1
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
2
|
Proteomic Analysis of Human Breast Cancer MCF-7 Cells to Identify Cellular Targets of the Anticancer Pigment OR3 from Streptomyces coelicolor JUACT03. Appl Biochem Biotechnol 2023; 195:236-252. [PMID: 36070163 DOI: 10.1007/s12010-022-04128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Search for ideal compounds with known pathways of anticancer mechanism is still a priority research focus for cancer, as it continues to be a major health challenge across the globe. Hence, in the present study, anticancer potential of a yellow pigment fraction, OR3, isolated from Streptomyces coelicolor JUACT03 was assessed on the breast cancer cell line MCF-7. TLC-fractionated OR3 pigment was subjected to HPLC and GC-MS analysis for characterization and identification of the bioactive component. MCF-7 cells were treated with IC50 concentration of OR3 and the molecular alterations were analyzed using mass spectrometry-based quantitative proteomic analysis. Bioinformatics tools such as STRING analysis and Ingenuity Pathway Analysis were performed to analyze proteomics data and to identify dysregulated signaling pathways. As per our obtained data, OR3 treatment decreased cell proliferation and induced apoptotic cell death due to significant dysregulation of protein expressions in MCF-7 cells. Altered expression included the ribosomal, mRNA processing and vesicle-mediated transport proteins as a result of OR3 treatment. Downregulation of MAPK proteins, NFkB, and estradiol signaling was identified in OR3-treated MCF-7 cells. Mainly eIF2, mTOR, and eIF4 signaling pathways were altered in OR3-treated cells. GC-MS data indicated the presence of novel compounds in OR3 fraction. It can be concluded that OR3 exhibits potent anticancer activity on the breast cancer cells mainly through altering the expression and affecting the signaling proteins which are involved in different cell proliferation/apoptotic pathways thereby causing inhibition of cancer cell proliferation, survival and metastasis.
Collapse
|
3
|
Alonso JM, Escobar-Peso A, Fernández I, Alcázar A, Marco-Contelles J. Improving the Efficacy of Quinolylnitrones for Ischemic Stroke Therapy, QN4 and QN15 as New Neuroprotective Agents after Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury. Pharmaceuticals (Basel) 2022; 15:1363. [PMID: 36355534 PMCID: PMC9697404 DOI: 10.3390/ph15111363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2024] Open
Abstract
In our search for new neuroprotective agents for stroke therapy to improve the pharmacological profile of the compound quinolylnitrone QN23, we have prepared and studied sixteen new, related and easily available quinolylnitrones. As a result, we have identified compounds QN4 and QN15 as promising candidates showing high neuroprotection power in a cellular experimental model of ischemia. Even though they were found to be less active than our current lead compound QN23, QN4 and QN15 provide an improved potency and, particularly for QN4, an expanded range of tolerability and improved solubility compared to the parent compound. A computational DFT-based analysis has been carried out to understand the antioxidant power of quinolylnitrones QN23, QN4 and QN15. Altogether, these results show that subtle, simple modifications of the quinolylnitrone scaffold are tolerated, providing high neuroprotective activity and optimization of the pharmacological potency required for an improved design and future drug developments in the field.
Collapse
Affiliation(s)
- José M. Alonso
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
4
|
Eytan K, Versano Z, Oren R, Jacob-Hirsch J, Leitner M, Harmelin A, Rechavi G, Toren A, Paglin S, Yalon M. Pediatric glioblastoma cells are sensitive to drugs that inhibit eIF2α dephosphorylation and its phosphomimetic S51D variant. Front Oncol 2022; 12:959133. [PMID: 36091130 PMCID: PMC9462064 DOI: 10.3389/fonc.2022.959133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
We found that pediatric glioblastoma (PED-GBM) cell lines from diffuse intrinsic pontine glioma (DIPG) carrying the H3K27M mutation or from diffuse hemispheric glioma expressing the H3G34R mutation are sensitive to the combination of vorinostat (a histone deacetylase inhibitor) and PARP-1 inhibitors. The combined treatment increased the phosphorylation of eIF2α (P-eIF2α) relative to each drug alone and enhanced the decrease in cell survival. To explore the role played by increased P-eIF2α in modulating PED-GBM survival and response to treatments, we employed brain-penetrating inhibitors of P-eIF2α dephosphorylation: salubrinal and raphin-1. These drugs increased P-eIF2α, DNA damage, and cell death, similarly affecting the sensitivity of DIPG cells and derived neurospheres to PARP-1 inhibitors. Interestingly, these drugs also decreased the level of eIF2Bϵ (the catalytic subunit of eIF2B) and increased its phosphorylation, thereby enhancing the effect of increased P-eIF2α. Transient transfection with the S51D phosphomimetic eIF2α variant recapitulated the effect of salubrinal and raphin-1 on PED-GBM survival and sensitivity to PARP-1 inhibitors. Importantly, either salubrinal or raphin-1 dramatically increased the sensitivity of DIPG cells to radiation, the main treatment modality of PED-GBM. Finally, PED-GBM was more sensitive than normal human astrocytes to salubrinal, raphin-1, and the treatment combinations described herein. Our results indicate that combinations of histone deacetylase inhibitors and PARP-1 inhibitors should be evaluated for their toxicity and efficacy in PED-GBM patients and point to drugs that increase P-eIF2α or modulate its downstream effectors as a novel means of treating PED-GBM.
Collapse
Affiliation(s)
- Karin Eytan
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Ziv Versano
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roni Oren
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Moshe Leitner
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Rechavi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Paglin
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Chaim Sheba Medical Center, Ramat Gan, Israel
- *Correspondence: Michal Yalon,
| |
Collapse
|
5
|
Synthesis, functional proteomics and biological evaluation of new 5-pyrazolyl ureas as potential anti-angiogenic compounds. Eur J Med Chem 2021; 226:113872. [PMID: 34600191 DOI: 10.1016/j.ejmech.2021.113872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
Based on biological results of previous synthesized pyrazolyl ureas able to interfere with angiogenesis process, we planned and synthesized the new benzyl-urea derivatives 2-4; some of them showed an interesting anti-proliferative profile and particularly 4e potently inhibited HUVEC proliferation. To shed light on the mechanism of action of 4e, its interactome has been deeply inspected to identify the most prominent protein partners, mainly taking into account kinome and phosphatome, through drug affinity responsive target stability experiments, followed by targeted limited proteolysis analysis. From these studies, PP1γ emerged as the most reliable 4e potential target in HUVEC. Molecular docking simulations on PP1γ were carried out to predict 4e binding mode. To assess its potential anti-angiogenic effect, 4e was tested in vitro to verify interference on kinase and phosphate activities. Overall, our results evidenced for 4e an interesting anti-angiogenic action, probably due to its action at intracellular level on PP1γ signalling pathways.
Collapse
|
6
|
Alonso JM, Escobar-Peso A, Palomino-Antolín A, Diez-Iriepa D, Chioua M, Martínez-Alonso E, Iriepa I, Egea J, Alcázar A, Marco-Contelles J. Privileged Quinolylnitrones for the Combined Therapy of Ischemic Stroke and Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14090861. [PMID: 34577561 PMCID: PMC8465398 DOI: 10.3390/ph14090861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer’s disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen–glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or β-amyloid peptide Aβ25–35, modeling toxic insults found among the effects of AD.
Collapse
Affiliation(s)
- José M. Alonso
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
| | - Alejandro Escobar-Peso
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
| | - Alejandra Palomino-Antolín
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain;
| | - Daniel Diez-Iriepa
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33.6, 28871 Alcalá de Henares, Spain;
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
| | - Emma Martínez-Alonso
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33.6, 28871 Alcalá de Henares, Spain;
- Institute of Chemical Research Andrés M. del Río, Alcalá University, 28805 Alcalá de Henares, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain;
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| | - Alberto Alcázar
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| |
Collapse
|
7
|
Chioua M, Martínez-Alonso E, Gonzalo-Gobernado R, Ayuso MI, Escobar-Peso A, Infantes L, Hadjipavlou-Litina D, Montoya JJ, Montaner J, Alcázar A, Marco-Contelles J. New Quinolylnitrones for Stroke Therapy: Antioxidant and Neuroprotective ( Z)- N- tert-Butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine Oxide as a New Lead-Compound for Ischemic Stroke Treatment. J Med Chem 2019; 62:2184-2201. [PMID: 30715875 DOI: 10.1021/acs.jmedchem.8b01987] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe herein the synthesis and neuroprotective capacity of an array of 31 compounds comprising quinolyloximes, quinolylhydrazones, quinolylimines, QNs, and related heterocyclic azolylnitrones. Neuronal cultures subjected to oxygen-glucose deprivation (OGD), as experimental model for ischemic conditions, were treated with our molecules at the onset of recovery period after OGD and showed that most of these QNs, but not the azo molecules, improved neuronal viability 24 h after recovery. Especially, QN ( Z)- N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (23) was shown as a very potent neuroprotective agent. Antioxidant analysis based on the ability of QN 23 to trap different types of toxic radical oxygenated species supported and confirmed its strong neuroprotective capacity. Finally, QN 23 showed also neuroprotection induction in two in vivo models of cerebral ischemia, decreasing neuronal death and reducing infarct size, allowing us to conclude that QN 23 can be considered as new lead-compound for ischemic stroke treatment.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain
| | - Emma Martínez-Alonso
- Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - Rafael Gonzalo-Gobernado
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain
| | - Maria I Ayuso
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain
| | - Alejandro Escobar-Peso
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain.,Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - Lourdes Infantes
- Institute of Physical-Chemistry Rocasolano, CSIC , C/Serrano 119 , Madrid 28006 , Spain
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki 54124 , Greece
| | - Juan J Montoya
- Isquaemia Biotech SL , Scientific Technological Park, C/Astrónoma Cecilia Payne s/n , Córdoba 14014 , Spain
| | - Joan Montaner
- Neurovascular Research Group , Institute of Biomedicine of Seville, IBiS, Hospital Universitario Virgen del Rocío , Av. Manuel Siurot s/n , Seville 41013 , Spain.,Department of Neurology , Hospital Universitario Virgen Macarena , Av. Doctor Fedriani 3 , Seville 41007 , Spain
| | - Alberto Alcázar
- Department of Investigation , IRYCIS, Hospital Ramón y Cajal , Ctra. Colmenar km 9.1 , Madrid 28034 , Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry , IQOG, CSIC , C/Juan de la Cierva 3 , Madrid 28006 , Spain
| |
Collapse
|
8
|
Cagnetta R, Wong HHW, Frese CK, Mallucci GR, Krijgsveld J, Holt CE. Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring. Mol Cell 2019; 73:474-489.e5. [PMID: 30595434 PMCID: PMC6375727 DOI: 10.1016/j.molcel.2018.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/18/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Cambridge CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany; CECAD Research Center, University of Cologne, 50931 Cologne, Germany
| | - Giovanna R Mallucci
- UK Dementia Research Institute and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0SL, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
9
|
Kopp Z, Park Y. Longer lifespan in the Rpd3 and Loco signaling results from the reduced catabolism in young age with noncoding RNA. Aging (Albany NY) 2019; 11:230-239. [PMID: 30620723 PMCID: PMC6339784 DOI: 10.18632/aging.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Downregulation of Rpd3 (histone deacetylase) or Loco (regulator of G-protein signaling protein) extends Drosophila lifespan with higher stress resistance. We found rpd3-downregulated long-lived flies genetically interact with loco-upregulated short-lived flies in stress resistance and lifespan. Gene expression profiles between those flies revealed that they regulate common target genes in metabolic enzymes and signaling pathways, showing an opposite expression pattern in their contrasting lifespans. Functional analyses of more significantly changed genes indicated that the activities of catabolic enzymes and uptake/storage proteins are reduced in long-lived flies with Rpd3 downregulation. This reduced catabolism exhibited from a young age is considered to be necessary for the resultant longer lifespan of the Rpd3- and Loco-downregulated old flies, which mimics the dietary restriction (DR) effect that extends lifespan in the several species. Inversely, those catabolic activities that break down carbohydrates, lipids, and peptides were high in the short lifespan of Loco-upregulated flies. Long noncoding gene, dntRL (CR45923), was also found as a putative target modulated by Rpd3 and Loco for the longevity. Interestingly, this dntRL could affect stress resistance and lifespan, suggesting that the dntRL lncRNA may be involved in the metabolic mechanism of Rpd3 and Loco signaling.
Collapse
Affiliation(s)
- Zachary Kopp
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Kolupaeva V. Serine-threonine protein phosphatases: Lost in translation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:83-89. [PMID: 30401537 DOI: 10.1016/j.bbamcr.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Protein synthesis is one of the most complex and energy-consuming processes in eukaryotic cells and therefore is tightly regulated. One of the main mechanisms of translational control is post-translational modifications of the components of translational apparatus. Phosphorylation status of translation factors depends on the balanced action of kinases and phosphatases. While many kinase-dependent events are well defined, phosphatases that counteract phosphorylation are rarely determined. This mini-review focuses on the regulation of activity of translational initiation factors by serine/threonine phosphatases.
Collapse
Affiliation(s)
- Victoria Kolupaeva
- NYU College of Dentistry, Department of Basic Science and Craniofacial Biology, 345 E 24th St, New York, NY 10010, United States of America.
| |
Collapse
|
11
|
Ayuso MI, Martínez-Alonso E, Chioua M, Escobar-Peso A, Gonzalo-Gobernado R, Montaner J, Marco-Contelles J, Alcázar A. Quinolinyl Nitrone RP19 Induces Neuroprotection after Transient Brain Ischemia. ACS Chem Neurosci 2017; 8:2202-2213. [PMID: 28731692 DOI: 10.1021/acschemneuro.7b00126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There is a need to develop additional effective therapies for ischemic stroke. Nitrones, which were first developed as reactive oxygen species (ROS)-trapping compounds, have been proposed as neuroprotective agents for ischemic stroke, a ROS-related disorder. The previous reported ROS-trapping compound, quinolyl nitrone RP19, is here being assayed to induce neuroprotection to ischemia-reperfusion injury in three experimental ischemia models: (i) oxygen-glucose deprivation (OGD) on primary neuronal cultures; (ii) transient global cerebral ischemia in four-vessel occlusion model; and (iii) transient focal cerebral ischemia in middle cerebral artery occlusion (tMCAO) model. RP19 (50 μM) induced long-term neuroprotection at 5 days of recovery after OGD in primary neuronal cultures, evaluated by cell viability assay, and decreased both ROS formation and lipid peroxidation upon recovery after OGD. Furthermore, treatment of animals with RP19 at the onset of reperfusion after either global or focal ischemia, at the dose range that was demonstrated to be neuroprotective in neuronal cultures, decreased neuronal death and apoptosis induction, reduced the size of infarct, and improved the neurological deficit scores after 48 h or 5 days of reperfusion after ischemia. The molecule proposed, quinolyl nitrone RP19, induced substantial neuroprotection on experimental ischemia in neuronal cells, and against ischemic injury following transient brain ischemia in treated animals. This molecule may have potential therapeutic interest in ischemic stroke and to reduce the reoxygenation-induced injury after induced reperfusion.
Collapse
Affiliation(s)
- Maria I. Ayuso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
- Neurovascular Research Laboratory, Institut
de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Emma Martínez-Alonso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Alejandro Escobar-Peso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Rafael Gonzalo-Gobernado
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Institut
de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Neurovascular
Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla 41013, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC), Madrid 28006, Spain
| | - Alberto Alcázar
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| |
Collapse
|
12
|
Zhang X, Damacharla D, Ma D, Qi Y, Tagett R, Draghici S, Kowluru A, Yi Z. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic β-cells. Mol Cell Endocrinol 2016; 424:1-11. [PMID: 26780722 PMCID: PMC4779412 DOI: 10.1016/j.mce.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases. We hypothesize that PP2A regulates signaling cascades in pancreatic β-cells in the context of glucose-stimulated insulin secretion (GSIS). Using co-immunoprecipitation (co-IP) and tandem mass spectrometry, we globally identified the protein interaction partners of the PP2A catalytic subunit (PP2Ac) in insulin-secreting pancreatic β-cells. Among the 514 identified PP2Ac interaction partners, 476 were novel. This represents the first global view of PP2Ac protein-protein interactions caused by hyperglycemic conditions. Additionally, numerous PP2Ac partners were found involved in a variety of signaling pathways in the β-cell function, such as insulin secretion. Our data suggest that PP2A interacts with various signaling proteins necessary for physiological insulin secretion as well as signaling proteins known to regulate cell dysfunction and apoptosis in the pancreatic β-cells.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Divyasri Damacharla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
14
|
Wu X, Xu T, Li D, Zhu S, Chen Q, Hu W, Pan D, Zhu H, Sun H. ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion. PLoS One 2013; 8:e82957. [PMID: 24386130 PMCID: PMC3875429 DOI: 10.1371/journal.pone.0082957] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Luteolin has long been used in traditional Chinese medicine for treatment of various diseases. Recent studies have suggested that administration of luteolin yields cardioprotective effects during ischemia/reperfusion (I/R) in rats. However, the precise mechanisms of this action remain unclear. The aim of this study is to confirm that luteolin-mediated extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways are responsible for their cardioprotective effects during I/R. Wistar rats were divided into the following groups: (i) DMSO group (DMSO); (ii) I/R group (I/R); (iii) luteolin+I/R group (Lut+I/R); (iv) ERK1/2 inhibitor PD98059+I/R group (PD+I/R); (v) PD98059+luteolin+I/R group (PD+Lut+I/R); and (vi) JNK inhibitor SP600125+I/R group (SP+I/R). The following properties were measured: contractile function of isolated heart and cardiomyocytes; infarct size; the release of lactate dehydrogenase (LDH); the percentage of apoptotic cells; the expression levels of Bcl-2 and Bax; and phosphorylation status of ERK1/2, JNK, type 1 protein phosphatase (PP1a), phospholamban (PLB) and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). Our data showed that pretreatment with luteolin or SP600125 significantly improved the contraction of the isolated heart and cardiomyocytes, reduced infarct size and LDH activity, decreased the rate of apoptosis and increased the Bcl-2/Bax ratio. However, pretreatment with PD98059 alone before I/R had no effect on the above indexes. Further, these consequences of luteolin pretreatment were abrogated by co-administration of PD98059. We also found that pretreatment with PD98059 caused a significant increase in JNK expression, and SP600125 could cause ERK1/2 activation during I/R. In addition, we are the first to demonstrate that luteolin affects PP1a expression, which results in the up-regulation of the PLB, thereby relieving its inhibition of SERCA2a. These results showed that luteolin improves cardiomyocyte contractile function after I/R injury by an ERK1/2-PP1a-PLB-SERCA2a-mediated mechanism independent of JNK signaling pathway.
Collapse
Affiliation(s)
- Xin Wu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Tongda Xu
- Department of The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
- Department of The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, PR China
- * E-mail: (DL); (HS)
| | - Shasha Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Qiuping Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Wenjing Hu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Defeng Pan
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical College, Xuzhou, Jiangsu, PR China
- * E-mail: (DL); (HS)
| |
Collapse
|
15
|
Ayuso MI, Martínez-Alonso E, Cid C, Alonso de Leciñana M, Alcázar A. The translational repressor eIF4E-binding protein 2 (4E-BP2) correlates with selective delayed neuronal death after ischemia. J Cereb Blood Flow Metab 2013; 33:1173-81. [PMID: 23591646 PMCID: PMC3734765 DOI: 10.1038/jcbfm.2013.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/20/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Transient brain ischemia induces an inhibition of translational rates and causes delayed neuronal death in selective regions and cognitive deficits, whereas these effects do not occur in resistant areas. The translational repressor eukaryotic initiation factor (eIF) 4E-binding protein-2 (4E-BP2) specifically binds to eIF4E and is critical in the control of protein synthesis. To link neuronal death to translation inhibition, we study the eIF4E association with 4E-BP2 under ischemia reperfusion in a rat model of transient forebrain ischemia. Upon reperfusion, a selective neuronal apoptosis in the hippocampal cornu ammonis 1 (CA1) region was induced, while it did not occur in the cerebral cortex. Confocal microscopy analysis showed a decrease in 4E-BP2/eIF4E colocalization in resistant cortical neurons after reperfusion. In contrast, in vulnerable CA1 neurons, 4E-BP2 remains associated to eIF4E with a higher degree of 4E-BP2/eIF4E colocalization and translation inhibition. Furthermore, the binding of a 4E-BP2 peptide to eIF4E induced neuronal apoptosis in the CA1 region. Finally, pharmacological-induced protection of CA1 neurons inhibited neuronal apoptosis, decreased 4E-BP2/eIF4E association, and recovered translation. These findings documented specific changes in 4E-BP2/eIF4E association during ischemic reperfusion, linking the translation inhibition to selective neuronal death, and identifying 4E-BP2 as a novel target for protection of vulnerable neurons in ischemic injury.
Collapse
Affiliation(s)
- María Irene Ayuso
- Department of Investigation, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Chioua M, Sucunza D, Soriano E, Hadjipavlou-Litina D, Alcázar A, Ayuso I, Oset-Gasque MJ, González MP, Monjas L, Rodríguez-Franco MI, Marco-Contelles J, Samadi A. Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J Med Chem 2011; 55:153-68. [PMID: 22126405 DOI: 10.1021/jm201105a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase inhibitors. Cell viability-related (MTT assay) studies clearly showed that nitrones 1-3 and 10 give rise to significant neuroprotection. When compounds 1-11 were tested for necrotic cell death (LDH release test) nitrones 1-3, 6, 7, and 9 proved to be neuroprotective agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using the PAMPA-BBB assay showed that all of them cross the BBB. Permeable quinoline nitrones 2 and 3 show potent combined antioxidant and neuroprotective properties and, therefore, can be considered as new lead compounds for further development in specific tests for potential stroke treatment.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratorio de Radicales Libres y Química Computacional, Instituto de Química Orgánica General (CSIC), Juan de la Cierva, 3, 28006-Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cunha DA, Ladrière L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R, Marchetti P, Eizirik DL, Cnop M. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 2009; 58:2851-62. [PMID: 19720788 PMCID: PMC2780890 DOI: 10.2337/db09-0685] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS INS-1E or fluorescence-activated cell sorter-purified primary rat beta-cells were exposed to oleate or palmitate with or without the GLP-1 agonist exendin-4 or forskolin. Cyclopiazonic acid was used as a synthetic ER stressor, while the activating transcription factor 4-C/EBP homologous protein branch was selectively activated with salubrinal. The ER stress signaling pathways modulated by GLP-1 agonists were studied by real-time PCR and Western blot. Knockdown by RNA interference was used to identify mediators of the antiapoptotic GLP-1 effects in the ER stress response and downstream mitochondrial cell death mechanisms. RESULTS Exendin-4 and forskolin protected beta-cells against FFAs via the induction of the ER chaperone BiP and the antiapoptotic protein JunB that mediate beta-cell survival under lipotoxic conditions. On the other hand, exendin-4 and forskolin protected against synthetic ER stressors by inactivating caspase 12 and upregulating Bcl-2 and X-chromosome-linked inhibitor of apoptosis protein that inhibit mitochondrial apoptosis. CONCLUSIONS These observations suggest that GLP-1 agonists increase in a context-dependent way the beta-cell defense mechanisms against different pathways involved in ER stress-induced apoptosis. The identification of the pathways modulated by GLP-1 agonists allows for targeted approaches to alleviate beta-cell ER stress in diabetes.
Collapse
Affiliation(s)
- Daniel A. Cunha
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladrière
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fernanda Ortis
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Esteban N. Gurzov
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Roberto Lupi
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | - Décio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
- Corresponding author: Miriam Cnop,
| |
Collapse
|
18
|
Bibollet-Bahena O, Almazan G. IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways. J Neurochem 2009; 109:1440-51. [PMID: 19453943 DOI: 10.1111/j.1471-4159.2009.06071.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) interacts with the Type I receptor to activate two main signaling pathways, the mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI3K)-Akt cascades, which mediate proliferation or survival of oligodendrocyte (OL) progenitors (OLPs). In other cellular systems, mammalian target of rapamycin (mTOR) and the p70 S6 kinase are downstream effectors that phosphorylate translation initiation factors (e.g. eIF-4E), their regulators (e.g. 4E-binding protein 1, 4E-BP1) and ribosomal protein S6 (S6). The aim of this study was to determine whether these pathways are involved in IGF-1-stimulated protein synthesis, important for growth and differentiation of OLs. Rat cultured OLPs were treated with IGF-1 with or without inhibitors of PI3K (LY294002 or Wortmannin), mTOR (rapamycin), MEK (PD98059), and Akt (III or IV), as well as an adenovirus encoding a dominant negative form of Akt. Protein synthesis, as assessed by [(35)S]-methionine incorporation, was stimulated by IGF-1 and required the upstream activation of PI3K, Akt, mTOR and MEK/ERK. Concordant with the experiments using protein kinase inhibitors, western blotting revealed that IGF-1 stimulates phosphorylation of Akt, mTOR, ERK, S6 and 4E-BP1. Activation of S6 and inactivation of 4E-BP1, necessary for protein synthesis to take place, were dependent on the upstream activation of PI3K and mTOR. Finally, IGF-1 consistently stimulated protein synthesis through mTOR in differentiating OLPs but mRNA transcription was not required at day 4, indicating a differential role of IGF-1 throughout OL development.
Collapse
Affiliation(s)
- Olivia Bibollet-Bahena
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Glover EI, Oates BR, Tang JE, Moore DR, Tarnopolsky MA, Phillips SM. Resistance exercise decreases eIF2Bε phosphorylation and potentiates the feeding-induced stimulation of p70S6K1 and rpS6 in young men. Am J Physiol Regul Integr Comp Physiol 2008; 295:R604-10. [DOI: 10.1152/ajpregu.00097.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We investigated the effect of resistance exercise and feeding on the activation of signaling proteins involved in translation initiation. Nine young men (23.7 ± 0.41 yr; BMI = 25.5 ± 1.0 kg/m2; means ± SE) were tested twice after they performed a strenuous bout of unilateral resistance exercise, such that their contralateral leg acted as a nonexercised comparator, in either the fasted and fed [1,000 kJ, each 90 min (3 doses): 10 g protein, 41 g carbohydrate, 4 g fat] states. Muscle biopsies were obtained 6 h postexercise from both legs, resulting in four experimental conditions: rest-fasted, rest-fed, exercise-fasted, and exercise-fed. Feeding increased PKB/Akt (Ser473) phosphorylation ( P < 0.05), while exercise increased the phosphorylation of Akt and the downstream 70 kDa S6 protein kinase (p70S6K1, Thr389) and ribosomal protein S6 (rpS6, Ser235/236, Ser240/244; all P < 0.05). The combination of resistance exercise and feeding increased the phosphorylation of p70S6K1 (Thr389) and rpS6 (Ser240/244) above exercise alone ( P < 0.05). Exercise also reduced phosphorylation of the catalytic epsilon subunit of eukaryotic initiation factor 2B (eIF2Bε, Ser540; P < 0.05). Mammalian target of rapamycin (mTOR, Ser2448), glycogen synthase kinase-3β (GSK-3β, Ser9), and focal adhesion kinase (FAK, Tyr576/577) phosphorylation were unaffected by either feeding or resistance exercise (all P > 0.14). In summary, feeding resulted in phosphorylation of Akt, while resistance exercise stimulated phosphorylation of Akt, p70S6K1, rpS6, and dephosphorylation eIF2Bε with a synergistic effect of feeding and exercise on p70S6K1 and its downstream target rpS6. We conclude that resistance exercise potentiates the effect of feeding on the phosphorylation and presumably activation of critical proteins involved in the regulation of muscle protein synthesis in young men.
Collapse
|
20
|
Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain. J Neurosci 2008; 28:154-62. [PMID: 18171933 DOI: 10.1523/jneurosci.4109-07.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Protein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al., 2001), critically regulates neuroprotective pathways in the adult brain. When PP1 is inhibited pharmacologically or genetically, recovery from oxygen/glucose deprivation (OGD) in vitro, or ischemia in vivo is impaired. Furthermore, in vitro, inducing LTP shortly before OGD similarly impairs recovery, an effect that correlates with strong PP1 inhibition. Conversely, inducing LTD before OGD elicits full recovery by preserving PP1 activity, an effect that is abolished by PP1 inhibition. The mechanisms of action of PP1 appear to be coupled with several components of apoptotic pathways, in particular ERK1/2 (extracellular signal-regulated kinase 1/2) whose activation is increased by PP1 inhibition both in vitro and in vivo. Together, these results reveal that the mechanisms of recovery in the adult brain critically involve PP1, and highlight a novel physiological function for long-term potentiation and long-term depression in the control of brain damage and repair.
Collapse
|
21
|
Cid C, Garcia-Bonilla L, Camafeita E, Burda J, Salinas M, Alcazar A. Proteomic characterization of protein phosphatase 1 complexes in ischemia-reperfusion and ischemic tolerance. Proteomics 2007; 7:3207-18. [PMID: 17683050 DOI: 10.1002/pmic.200700214] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serine/threonine protein phosphatase 1 (PP1) regulates multiple cellular processes. Protein phosphorylation-dephosphorylation is largely altered during ischemia and subsequent reperfusion. The brain is particularly vulnerable to stress resulting from ischemia-reperfusion (IR), however, the acquisition of ischemic tolerance (IT) protects against IR stress. We studied PP1 complexes in response to IR stress and IT in brain using proteomic characterization of PP1 complexes in animal models of IR and IT. PP1alpha and PP1gamma were immunoprecipitated and resolved by 2-D. DIGE analysis detected 14 different PP1-interacting proteins that exhibited significant changes in their association with PP1alpha or PP1gamma. These proteins were identified by MALDI-TOF MS. Seven had the PP1-binding RVxF motif. IR altered the interaction of heat shock cognate 71 kDa-protein, creatine kinase B, and dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP32) with both PP1alpha and PP1gamma, and the interaction of phosphodiesterase-6B, transitional ER ATPase, lamin-A, glucose-regulated 78 kDa-protein, dihydropyrimidinase-related protein-2, gamma-enolase, neurofilament-L, and ubiquitin ligase SIAH2 with PP1gamma. IT prevented most of the IR-induced effects. This study identifies novel PP1alpha- and PP1gamma-interacting proteins and reveals an in vivo modularity of PP1 holoenzymes in response to physiological ischemic stress. It supports a potential role of PP1 in IR stress and as a target of the endogenous protective mechanisms induced by IT.
Collapse
Affiliation(s)
- Cristina Cid
- Department of Investigation, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007; 403:217-34. [PMID: 17376031 DOI: 10.1042/bj20070024] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.
Collapse
Affiliation(s)
- Christopher G Proud
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
23
|
Rivera J, Abrams C, Hernáez B, Alcázar A, Escribano JM, Dixon L, Alonso C. The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J Virol 2007; 81:2923-9. [PMID: 17215279 PMCID: PMC1865990 DOI: 10.1128/jvi.02077-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DP71L protein of African swine fever virus (ASFV) shares sequence similarity with the herpes simplex virus ICP34.5 protein over a C-terminal domain. We showed that the catalytic subunit of protein phosphatase 1 (PP1) interacts specifically with the ASFV DP71L protein in a yeast two-hybrid screen. The chimeric full-length DP71L protein, from ASFV strain Badajoz 71 (BA71V), fused to glutathione S-transferase (DP71L-GST) was expressed in Escherichia coli and shown to bind specifically to the PP1-alpha catalytic subunit expressed as a histidine fusion protein (6xHis-PP1alpha) in E. coli. The functional effects of this interaction were investigated by measuring the levels of PP1 and PP2A in ASFV-infected Vero cells. This showed that infection with wild-type ASFV strain BA71V activated PP1 between two- and threefold over that of mock-infected cells. This activation did not occur in cells infected with the BA71V isolate in which the DP71L gene had been deleted, suggesting that expression of DP71L leads to PP1 activation. In contrast, no effect was observed on the activity of PP2A following ASFV infection. We showed that infection of cells with wild-type BA71V virus resulted in decreased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha). ICP34.5 recruits PP1 to dephosphorylate the alpha subunit of eukaryotic translational initiation factor 2 (also known as eIF-2alpha); possibly the ASFV DP71L protein has a similar function.
Collapse
Affiliation(s)
- José Rivera
- Departamento de Biotecnología, INIA, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Monick MM, Powers LS, Gross TJ, Flaherty DM, Barrett CW, Hunninghake GW. Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1. THE JOURNAL OF IMMUNOLOGY 2006; 177:1636-45. [PMID: 16849472 DOI: 10.4049/jimmunol.177.3.1636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human alveolar macrophages, central to immune responses in the lung, are unique in that they have an extended life span in contrast to precursor monocytes. We have shown previously that the ERK MAPK (ERK) pathway is constitutively active in human alveolar macrophages and contributes to the prolonged survival of these cells. We hypothesized that ERK maintains survival, in part, by positively regulating protein translation. In support of this hypothesis, we have found novel links among ERK, JNK, protein phosphatase 1 (PP1), and the eukaryotic initiation factor (eIF) 2alpha. eIF2alpha is active when hypophosphorylated and is essential for initiation of protein translation (delivery of initiator tRNA charged with methionine to the ribosome). Using [(35)S]methionine labeling, we found that ERK inhibition significantly decreased protein translation rates in alveolar macrophages. Decreased protein translation resulted from phosphorylation (and inactivation) of eIF2alpha. We found that ERK inhibition increased JNK activity. JNK in turn inactivated (via phosphorylation) PP1, the phosphatase responsible for maintaining the hypophosphorylated state of eIF2alpha. As a composite, our data demonstrate that in human alveolar macrophages, constitutive ERK activity positively regulates protein translation via the following novel pathway: active ERK inhibits JNK, leading to activation of PP1alpha, eIF2alpha dephosphorylation, and translation initiation. This new role for ERK in alveolar macrophage homeostasis may help to explain the survival characteristic of these cells within their unique high oxygen and stress microenvironment.
Collapse
Affiliation(s)
- Martha M Monick
- University of Iowa Carver College of Medicine, Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|