tsukamoto T, Greenstein D. Ubiquitin ligases and a processive proteasome facilitate protein clearance during the oocyte-to-embryo transition in Caenorhabditis elegans. Genetics 2022; 221:iyac051. [PMID: 35377419 PMCID: PMC9071522 DOI: 10.1093/genetics/iyac051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition. In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the oocyte-to-embryo transition. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase-promoting complex. However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles, are independently degraded through the action of other factors and that the oocyte ribonucleoprotein particles are disassembled in a concerted fashion during the oocyte-to-embryo transition. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the oocyte-to-embryo transition, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin, and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the oocyte-to-embryo transition during which many key oocyte regulatory proteins are rapidly targeted for degradation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Takeshita LY, Davidsen PK, Herbert JM, Antczak P, Hesselink MKC, Schrauwen P, Weisnagel SJ, Robbins JM, Gerszten RE, Ghosh S, Sarzynski MA, Bouchard C, Falciani F. Genomics and transcriptomics landscapes associated to changes in insulin sensitivity in response to endurance exercise training. Sci Rep 2021; 11:23314. [PMID: 34857871 PMCID: PMC8639975 DOI: 10.1038/s41598-021-98792-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023] Open
Abstract
Despite good adherence to supervised endurance exercise training (EET), some individuals experience no or little improvement in peripheral insulin sensitivity. The genetic and molecular mechanisms underlying this phenomenon are currently not understood. By investigating genome-wide variants associated with baseline and exercise-induced changes (∆) in insulin sensitivity index (Si) in healthy volunteers, we have identified novel candidate genes whose mouse knockouts phenotypes were consistent with a causative effect on Si. An integrative analysis of functional genomic and transcriptomic profiles suggests genetic variants have an aggregate effect on baseline Si and ∆Si, focused around cholinergic signalling, including downstream calcium and chemokine signalling. The identification of calcium regulated MEF2A transcription factor as the most statistically significant candidate driving the transcriptional signature associated to ∆Si further strengthens the relevance of calcium signalling in EET mediated Si response.
Collapse
Affiliation(s)
- Louise Y. Takeshita
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Peter K. Davidsen
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - John M. Herbert
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Philipp Antczak
- grid.10025.360000 0004 1936 8470Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK ,grid.411097.a0000 0000 8852 305XCenter for Molecular Medicine Cologne, University Hospital Cologne, 50931 Cologne, Germany
| | - Matthijs K. C. Hesselink
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Centre, Maastricht, The Netherlands
| | - Patrick Schrauwen
- grid.5012.60000 0001 0481 6099Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Centre, Maastricht, The Netherlands
| | - S. John Weisnagel
- grid.23856.3a0000 0004 1936 8390Diabetes Research Unit, Endocrinology and Nephrology Axis, CRCHU de Québec, Université Laval, Québec City, Canada
| | - Jeremy M. Robbins
- grid.239395.70000 0000 9011 8547Division of Cardiovascular Medicine, and Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Robert E. Gerszten
- grid.239395.70000 0000 9011 8547Division of Cardiovascular Medicine, and Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Sujoy Ghosh
- grid.428397.30000 0004 0385 0924Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Mark A. Sarzynski
- grid.254567.70000 0000 9075 106XDepartment of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| | - Claude Bouchard
- grid.250514.70000 0001 2159 6024Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA USA
| | - Francesco Falciani
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
3
|
Singh S, Ng J, Sivaraman J. Exploring the "Other" subfamily of HECT E3-ligases for therapeutic intervention. Pharmacol Ther 2021; 224:107809. [PMID: 33607149 DOI: 10.1016/j.pharmthera.2021.107809] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022]
Abstract
The HECT E3 ligase family regulates key cellular signaling pathways, with its 28 members divided into three subfamilies: NEDD4 subfamily (9 members), HERC subfamily (6 members) and "Other" subfamily (13 members). Here, we focus on the less-explored "Other" subfamily and discuss the recent findings pertaining to their biological roles. The N-terminal regions preceding the conserved HECT domains are significantly diverse in length and sequence composition, and are mostly unstructured, except for short regions that incorporate known substrate-binding domains. In some of the better-characterized "Other" members (e.g., HUWE1, AREL1 and UBE3C), structure analysis shows that the extended region (~ aa 50) adjacent to the HECT domain affects the stability and activity of the protein. The enzymatic activity is also influenced by interactions with different adaptor proteins and inter/intramolecular interactions. Primarily, the "Other" subfamily members assemble atypical ubiquitin linkages, with some cooperating with E3 ligases from the other subfamilies to form branched ubiquitin chains on substrates. Viruses and pathogenic bacteria target and hijack the activities of "Other" subfamily members to evade host immune responses and cause diseases. As such, these HECT E3 ligases have emerged as potential candidates for therapeutic drug development.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - Joel Ng
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore
| | - J Sivaraman
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
5
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
6
|
Jäckl M, Stollmaier C, Strohäker T, Hyz K, Maspero E, Polo S, Wiesner S. β-Sheet Augmentation Is a Conserved Mechanism of Priming HECT E3 Ligases for Ubiquitin Ligation. J Mol Biol 2018; 430:3218-3233. [PMID: 29964046 DOI: 10.1016/j.jmb.2018.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
Ubiquitin (Ub) ligases (E3s) catalyze the attachment of Ub chains to target proteins and thereby regulate a wide array of signal transduction pathways in eukaryotes. In HECT-type E3s, Ub first forms a thioester intermediate with a strictly conserved Cys in the C-lobe of the HECT domain and is then ligated via an isopeptide bond to a Lys residue in the substrate or a preceding Ub in a poly-Ub chain. To date, many key aspects of HECT-mediated Ub transfer have remained elusive. Here, we provide structural and functional insights into the catalytic mechanism of the HECT-type ligase Huwe1 and compare it to the unrelated, K63-specific Smurf2 E3, a member of the Nedd4 family. We found that the Huwe1 HECT domain, in contrast to Nedd4-family E3s, prioritizes K6- and K48-poly-Ub chains and does not interact with Ub in a non-covalent manner. Despite these mechanistic differences, we demonstrate that the architecture of the C-lobe~Ub intermediate is conserved between Huwe1 and Smurf2 and involves a reorientation of the very C-terminal residues. Moreover, in Nedd4 E3s and Huwe1, the individual sequence composition of the Huwe1 C-terminal tail modulates ubiquitination activity, without affecting thioester formation. In sum, our data suggest that catalysis of HECT ligases hold common features, such as the β-sheet augmentation that primes the enzymes for ligation, and variable elements, such as the sequence of the HECT C-terminal tail, that fine-tune ubiquitination activity and may aid in determining Ub chain specificity by positioning the substrate or acceptor Ub.
Collapse
Affiliation(s)
- Magnus Jäckl
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Carsten Stollmaier
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Timo Strohäker
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Karolina Hyz
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via S. Sofia, 9/1, 20122 Milan, Italy
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany; Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany.
| |
Collapse
|
7
|
Mukherjee R, Das A, Chakrabarti S, Chakrabarti O. Calcium dependent regulation of protein ubiquitination - Interplay between E3 ligases and calcium binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1227-1235. [PMID: 28285986 DOI: 10.1016/j.bbamcr.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
The ubiquitination status of proteins and intracellular calcium levels are two factors which keep changing inside any living cell. These two events appear to be independent of each other but recent experimental evidences show that ubiquitination of cellular proteins are influenced by calcium, Calmodulin, Calmodulin-dependent kinase II and other proteins of calcium dependent pathways. E3 ligases like Nedd4, SCF complex, APC, GP78 and ITCH are important regulators of calcium mediated processes. A bioinformatics analysis to inspect sequences and interacting partners of 242 candidate E3 ligases show the presence of calcium and/or Calmodulin binding motifs/domains within their sequences. Building a protein-protein interaction (PPI) network of human E3 ligase proteins identifies Ca2+ related proteins as direct interacting partners of E3 ligases. Review of literature, analysis of E3 ligase sequences and their interactome suggests an interconnectivity between calcium signaling and the overall UPS system, especially emphasizing that a subset of E3 ligases have importance in physiological pathways modulated by calcium.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Aneesha Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
8
|
Vermillion KL, Jagtap P, Johnson JE, Griffin TJ, Andrews MT. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics. J Proteome Res 2015; 14:4792-804. [DOI: 10.1021/acs.jproteome.5b00575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Katie L. Vermillion
- Department
of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, Minnesota 55812, United States
| | - Pratik Jagtap
- Center
for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner
Avenue, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States
| | - James E. Johnson
- Minnesota Supercomputing Institute, 512 Walter Library 117 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Timothy J. Griffin
- Center
for Mass Spectrometry and Proteomics, University of Minnesota, 1479 Gortner
Avenue, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55455, United States
| | - Matthew T. Andrews
- Department
of Biology, University of Minnesota Duluth, 1035 Kirby Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
9
|
Okada M, Ohtake F, Nishikawa H, Wu W, Saeki Y, Takana K, Ohta T. Liganded ERα Stimulates the E3 Ubiquitin Ligase Activity of UBE3C to Facilitate Cell Proliferation. Mol Endocrinol 2015; 29:1646-57. [PMID: 26389696 DOI: 10.1210/me.2015-1125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor (ER)α is a well-characterized ligand-dependent transcription factor. However, the global picture of its nongenomic functions remains to be illustrated. Here, we demonstrate a novel function of ERα during mitosis that facilitates estrogen-dependent cell proliferation. An E3 ubiquitin ligase, UBE3C, was identified in an ERα complex from estrogen-treated MCF-7 breast cancer cells arrested at mitosis. UBE3C interacts with ERα during mitosis in an estrogen-dependent manner. In vitro, estrogen dramatically stimulates the E3 activity of UBE3C in the presence of ERα. This effect was inhibited by the estrogen antagonist tamoxifen. Importantly, estrogen enhances the ubiquitination of cyclin B1 (CCNB1) and destabilizes CCNB1 during mitosis in a manner dependent on endogenous UBE3C. ERα, UBE3C, and CCNB1 colocalize in prophase nuclei and at metaphase spindles before CCNB1 is degraded in anaphase. Depletion of UBE3C attenuates estrogen-dependent cell proliferation without affecting the transactivation function of ERα. Collectively, these results demonstrate a novel ligand-dependent action of ERα that stimulates the activity of an E3 ligase. The mitotic role of estrogen may contribute to its effects on proliferation in addition to its roles in target gene expression.
Collapse
Affiliation(s)
- Maiko Okada
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Fumiaki Ohtake
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroyuki Nishikawa
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Wenwen Wu
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasushi Saeki
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Keiji Takana
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology (M.O., W.W., T.O.), Institute of Advanced Medical Science (H.N.), St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; Institute of Molecular and Cellular Biosciences (M.O.), University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Cellular and Molecular Toxicology (F.O.), Biological Safety Research Center, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan; and Laboratory of Protein Metabolism (Y.S., K.T.), Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
10
|
Ehrlich ES, Chmura JC, Smith JC, Kalu NN, Hayward GS. KSHV RTA abolishes NFκB responsive gene expression during lytic reactivation by targeting vFLIP for degradation via the proteasome. PLoS One 2014; 9:e91359. [PMID: 24614587 PMCID: PMC3948842 DOI: 10.1371/journal.pone.0091359] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 02/12/2014] [Indexed: 01/08/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is a gamma-2 herpesvirus present in all cases of Kaposi's sarcoma, primary effusion lymphoma (PEL), and some cases of multicentric Castleman's disease. Viral FLICE inhibitory protein (vFLIP) is a latently expressed gene that has been shown to be essential for survival of latently infected PEL cells by activating the NFκB pathway. Inhibitors of either vFLIP expression or the NFĸB pathway result in enhanced lytic reactivation and apoptosis. We have observed a decrease in vFLIP protein levels and of NFκB activation in the presence of the KSHV lytic switch protein RTA. Whereas vFLIP alone induced expression of the NFĸB responsive genes ICAM1 and TNFα, inclusion of RTA decreased vFLIP induced ICAM1 and TNFα expression in both co-transfected 293T cells and in doxycycline induced TREx BCBL1 cells. RTA expression resulted in proteasome dependent destabilization of vFLIP. Neither RTA ubiquitin E3 ligase domain mutants nor a dominant-negative RAUL mutant abrogated this effect, while RTA truncation mutants did, suggesting that RTA recruits a novel cellular ubiquitin E3 ligase to target vFLIP for proteasomal degradation, allowing for inhibition of NFĸB responsive gene expression early during lytic reactivation.
Collapse
Affiliation(s)
- Elana S. Ehrlich
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (ESE); (GSH)
| | - Jennifer C. Chmura
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| | - John C. Smith
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| | - Nene N. Kalu
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gary S. Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (ESE); (GSH)
| |
Collapse
|
11
|
Chu BW, Kovary KM, Guillaume J, Chen LC, Teruel MN, Wandless TJ. The E3 ubiquitin ligase UBE3C enhances proteasome processivity by ubiquitinating partially proteolyzed substrates. J Biol Chem 2013; 288:34575-87. [PMID: 24158444 DOI: 10.1074/jbc.m113.499350] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To maintain protein homeostasis, cells must balance protein synthesis with protein degradation. Accumulation of misfolded or partially degraded proteins can lead to the formation of pathological protein aggregates. Here we report the use of destabilizing domains, proteins whose folding state can be reversibly tuned using a high affinity ligand, as model substrates to interrogate cellular protein quality control mechanisms in mammalian cells using a forward genetic screen. Upon knockdown of UBE3C, an E3 ubiquitin ligase, a reporter protein consisting of a destabilizing domain fused to GFP is degraded more slowly and incompletely by the proteasome. Partial proteolysis is also observed when UBE3C is present but cannot ubiquitinate substrates because its active site has been mutated, it is unable to bind to the proteasome, or the substrate lacks lysine residues. UBE3C knockdown also results in less substrate polyubiquitination. Finally, knockdown renders cells more susceptible to the Hsp90 inhibitor 17-AAG, suggesting that UBE3C protects against the harmful accumulation of protein fragments arising from incompletely degraded proteasome substrates.
Collapse
Affiliation(s)
- Bernard W Chu
- From the Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
| | | | | | | | | | | |
Collapse
|
12
|
Zhou J, Bi D, Lin Y, Chen P, Wang X, Liang S. Shotgun proteomics and network analysis of ubiquitin-related proteins from human breast carcinoma epithelial cells. Mol Cell Biochem 2011; 359:375-84. [PMID: 21853274 DOI: 10.1007/s11010-011-1031-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/05/2011] [Indexed: 12/29/2022]
Abstract
Protein ubiquitination via the covalent attachment of ubiquitin (Ub) plays an important role in the regulation of the stability, function or localization of multiple proteins in eukaryotic cells. Comprehensive investigation of the proteomics related to ubiquitination will gain the insight into the Ub-mediated regulatory mechanism. In the present study, the combination of polyUb affinity purification, SDS-PAGE separation, and liquid chromatography-tandem mass spectrometry analysis (GeLC-MS/MS) was employed to analyze the Ub-related proteins in human MDA-MB-231 breast carcinoma epithelial cells after treatment with the proteasome inhibitor MG132. A total of 260 non-redundant Ub-related proteins were identified from the cells. These proteins were shown to be involved in a host of critical cellular functions and processes, including transcription, translation, Ub-proteasome pathway, cell cycle, heat shock response, transport, etc. The interaction network analysis by STRING indicated that the identified Ub-related proteins formed eleven clusters, the three most highly ranked network clusters were mainly involved in protein translation, RNA transcription and processing, and Ub-proteasome pathway, suggesting that there were obvious ubiquitination-mediated alternations in gene expression of human MDA-MB-231 cells. The proteomic profiling and their interaction network analysis in this study would help to our systematic understanding of the Ub-related cellular protein functions and the related biological processes in human disease tissue cells.
Collapse
Affiliation(s)
- Jian Zhou
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Yu Y, Hayward GS. The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity 2011; 33:863-77. [PMID: 21167755 DOI: 10.1016/j.immuni.2010.11.027] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 09/14/2010] [Accepted: 11/29/2010] [Indexed: 11/28/2022]
Abstract
In the course of combating infectious agents, type I interferon (IFN) needs a timely downregulation mechanism to avoid detrimental overreaction. Here we showed a mechanism for restraining type I IFN responses, which relied on a HECT domain ubiquitin (Ub) E3 ligase, RAUL. RAUL limited type I IFN production by directly catalyzing lysine 48-linked polyubiquitination of both interferon regulatory factor 7 (IRF7) and IRF3 followed by proteasome-dependent degradation. Suppression of RAUL by dominant-negative RAUL or siRNA augmented both basal and virus-induced production of type I IFN, which resulted in reduced viral replication. The Kaposi's sarcoma-associated herpes virus immediate-early lytic cycle trigger protein RTA recruited this mechanism to augment its countermeasures against the host antiviral response. These results unveil a previously unrecognized "brake mechanism" for type I IFN that maintains proper low amounts of type I IFN under physiological conditions and restrains its magnitude when the antiviral response intensifies.
Collapse
Affiliation(s)
- Yanxing Yu
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB1 3M09, Baltimore, MD 21231, USA.
| | | |
Collapse
|
14
|
Karssen AM, Her S, Li JZ, Patel PD, Meng F, Bunney WE, Jones EG, Watson SJ, Akil H, Myers RM, Schatzberg AF, Lyons DM. Stress-induced changes in primate prefrontal profiles of gene expression. Mol Psychiatry 2007; 12:1089-102. [PMID: 17893703 DOI: 10.1038/sj.mp.4002095] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stressful experiences that consistently increase cortisol levels appear to alter the expression of hundreds of genes in prefrontal limbic brain regions. Here, we investigate this hypothesis in monkeys exposed to intermittent social stress-induced episodes of hypercortisolism or a no-stress control condition. Prefrontal profiles of gene expression compiled from Affymetrix microarray data for monkeys randomized to the no-stress condition were consistent with microarray results published for healthy humans. In monkeys exposed to intermittent social stress, more genes than expected by chance appeared to be differentially expressed in ventromedial prefrontal cortex compared to monkeys not exposed to adult social stress. Most of these stress responsive candidate genes were modestly downregulated, including ubiquitin conjugation enzymes and ligases involved in synaptic plasticity, cell cycle progression and nuclear receptor signaling. Social stress did not affect gene expression beyond that expected by chance in dorsolateral prefrontal cortex or prefrontal white matter. Thirty four of 48 comparisons chosen for verification by quantitative real-time polymerase chain reaction (qPCR) were consistent with the microarray-predicted result. Furthermore, qPCR and microarray data were highly correlated. These results provide new insights on the regulation of gene expression in a prefrontal corticolimbic region involved in the pathophysiology of stress and major depression. Comparisons between these data from monkeys and those for ventromedial prefrontal cortex in humans with a history of major depression may help to distinguish the molecular signature of stress from other confounding factors in human postmortem brain research.
Collapse
Affiliation(s)
- A M Karssen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5485, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shiraishi S, Zhou C, Aoki T, Sato N, Chiba T, Tanaka K, Yoshida S, Nabeshima Y, Nabeshima YI, Tamura TA. TBP-interacting protein 120B (TIP120B)/cullin-associated and neddylation-dissociated 2 (CAND2) inhibits SCF-dependent ubiquitination of myogenin and accelerates myogenic differentiation. J Biol Chem 2007; 282:9017-28. [PMID: 17242400 DOI: 10.1074/jbc.m611513200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite fast protein degradation in muscles, protein concentrations remain constant during differentiation and maintenance of muscle tissues. Myogenin, a basic helix-loop-helix-type myogenic transcription factor, plays a critical role through transcriptional activation in myogenesis as well as muscle maintenance. TBP-interacting protein 120/cullin-associated neddylation-dissociated (TIP120/CAND) is known to bind to cullin and negatively regulate SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase, although its physiological role has not been elucidated. We have identified a muscle-specific isoform of TIP120, named TIP120B/CAND2. In this study, we found that TIP120B is not only induced in association with myogenic differentiation but also actively accelerates the myogenic differentiation of C2C12 cells. Although myogenin is a short lived protein and is degraded by a ubiquitin-proteasome system, TIP120B suppressed its ubiquitination and subsequent degradation of myogenin. TIP120B bound to cullin family proteins, especially Cullin 1 (CUL1), and was associated with SCF complex in cells. It was demonstrated that myogenin was also associated with SCF and that CUL1 small interference RNA treatment inhibited ubiquitination of myogenin and stabilized it. TIP120B was found to break down the SCF-myogenin complex. Consequently suppression of SCF-dependent ubiquitination of myogenin by TIP120B, which leads to stabilization of myogenin, can account for the TIP120B-directed accelerated differentiation of C2C12 cells. TIP120B is proposed to be a novel regulator for myogenesis.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gorbea C, Kaufmann AG, Pratt G, Rechsteiner M, Rogers SW. Multiple Forms of the 26S Proteasome-Associated Protein Ecm29 in the Mouse Brain. Isr J Chem 2006. [DOI: 10.1560/742p-et1j-8rlc-2jyv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Lo SC, Hannink M. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Mol Cell Biol 2006; 26:1235-44. [PMID: 16449638 PMCID: PMC1367193 DOI: 10.1128/mcb.26.4.1235-1244.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Shih-Ching Lo
- Department of Biochemistry, Life Science Center, M121 Medical Sciences Building, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
18
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang M, Pickart CM. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J 2005; 24:4324-33. [PMID: 16341092 PMCID: PMC1356336 DOI: 10.1038/sj.emboj.7600895] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 11/09/2005] [Indexed: 11/09/2022] Open
Abstract
Individual ubiquitin (Ub)-protein ligases (E3s) cooperate with specific Ub-conjugating enzymes (E2s) to modify cognate substrates with polyubiquitin chains. E3s belonging to the Really Interesting New Gene (RING) and Homologous to E6-Associated Protein (E6AP) C-Terminus (HECT) domain families utilize distinct molecular mechanisms. In particular, HECT E3s, but not RING E3s, form a thiol ester with Ub before transferring Ub to the substrate lysine. Here we report that different HECT domain E3s can employ distinct mechanisms of polyubiquitin chain synthesis. We show that E6AP builds up a K48-linked chain on its HECT cysteine residue, while KIAA10 builds up K48- and K29-linked chains as free entities. A small region near the N-terminus of the conserved HECT domain helps to bring about this functional distinction. Thus, a given HECT domain can specify both the linkage of a polyubiquitin chain and the mechanism of its assembly.
Collapse
Affiliation(s)
- Min Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cecile M Pickart
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA. Tel.: +1 410 614 4554; Fax: +1 410 955 2926; E-mail:
| |
Collapse
|
20
|
Farràs R, Bossis G, Andermarcher E, Jariel-Encontre I, Piechaczyk M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit Rev Oncol Hematol 2005; 54:31-51. [PMID: 15780906 DOI: 10.1016/j.critrevonc.2004.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2004] [Indexed: 02/04/2023] Open
Abstract
The proteasome is the main proteolytic machinery of the cell. It is responsible for the basal turnover of many intracellular polypeptides, the elimination of abnormal proteins and the generation of the vast majority of peptides presented by class I major histocompatibility complex molecules. Proteasomal proteolysis is also involved in the control of virtually all cellular functions and major decisions through the spatially and timely regulated destruction of essential cell regulators. Therefore, the elucidation of its molecular mechanisms is crucial for the full understanding of the physiology of cells and whole organisms. Conversely, it is increasingly clear that proteasomal degradation is either altered in numerous pathological situations, including many cancers and diseases resulting from aberrant cell differentiation, or instrumental for the development of these pathologies. This, consequently, makes it an attractive target for therapeutical intervention. There is ample evidence that most cell proteins must be polyubiquitylated prior to proteasomal degradation. If the structure and the mode of functioning of the proteasome, as well as the enzymology of ubiquitylation, are relatively well understood, how substrates are delivered to and recognized by the proteolytic machine has remained mysterious till recently. The recent literature indicates that the mechanisms involved are multiple, complex and exquisitely regulated and provides new potential targets for anti-cancer pharmacological intervention.
Collapse
Affiliation(s)
- Rosa Farràs
- Institute of Molecular Genetics of Montpellier (IGMM), UMR 5535-IFR122, CNRS, Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
21
|
Cao PR, Kim HJ, Lecker SH. Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 2004; 37:2088-97. [PMID: 16125112 DOI: 10.1016/j.biocel.2004.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/02/2004] [Accepted: 11/17/2004] [Indexed: 11/18/2022]
Abstract
Muscle wasting occurs when rates of protein degradation outstrip rates of protein synthesis. Accelerated rates of protein degradation develop in atrophying muscle largely through activation of the ubiquitin-proteasome pathway. The complexity of the ubiquitination process, however, has hampered our understanding of how this pathway is activated in atrophying muscles and which enzymes of the ubiquitin conjugation system are responsible. Recent studies demonstrate that two ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MuRF1 are critical in the development of muscle atrophy. Other experiments implicate E2(14k) and E3alpha, of the N-end rule pathway, as important players in the process. It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as to develop inhibitors of, these E3s.
Collapse
Affiliation(s)
- Pei Rang Cao
- Renal Unit, DA517, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
22
|
Gorbea C, Goellner GM, Teter K, Holmes RK, Rechsteiner M. Characterization of mammalian Ecm29, a 26 S proteasome-associated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 2004; 279:54849-61. [PMID: 15496406 DOI: 10.1074/jbc.m410444200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to its thirty or so core subunits, a number of accessory proteins associate with the 26 S proteasome presumably to assist in substrate degradation or to localize the enzyme within cells. Among these proteins is ecm29p, a 200-kDa yeast protein that contains numerous HEAT repeats as well as a putative VHS domain. Higher eukaryotes possess a well conserved homolog of yeast ecm29p, and we produced antibodies to three peptides in the human Ecm29 sequence. The antibodies show that Ecm29 is present exclusively on 26 S proteasomes in HeLa cells and that Ecm29 levels vary markedly among mouse organs. Confocal immunofluorescence microscopy localizes Ecm29 to the centrosome and a subset of secretory compartments including endosomes, the ER and the ERGIC. Ecm29 is up-regulated 2-3-fold in toxinresistant mutant CHO cells exhibiting increased rates of ER-associated degradation. Based on these results we propose that Ecm29 serves to couple the 26 S proteasome to secretory compartments engaged in quality control and to other sites of enhanced proteolysis.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|