1
|
Biolatti V, Negrin L, Bellora N, Ibañez IL. High-throughput meta-analysis and validation of differentially expressed genes as potential biomarkers of ionizing radiation-response. Radiother Oncol 2020; 154:21-28. [PMID: 32931891 DOI: 10.1016/j.radonc.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND PURPOSE The high-throughput analysis of gene expression in ionizing radiation (IR)-exposed human peripheral white blood cells (WBC) has emerged as a novel method for biodosimetry markers detection. We aimed to detect IR-exposure differential expressed genes (DEGs) as potential predictive biomarkers for biodosimetry and radioinduced-response. MATERIALS AND METHODS We performed a meta-analysis of raw data from public microarrays of ex vivo low linear energy transfer-irradiated human peripheral WBC. Functional enrichment and transcription factors (TF) detection from resulting DEGs were assessed. Six selected DEGs among studies were validated by qRT-PCR on mRNA from human peripheral blood samples from nine healthy human donors 24 h after ex vivo X-rays-irradiation. RESULTS We identified 275 DEGs after IR-exposure (parameters: |lfc| ≥ 0.7, q value <0.05), enriched in processes such as regulation after IR-exposure, DNA damage checkpoint, signal transduction by p53 and mitotic cell cycle checkpoint. Among these DEGs, DRAM1, NUDT15, PCNA, PLK2 and TIGAR were selected for qRT-PCR validation. Their expression levels significantly increased at 1-4 Gy respect to non-irradiated controls. Particularly, PCNA increased dose dependently. Curiously, TCF4 (Entrez Gene: 6925), detected as overrepresented TF in the radioinduced DEGs set, significantly decreased post-irradiation. CONCLUSION These six DEGs show potential to be proposed as candidates for IR-exposure biomarkers, considering their observed molecular radioinduced-response. Among them, TCF4, bioinformatically detected, was validated herein as an IR-responsive gene.
Collapse
Affiliation(s)
- Vanesa Biolatti
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Lara Negrin
- National Atomic Energy Commission (CNEA), Bariloche Nuclear Medicine and Radiotherapy Integral Center - Institute of Nuclear Technologies for Health Foundation (INTECNUS); Laboratory of Radiobiology and Biodosimetry, S.C. de Bariloche, Argentina.
| | - Nicolás Bellora
- National Scientific and Technical Research Council (CONICET), Scientific Technical Center CONICET - North Patagonia, Patagonian Andean Institute of Biological and Geo-Environmental Technologies (IPATEC), S.C. de Bariloche, Argentina.
| | - Irene L Ibañez
- National Scientific and Technical Research Council (CONICET), Institute of Nanocience and Nanotechnology (INN), Constituyentes Node (C1425FQB), CABA, Argentina; National Atomic Energy Commission (CNEA), Constituyentes Atomic Center, Research and Applications Management, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Barabutis N, Siejka A. The highly interrelated GHRH, p53, and Hsp90 universe. Cell Biol Int 2020; 44:1558-1563. [PMID: 32281696 DOI: 10.1002/cbin.11356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
p53 universe is composed of a complex regulatory network, destined to counteract multifarious challenges threatening cell survival. Imbalance in those responses may result in human disease associated with inevitable consequences. The present work delivers our view of the corresponding phenomena, by involving the endothelium defender in meticulously orchestrated events against inflammatory stimuli. Immersing into the great depths of p53 cosmos may lead to promising therapies against devastating disorders, including acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, Louisiana
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-Targeted pH-Sensitive Peptide-PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Mol Cancer Res 2020; 18:873-882. [PMID: 32098827 DOI: 10.1158/1541-7786.mcr-19-0661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
The development of therapeutic agents that specifically target cancer cells while sparing healthy tissue could be used to enhance the efficacy of cancer therapy without increasing its toxicity. Specific targeting of cancer cells can be achieved through the use of pH-low insertion peptides (pHLIP), which take advantage of the acidity of the tumor microenvironment to deliver cargoes selectively to tumor cells. We developed a pHLIP-peptide nucleic acid (PNA) conjugate as an antisense reagent to reduce expression of the otherwise undruggable DNA double-strand break repair factor, KU80, and thereby radiosensitize tumor cells. Increased antisense activity of the pHLIP-PNA conjugate was achieved by partial mini-PEG sidechain substitution of the PNA at the gamma position, designated pHLIP-αKu80(γ). We evaluated selective effects of pHLIP-αKu80(γ) in cancer cells in acidic culture conditions as well as in two subcutaneous mouse tumor models. Fluorescently labeled pHLIP-αKu80(γ) delivers specifically to acidic cancer cells and accumulates preferentially in tumors when injected i.v. in mice. Furthermore, pHLIP-αKu80(γ) selectively reduced KU80 expression in cells under acidic conditions and in tumors in vivo. When pHLIP-αKu80(γ) was administered to mice prior to local tumor irradiation, tumor growth was substantially reduced compared with radiation treatment alone. Furthermore, there was no evidence of acute toxicity associated with pHLIP-αKu80(γ) administration to the mice. These results establish pHLIP-αKu80(γ) as a tumor-selective radiosensitizing agent. IMPLICATIONS: This study describes a novel agent, pHLIP-αKu80(γ), which combines PNA antisense and pHLIP technologies to selectively reduce the expression of the DNA repair factor KU80 in tumors and confer tumor-selective radiosensitization.
Collapse
Affiliation(s)
- Alanna R Kaplan
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Department of Pathology, Yale University, New Haven, Connecticut
| | - Ha Pham
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,University of Central Florida College of Medicine, Orlando, Florida
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Stanley Oyaghire
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Raman Bahal
- University of Connecticut, Storrs, Connecticut
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut. .,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
4
|
Buettner R, Nguyen LXT, Kumar B, Morales C, Liu C, Chen LS, Pemovska T, Synold TW, Palmer J, Thompson R, Li L, Hoang DH, Zhang B, Ghoda L, Kowolik C, Kontro M, Leitch C, Wennerberg K, Xu X, Chen CC, Horne D, Gandhi V, Pullarkat V, Marcucci G, Rosen ST. 8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia. J Cell Physiol 2019; 234:16295-16303. [PMID: 30770553 PMCID: PMC6697246 DOI: 10.1002/jcp.28294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/25/2023]
Abstract
Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.
Collapse
Affiliation(s)
- Ralf Buettner
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Vietnam
| | - Bijender Kumar
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Corey Morales
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Chao Liu
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA
| | - Lisa S. Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tea Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timothy W. Synold
- Department of Cancer Biology, City of Hope National Medical Center, Duarte, CA
| | - Joycelynne Palmer
- Department of Information Sciences, City of Hope National Medical Center, Duarte, CA
| | - Ryan Thompson
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Claudia Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Calum Leitch
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Xiaochun Xu
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA
| | - Ching-Cheng Chen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| | - Steven T. Rosen
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
5
|
Castellini L, Moon EJ, Razorenova OV, Krieg AJ, von Eyben R, Giaccia AJ. KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Res 2017; 45:3674-3692. [PMID: 28073943 PMCID: PMC5397198 DOI: 10.1093/nar/gkw1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
The p53 tumor suppressor protein plays a critical role in orchestrating the genomic response to various stress signals by acting as a master transcriptional regulator. Differential gene activity is controlled by transcription factors but also dependent on the underlying chromatin structure, especially on covalent histone modifications. After screening different histone lysine methyltransferases and demethylases, we identified JMJD2B/KDM4B as a p53-inducible gene in response to DNA damage. p53 directly regulates JMJD2B gene expression by binding to a canonical p53-consensus motif in the JMJD2B promoter. JMJD2B induction attenuates the transcription of key p53 transcriptional targets including p21, PIG3 and PUMA, and this modulation is dependent on the catalytic capacity of JMJD2B. Conversely, JMJD2B silencing led to an enhancement of the DNA-damage driven induction of p21 and PIG3. These findings indicate that JMJD2B acts in an auto-regulatory loop by which p53, through JMJD2B activation, is able to influence its own transcriptional program. Functionally, exogenous expression of JMJD2B enhanced subcutaneous tumor growth of colon cancer cells in a p53-dependent manner, and genetic inhibition of JMJD2B impaired tumor growth in vivo. These studies provide new insights into the regulatory effect exerted by JMJD2B on tumor growth through the modulation of p53 target genes.
Collapse
Affiliation(s)
- Laura Castellini
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Abstract
The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack.
Collapse
Affiliation(s)
- Véronique Witko-Sarsat
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| | - Delphine Ohayon
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| |
Collapse
|
7
|
Osnes-Ringen Ø, Berg KH, Moe MC, Zetterström C, Røger M, Nicolaissen B. Cell death pattern in lens epithelium of cataract patients. Acta Ophthalmol 2016; 94:514-20. [PMID: 27061232 DOI: 10.1111/aos.13009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/09/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Apoptosis, a type of programmed cell death, is observed in various types of cataract and in cultured lens epithelium subjected to oxidative damage. We have recently described oxidative DNA base damage in epithelium in age-related cataract and cultured cells, and we here aimed to examine such epithelium for markers for proliferation, initiation of apoptosis and morphological patterns of cell damage. METHODS Samples (n = 75) were analysed by light microscopy/electron microscopy (LM/EM); immunohistochemistry (IHC) for PCNA and Ki67 (DNA synthesis/proliferation); TUNEL assay (DNA fragmentation/apoptosis); and protein/gene expression of Caspase-3 (apoptotic effector molecule) and BAX/Bcl2 (pro-/anti-apoptotic marker) in fresh/cultured epithelium by IHC and qRT-PCR. RESULTS In fresh samples, the majority of cells were Ki67-/PCNA+. BAX/BCL-2-ratio was approximately 1, and Caspase-3 levels were low. TUNEL stained scattered nuclei/nuclear fragments (9/6302 cells). Main morphological signs of cell damage included rupture of cell membranes and hydration of cytoplasm and nuclei. Cultivation increased levels of BAX and Bcl2 by IHC and qRT-PCR (approximately 10-fold upregulation). Caspase-3 levels remained low by IHC with similar expression in fresh and cultured samples by qRT-PCR. CONCLUSION Genomic stress and DNA repair may explain the contrasting expression of Ki67/PCNA in fresh epithelium. Despite low levels of Caspase-3 and similar expression of BAX/Bcl-2, a low incidence of apoptosis may be detected in epithelium in age-related corticonuclear cataract. Epithelium may be transferred to culture without an increase in expression of Caspase-3, one of the central mediators of apoptosis.
Collapse
Affiliation(s)
- Øyvind Osnes-Ringen
- Center for Eye Research; Department of Ophthalmology; Oslo University Hospital; University of Oslo; Oslo Norway
| | - Kristiane Haug Berg
- Center for Eye Research; Department of Ophthalmology; Oslo University Hospital; University of Oslo; Oslo Norway
| | - Morten C. Moe
- Center for Eye Research; Department of Ophthalmology; Oslo University Hospital; University of Oslo; Oslo Norway
| | - Charlotta Zetterström
- Center for Eye Research; Department of Ophthalmology; Oslo University Hospital; University of Oslo; Oslo Norway
| | - Magnus Røger
- Department of Pathology; Oslo University Hospital; Oslo Norway
| | - Bjørn Nicolaissen
- Center for Eye Research; Department of Ophthalmology; Oslo University Hospital; University of Oslo; Oslo Norway
| |
Collapse
|
8
|
Nguyen LXT, Lee Y, Urbani L, Utz PJ, Hamburger AW, Sunwoo JB, Mitchell BS. Regulation of ribosomal RNA synthesis in T cells: requirement for GTP and Ebp1. Blood 2015; 125:2519-29. [PMID: 25691158 PMCID: PMC4400289 DOI: 10.1182/blood-2014-12-616433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, an effective immunosuppressive drug. Both MPA and mycophenolate mofetil are highly specific inhibitors of guanine nucleotide synthesis and of T-cell activation. However, the mechanism by which guanine nucleotide depletion suppresses T-cell activation is unknown. Depletion of GTP inhibits ribosomal RNA synthesis in T cells by inhibiting transcription initiation factor I (TIF-IA), a GTP-binding protein that recruits RNA polymerase I to the ribosomal DNA promoter. TIF-IA-GTP binds the ErbB3-binding protein 1, and together they enhance the transcription of proliferating cell nuclear antigen (PCNA). GTP binding by TIF-IA and ErbB3-binding protein 1 phosphorylation by protein kinase C δ are both required for optimal PCNA expression. The protein kinase C inhibitor sotrastaurin markedly potentiates the inhibition of ribosomal RNA synthesis, PCNA expression, and T-cell activation induced by MPA, suggesting that the combination of the two agents are more highly effective than either alone in inducing immunosuppression.
Collapse
Affiliation(s)
| | - Yunqin Lee
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lenore Urbani
- Departments of Medicine and Chemical and Systems Biology, and
| | - Paul J Utz
- Division of Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford CA; and
| | - Anne W Hamburger
- Department of Pathology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - John B Sunwoo
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
9
|
Zhuang Y, Nguyen HT, Burow ME, Zhuo Y, El-Dahr SS, Yao X, Cao S, Flemington EK, Nephew KP, Fang F, Collins-Burow B, Rhodes LV, Yu Q, Jayawickramarajah J, Shan B. Elevated expression of long intergenic non-coding RNA HOTAIR in a basal-like variant of MCF-7 breast cancer cells. Mol Carcinog 2014; 54:1656-67. [PMID: 25328122 DOI: 10.1002/mc.22237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/29/2014] [Accepted: 09/11/2014] [Indexed: 01/12/2023]
Abstract
Epigenetic regulation of gene expression is critical to phenotypic maintenance and transition of human breast cancer cells. HOX antisense intergenic RNA (HOTAIR) is a long intergenic non-coding RNA that epigenetically represses gene expression via recruitment of enhancer of zeste homolog 2 (EZH2), a histone methyltransferase. Elevated expression of HOTAIR promotes progression of breast cancer. In the current study we examined the expression and function of HOTAIR in MCF-7-TNR cells, a derivative of the luminal-like breast cancer cell line MCF-7 that acquired resistance to TNF-α-induced cell death. The expression of HOTAIR, markers of the luminal-like and basal-like subtypes, and growth were compared between MCF-7 and MCF-7-TNR cells. These variables were further assessed upon inhibition of HOTAIR, EZH2, p38 MAPK, and SRC kinase in MCF-7-TNR cells. When compared with MCF-7 cells, MCF-7-TNR cells exhibited an increase in the expression of HOTAIR, which correlated with characteristics of a luminal-like to basal-like transition as evidenced by dysregulated gene expression and accelerated growth. MCF-7-TNR cells exhibited reduced suppressive histone H3 lysine27 trimethylation on the HOTAIR promoter. Inhibition of HOTAIR and EZH2 attenuated the luminal-like to basal-like transition in terms of gene expression and growth in MCF-7-TNR cells. Inhibition of p38 and SRC diminished HOTAIR expression and the basal-like phenotype in MCF-7-TNR cells. HOTAIR was robustly expressed in the native basal-like breast cancer cells and inhibition of HOTAIR reduced the basal-like gene expression and growth. Our findings suggest HOTAIR-mediated regulation of gene expression and growth associated with the basal-like phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hong T Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ying Zhuo
- Kadlec Regional Medical Center, Richland, Washington
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao Yao
- Kadlec Regional Medical Center, Richland, Washington
| | - Subing Cao
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kenneth P Nephew
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | - Lyndsay V Rhodes
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Bin Shan
- Washington State University at Spokane, Spokane, Washington
| |
Collapse
|
10
|
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2014; 34:2145-55. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.
Collapse
Affiliation(s)
- C Weigel
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Popanda
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Effects of low doses of ionizing radiation exposures on stress-responsive gene expression in human embryonic stem cells. Int J Mol Sci 2014; 15:588-604. [PMID: 24398983 PMCID: PMC3907827 DOI: 10.3390/ijms15010588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/25/2013] [Accepted: 12/26/2013] [Indexed: 12/26/2022] Open
Abstract
There is a great deal of uncertainty on how low (≤0.1 Gy) doses of ionizing radiation (IR) affect human cells, partly due to a lack of suitable experimental model systems for such studies. The uncertainties arising from low-dose IR human data undermine practical societal needs to predict health risks emerging from diagnostic medical tests’ radiation, natural background radiation, and environmental radiological accidents. To eliminate a variability associated with remarkable differences in radioresponses of hundreds of differentiated cell types, we established a novel, human embryonic stem cell (hESC)-based model to examine the radiobiological effects in human cells. Our aim is to comprehensively elucidate the gene expression changes in a panel of various hESC lines following low IR doses of 0.01; 0.05; 0.1 Gy; and, as a reference, relatively high dose of 1 Gy of IR. Here, we examined the dynamics of transcriptional changes of well-established IR-responsive set of genes, including CDKN1A, GADD45A, etc. at 2 and 16 h post-IR, representing “early” and “late” radioresponses of hESCs. Our findings suggest the temporal- and hESC line-dependence of stress gene radioresponses with no statistically significant evidence for a linear dose-response relationship within the lowest doses of IR exposures.
Collapse
|
12
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
13
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
14
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
15
|
Recovery of the Cell Cycle Inhibition in CCl(4)-Induced Cirrhosis by the Adenosine Derivative IFC-305. Int J Hepatol 2012; 2012:212530. [PMID: 23056951 PMCID: PMC3463961 DOI: 10.1155/2012/212530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/01/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022] Open
Abstract
Introduction. Cirrhosis is a chronic degenerative illness characterized by changes in normal liver architecture, failure of hepatic function, and impairment of proliferative activity. The aim of this study is to know how IFC-305 compound induces proliferation of the liver during reversion of cirrhosis. Methods. Once cirrhosis has been installed by CCl(4) treatment for 10 weeks in male Wistar rats, they were divided into four groups: two received saline and two received the compound; all were euthanized at 5 and 10 weeks of treatment. Liver homogenate, mitochondria, and nucleus were used to measure cyclins, CDKs, and cell cycle regulatory proteins PCNA, pRb, p53, E2F, p21, p27, HGF, liver ATP, and mitochondrial function. Results. Diminution and small changes were observed in the studied proteins in the cirrhotic animals without treatment. The IFC-305-treated rats showed a clear increase in most of the proteins studied mainly in PCNA and CDK6, and a marked increased in ATP and mitochondrial function. Discussion/Conclusion. IFC-305 induces a recovery of the cell cycle inhibition promoting recovery of DNA damage through the action of PCNA and p53. The increase in energy and preservation of mitochondrial function contribute to recovering the proliferative function.
Collapse
|
16
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Wang X, Wu X, Wang C, Zhang W, Ouyang Y, Yu Y, He Z. Transcriptional suppression of breast cancer resistance protein (BCRP) by wild-type p53 through the NF-κB pathway in MCF-7 cells. FEBS Lett 2010; 584:3392-7. [DOI: 10.1016/j.febslet.2010.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 01/23/2023]
|
18
|
Marchetti F, Coleman MA, Jones IM, Wyrobek AJ. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 2009; 82:605-39. [PMID: 17050475 DOI: 10.1080/09553000600930103] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To conduct a literature review of candidate protein biomarkers for individual radiation biodosimetry of exposure to ionizing radiation. MATERIALS AND METHODS Reviewed approximately 300 publications (1973 - April 2006) that reported protein effects in mammalian systems after either in vivo or in vitro radiation exposure. RESULTS We found 261 radiation-responsive proteins including 173 human proteins. Most of the studies used high doses of ionizing radiation (>4 Gy) and had no information on dose- or time-responses. The majority of the proteins showed increased amounts or changes in phosphorylation states within 24 h after exposure (range: 1.5- to 10-fold). Of the 47 proteins that are responsive at doses of 1 Gy and below, 6 showed phosphorylation changes at doses below 10 cGy. Proteins were assigned to 9 groups based on consistency of response across species, dose- and time-response information and known role in the radiation damage response. CONCLUSIONS ATM (Ataxia telengiectasia mutated), H2AX (histone 2AX), CDKN1A (Cyclin-dependent kinase inhibitor 1A), and TP53 (tumor protein 53) are top candidate radiation protein biomarkers. Furthermore, we recommend a panel of protein biomarkers, each with different dose and time optima, to improve individual radiation biodosimetry for discriminating between low-, moderate-, and high-dose exposures. Our findings have applications for early triage and follow-up medical assessments.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | | | | |
Collapse
|
19
|
Kim MK, Shin JM, Eun HC, Chung JH. The role of p300 histone acetyltransferase in UV-induced histone modifications and MMP-1 gene transcription. PLoS One 2009; 4:e4864. [PMID: 19287485 PMCID: PMC2653645 DOI: 10.1371/journal.pone.0004864] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinase (MMP)-1 promotes ultraviolet (UV)-triggered long-term detrimental effects such as cancer formation and premature skin aging. Although histone modifications may play a crucial role in the transcriptional regulation of MMP-1, the relationship between UV-induced histone modification and MMP-1 expression is not completely understood. Here, we identify regulators of histone acetylation that may link UV-mediated DNA damage and MMP-1 induction by UV in cultured human dermal fibroblasts (HDFs) in vitro. UV irradiation of HDFs induced MMP-1 expression and increased the level of phosphorylation of H2AX (γ-H2AX), p53 and the acetylation of histone H3 (acetyl-H3). Total histone deacetylase (HDAC) enzymatic activity was decreased by UV irradiation, while histone acetyltransferase (HAT) activity was increased. Suppression of p300 histone acetyltransferase (p300HAT) activity by the p300HAT inhibitor anacardic acid (AA) or by down-regulation of p300 by siRNA prevented UV-induced MMP-1 expression and inhibited UV-enhanced γ-H2AX, p53 level, and acetyl-H3. Using chromatin immunoprecipitation assays, we observed that γ-H2AX, p53, acetyl-H3, p300 and c-Jun were consistently recruited by UV to a distinct region (−2067/−1768) adjacent to the p300 binding site (−1858/−1845) in the MMP-1 promoter. In addition, these recruitments of γ-H2AX, p53, acetyl-H3, p300 and c-Jun to the p300-2 site were significantly abrogated by post-treatment with AA. Furthermore, overexpression of p300 increased the basal and UV-induced MMP-1 promoter activity. Our results suggest that p300HAT plays a critical role in the transcriptional regulation of MMP-1 by UV.
Collapse
Affiliation(s)
- Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | - Jung-Min Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | - Hee Chul Eun
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Dermatological Science, Seoul National University, Seoul, Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Dermatological Science, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
20
|
Vrba L, Junk DJ, Novak P, Futscher BW. p53 induces distinct epigenetic states at its direct target promoters. BMC Genomics 2008; 9:486. [PMID: 18922183 PMCID: PMC2585595 DOI: 10.1186/1471-2164-9-486] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/15/2008] [Indexed: 12/18/2022] Open
Abstract
Background The tumor suppressor protein p53 is a transcription factor that is mutated in many cancers. Regulation of gene expression by binding of wild-type p53 to its target sites is accompanied by changes in epigenetic marks like histone acetylation. We studied DNA binding and epigenetic changes induced by wild-type and mutant p53 in non-malignant hTERT-immortalized human mammary epithelial cells overexpressing either wild-type p53 or one of four p53 mutants (R175H, R249S, R273H and R280K) on a wild-type p53 background. Results Using chromatin immunoprecipitation coupled to a 13,000 human promoter microarray, we found that wild-type p53 bound 197 promoters on the microarray including known and novel p53 targets. Of these p53 targets only 20% showed a concomitant increase in histone acetylation, which was linked to increased gene expression, while 80% of targets showed no changes in histone acetylation. We did not observe any decreases in histone acetylation in genes directly bound by wild-type p53. DNA binding in samples expressing mutant p53 was reduced over 95% relative to wild-type p53 and very few changes in histone acetylation and no changes in DNA methylation were observed in mutant p53 expressing samples. Conclusion We conclude that wild-type p53 induces transcription of target genes by binding to DNA and differential induction of histone acetylation at target promoters. Several new wild-type p53 target genes, including DGKZ, FBXO22 and GDF9, were found. DNA binding of wild-type p53 is highly compromised if mutant p53 is present due to interaction of both p53 forms resulting in no direct effect on epigenetic marks.
Collapse
Affiliation(s)
- Lukas Vrba
- Arizona Cancer Center, the University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
21
|
Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 2008; 283:21065-73. [PMID: 18499657 DOI: 10.1074/jbc.m802786200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis.
Collapse
Affiliation(s)
- Bin Shan
- Department of Medicine and Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Prevodnik A, Lilja K, Bollner T. Benzo[a]pyrene up-regulates the expression of the proliferating cell nuclear antigen (PCNA) and multixenobiotic resistance polyglycoprotein (P-gp) in Baltic Sea blue mussels (Mytilus edulis L.). Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:265-74. [PMID: 17306628 DOI: 10.1016/j.cbpc.2006.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 12/21/2006] [Accepted: 12/30/2006] [Indexed: 11/26/2022]
Abstract
The expression of protein biomarkers in Baltic Sea blue mussels was analyzed after three days exposure to low (2.8 microg/animal/day), intermediate (28 microg/animal/day), or high (280 microg/animal/day) nominal doses of benzo[a]pyrene (BaP). Significant expression changes were found in the animals exposed to the low dose, the lowest reported dose for DNA adduct formation in the gills of Baltic Sea blue mussels. Up-regulated expression of the proliferating cell nuclear antigen (PCNA), quantified from Western blots, and no change in the 5-bromo-deoxyuridine (BrdU) staining pattern, determined by immunocytochemistry, indicated that the observed PCNA response was mainly non-proliferative, and thus possibly due to DNA damage. The expression of the multixenobiotic resistance polyglycoprotein (P-gp) was also up-regulated, proving its usefulness as an exposure marker to planar organic compounds. No effect of the BaP treatment with respect to the retinoblastoma 110 protein or heat shock proteins 60 and 70 was found. The variance in the medium and high dose data was too large to allow for the detection of significant expression changes. We suggest PCNA to be a marker for genotoxic stress derived from the polycyclic aromatic hydrocarbon BaP, irrespective of whether the stress leads to DNA repair or to cell proliferation.
Collapse
Affiliation(s)
- Andreas Prevodnik
- School of Life Sciences, Södertörn University College, S-141 89 Huddinge, Sweden
| | | | | |
Collapse
|
23
|
Shu KX, Li B, Wu LX. The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 2007; 55:10-8. [PMID: 17188467 DOI: 10.1016/j.colsurfb.2006.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.
Collapse
Affiliation(s)
- Kun-Xian Shu
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | | | | |
Collapse
|
24
|
Kis E, Szatmári T, Keszei M, Farkas R, Esik O, Lumniczky K, Falus A, Sáfrány G. Microarray analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol Biol Phys 2006; 66:1506-14. [PMID: 17069989 DOI: 10.1016/j.ijrobp.2006.08.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/07/2006] [Accepted: 08/13/2006] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify radiation-induced early transcriptional responses in primary human fibroblasts and understand cellular pathways leading to damage correction. METHODS AND MATERIALS Primary human fibroblast cell lines were irradiated with 2 Gy gamma-radiation and RNA isolated 2 h later. Radiation-induced transcriptional alterations were investigated with microarrays covering the entire human genome. Time- and dose dependent radiation responses were studied by quantitative real-time polymerase chain reaction (RT-PCR). RESULTS About 200 genes responded to ionizing radiation on the transcriptional level in primary human fibroblasts. The expression profile depended on individual genetic backgrounds. Thirty genes (28 up- and 2 down-regulated) responded to radiation in identical manner in all investigated cells. Twenty of these consensus radiation response genes were functionally categorized: most of them belong to the DNA damage response (GADD45A, BTG2, PCNA, IER5), regulation of cell cycle and cell proliferation (CDKN1A, PPM1D, SERTAD1, PLK2, PLK3, CYR61), programmed cell death (BBC3, TP53INP1) and signaling (SH2D2A, SLIC1, GDF15, THSD1) pathways. Four genes (SEL10, FDXR, CYP26B1, OR11A1) were annotated to other functional groups. Many of the consensus radiation response genes are regulated by, or regulate p53. Time- and dose-dependent expression profiles of selected consensus genes (CDKN1A, GADD45A, IER5, PLK3, CYR61) were investigated by quantitative RT-PCR. Transcriptional alterations depended on the applied dose, and on the time after irradiation. CONCLUSIONS The data presented here could help in the better understanding of early radiation responses and the development of biomarkers to identify radiation susceptible individuals.
Collapse
Affiliation(s)
- Enikö Kis
- Department of Molecular and Tumor Radiobiology, NCPH-Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kaneshiro K, Tsutsumi S, Tsuji S, Shirahige K, Aburatani H. An integrated map of p53-binding sites and histone modification in the human ENCODE regions. Genomics 2006; 89:178-88. [PMID: 17085012 DOI: 10.1016/j.ygeno.2006.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/30/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
TP53 (tumor protein p53; p53) regulates its target genes under various cellular stresses. By combining chromatin immunoprecipitation with oligonucleotide microarrays, we have mapped binding sites of p53 (p53-BS) in the genome of HCT116 human colon carcinoma cells, along with those of acetylated H3, acetylated H4, and methylated H3-K4. We analyzed a 30-Mb portion of the human genome selected as a representative model by the ENCODE Consortium. In the region, we found 37 p53-BS, of which the p53-binding motif was present in 32 (86%). Acetylated histone H3 and H4 were detected at 14 (38%) and 33 (89%) of the p53-BS, respectively. A significant portion (58%) of H4 acetylation in the p53-BS was not accompanied by H3 acetylation. Acetyl H3 were preferentially located at the 5' and 3' ends of genes, whereas acetyl H4 were distributed widely across the genome. These results provide novel insights into how p53 binding coordinates with histone modification in human.
Collapse
Affiliation(s)
- Kiyofumi Kaneshiro
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | |
Collapse
|
26
|
Krieg AJ, Hammond EM, Giaccia AJ. Functional analysis of p53 binding under differential stresses. Mol Cell Biol 2006; 26:7030-45. [PMID: 16980608 PMCID: PMC1592883 DOI: 10.1128/mcb.00322-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia and DNA damage stabilize the p53 protein, but the subsequent effect that each stress has on transcriptional regulation of known p53 target genes is variable. We have used chromatin immunoprecipitation followed by CpG island (CGI) microarray hybridization to identify promoters bound by p53 under both DNA-damaging and non-DNA-damaging conditions in HCT116 cells. Using gene-specific PCR analysis, we have verified an association with CGIs of the highest enrichment (> 2.5-fold) (REV3L, XPMC2H, HNRPUL1, TOR1AIP1, glutathione peroxidase 1, and SCFD2), with CGIs of intermediate enrichment (> 2.2-fold) (COX7A2L, SYVN1, and JAG2), and with CGIs of low enrichment (> 2.0-fold) (MYC and PCNA). We found little difference in promoter binding when p53 is stabilized by these two distinctly different stresses. However, expression of these genes varies a great deal: while a few genes exhibit classical induction with adriamycin, the majority of the genes are unchanged or are mildly repressed by either hypoxia or adriamycin. Further analysis using p53 mutated in the core DNA binding domain revealed that the interaction of p53 with CGIs may be occurring through both sequence-dependent and -independent mechanisms. Taken together, these experiments describe the identification of novel p53 target genes and the subsequent discovery of distinctly different expression phenomena for p53 target genes under different stress scenarios.
Collapse
Affiliation(s)
- Adam J Krieg
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA
| | | | | |
Collapse
|
27
|
Rollo CD. Radiation and the regulatory landscape of neo2-Darwinism. Mutat Res 2006; 597:18-31. [PMID: 16414092 DOI: 10.1016/j.mrfmmm.2005.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/24/2005] [Accepted: 09/14/2005] [Indexed: 05/06/2023]
Abstract
Several recently revealed features of eukaryotic genomes were not predicted by earlier evolutionary paradigms, including the relatively small number of genes, the very large amounts of non-functional code and its quarantine in heterochromatin, the remarkable conservation of many functionally important genes across relatively enormous phylogenetic distances, and the prevalence of extra-genomic information associated with chromatin structure and histone proteins. All of these emphasize a paramount role for regulatory evolution, which is further reinforced by recent perspectives highlighting even higher-order regulation governing epigenetics and development (EVO-DEVO). Modern neo2-Darwinism, with its emphasis on regulatory mechanisms and regulatory evolution provides new vision for understanding radiation biology, particularly because free radicals and redox states are central to many regulatory mechanisms and free radicals generated by radiation mimic and amplify endogenous signalling. This paper explores some of these aspects and their implications for low-dose radiation biology.
Collapse
Affiliation(s)
- C David Rollo
- Department of Biology, Life Sciences Building, 1280 Main St. West, Hamilton, Ont., Canada L8S 4K1.
| |
Collapse
|
28
|
Liu W, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, Rajasekaran AK, Das GM. Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function. J Biol Chem 2006; 281:9837-40. [PMID: 16469747 DOI: 10.1074/jbc.c600001200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor-alpha (ERalpha) promotes proliferation of breast cancer cells, whereas tumor suppressor protein p53 impedes proliferation of cells with genomic damage. Whether there is a direct link between these two antagonistic pathways has remained unclear. Here we report that ERalpha binds directly to p53 and represses its function. The activation function-2 (AF-2) domain of ERalpha and the C-terminal regulatory domain of p53 are necessary for the interaction. Knocking down p53 and ERalpha by small interfering RNA elicits opposite effects on p53-target gene expression and cell cycle progression. Remarkably, ionizing radiation that causes genomic damage disrupts the interaction between ERalpha and p53. Ionizing radiation together with ERalpha knock down results in additive effect on transcription of endogenous p53-target gene p21 (CDKN1) in human breast cancer cells. Our findings reveal a novel mechanism for regulating p53 and suggest that suppressing p53 function is an important component in the pro-proliferative role of ERalpha.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, Cheng JF, Chen DJ. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res 2005; 164:17-26. [PMID: 15966761 DOI: 10.1667/rr3354] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several types of cellular responses to ionizing radiation, such as the adaptive response or the bystander effect, suggest that low-dose radiation may possess characteristics that distinguish it from its high-dose counterpart. Accumulated evidence also implies that the biological effects of low-dose and high-dose ionizing radiation are not linearly distributed. We have investigated, for the first time, global gene expression changes induced by ionizing radiation at doses as low as 2 cGy and have compared this to expression changes at 4 Gy. We applied cDNA microarray analyses to G1-arrested normal human skin fibroblasts subjected to X irradiation. Our data suggest that both qualitative and quantitative differences exist between gene expression profiles induced by 2 cGy and 4 Gy. The predominant functional groups responding to low-dose radiation are those involved in cell-cell signaling, signal transduction, development and DNA damage responses. At high dose, the responding genes are involved in apoptosis and cell proliferation. Interestingly, several genes, such as cytoskeleton components ANLN and KRT15 and cell-cell signaling genes GRAP2 and GPR51, were found to respond to low-dose radiation but not to high-dose radiation. Pathways that are specifically activated by low-dose radiation were also evident. These quantitative and qualitative differences in gene expression changes may help explain the non-linear correlation of biological effects of ionizing radiation from low dose to high dose.
Collapse
Affiliation(s)
- Liang-Hao Ding
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California, 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shan B, Zhuo Y, Chin D, Morris CA, Morris GF, Lasky JA. Cyclin-dependent Kinase 9 Is Required for Tumor Necrosis Factor-α-stimulated Matrix Metalloproteinase-9 Expression in Human Lung Adenocarcinoma Cells. J Biol Chem 2005; 280:1103-11. [PMID: 15528190 DOI: 10.1074/jbc.m406293200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) promotes tumor progression through activation of matrix metalloproteinase (MMP) activity. MMP-9 is a gelatinase secreted by both cancer cells and surrounding stromal cells, and it contributes to TNF-alpha-stimulated tumor invasion and metastasis. Cyclin-dependent kinase 9 (CDK9), the catalytic component of positive transcription elongation factor-b, phosphorylates serine 2 residues in the C-terminal domain of RNA polymerase II for productive transcription elongation and is up-regulated upon exposure to various stresses. This study investigated roles of CDK9 in TNF-alpha-stimulated MMP-9 expression in human lung adenocarcinoma cells. CDK9 activity was inhibited using three different strategies, including the CDK9 pharmacological inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a dominant-negative CDK9, and a CDK9-specific small interfering RNA. All three approaches reduced TNF-alpha-mediated accumulation of MMP-9 in the conditioned media as demonstrated by gelatin zymography. In contrast, transforming growth factor-beta1-induced accumulation of MMP-2 was unaffected by DRB. Expression of the MMP-9 gene was examined using reverse transcription real time PCR and using a transient transfection assay to evaluate MMP-9 promoter activity. DRB reduced the TNF-alpha-induced increase in MMP-9 mRNA levels but did not effect transforming growth factor-beta1-induced MMP-2 mRNA expression. Consistently DRB and dominant-negative CDK9 completely abrogated TNF-alpha-stimulated human MMP-9 promoter activity. TNF-alpha did not regulate expression or localization of CDK9 or its regulatory partner Cyclin T. However, TNF-alpha stimulated CDK9 binding to Cyclin T and MMP-9 gene occupancy by both CDK9 and the serine 2-phosphorylated form of RNA polymerase II. Our findings indicate that CDK9 mediates TNF-alpha-induced MMP-9 transcription. Disruption of TNF-alpha signaling using CDK9 inhibitors could serve as a potential therapeutic strategy against tumor invasion and metastasis.
Collapse
Affiliation(s)
- Bin Shan
- Pulmonary and Critical Care Section, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kovalchuk O, Burke P, Besplug J, Slovack M, Filkowski J, Pogribny I. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation. Mutat Res 2004; 548:75-84. [PMID: 15063138 DOI: 10.1016/j.mrfmmm.2003.12.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/29/2003] [Accepted: 12/31/2003] [Indexed: 04/29/2023]
Abstract
The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16(INKa) and DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16(INKa) promoter methylation upon LDR exposure. In male liver tissue, p16(INKa) promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16(INKa) promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16(INKa) and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alta., Canada T1K 3M4.
| | | | | | | | | | | |
Collapse
|