1
|
Ascari A, Morona R. Recent insights into Wzy polymerases and lipopolysaccharide O-antigen biosynthesis. J Bacteriol 2025; 207:e0041724. [PMID: 40066993 PMCID: PMC12004945 DOI: 10.1128/jb.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize a plethora of complex surface-associated polysaccharides which enable them to persist and thrive in distinct niches. These glycans serve an array of purposes pertaining to virulence, colonization, antimicrobial resistance, stealth, and biofilm formation. The Wzx/Wzy-dependent pathway is universally the predominant system for bacterial polysaccharide synthesis. This system is responsible for the production of lipopolysaccharide (LPS) O-antigen (Oag), enterobacterial common antigen, capsule, and exopolysaccharides, with orthologs present in both Gram-negative and Gram-positive microbes. Studies focusing principally on Pseudomonas, Shigella, and Salmonella LPS Oag synthesis have provided much of the framework underpinning the biochemical and molecular mechanism behind polysaccharide synthesis via this pathway. LPS Oag production via the Wzx/Wzy-dependent pathway occurs through the stepwise activity of multiple key biosynthetic enzymes, including primarily the polymerase, Wzy, which is responsible for the Oag assembly, and the polysaccharide co-polymerase, Wzz, which effectively modulates the length of the glycan produced. In this review, we provide a comprehensive summary of the latest genetic, structural, and mechanistic data for the main protein candidates of the Wzx/Wzy-dependent pathway, in addition to an examination of their substrate specificities. Furthermore, we have reviewed recent insights pertaining to the dynamics/kinetics of glycan synthesis by this mechanism, including the interplay of the key proteins among themselves and in complex with their substrate. Lastly, we outline key gaps in the literature and suggest future research avenues, with the aim to stimulate ongoing research into this critical pathway responsible for the production of key virulence factors for numerous debilitating and lethal pathogens.
Collapse
Affiliation(s)
- Alice Ascari
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Miki T, Ito M, Haneda T, Kim YG. Crohn's Disease‒Associated Escherichia coli BasRS Is Involved in Fimbriae Expression, Contributing to Epithelial Cell Invasion. Microbiol Immunol 2025. [PMID: 40221934 DOI: 10.1111/1348-0421.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Crohn's disease‒associated adherent-invasive Escherichia coli (AIEC) colonizes the gut lumen through Type 1 fimbriae. We demonstrated that the two-component signal transduction system BasRS is involved in the expression of fimbriae in the AIEC strain LF82, as evidenced by the reduced transcriptional activity of fimA in an LF82 mutant lacking BasRS. Consequently, the basRS mutant showed decreased invasiveness to HeLa cells, which was restored by introducing a plasmid expressing fimbriae in a BasRS-independent manner. These findings may provide new prospects for developing therapeutic interventions for AIEC-related Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
3
|
Patel DH, Karimullina E, Guo Y, Semper C, Patel DT, Emde T, Borek D, Savchenko A. Cryo-EM SPR structures of Salmonella typhimurium ArnC; the key enzyme in lipid-A modification conferring polymyxin resistance. Protein Sci 2025; 34:e70037. [PMID: 39865303 PMCID: PMC11761694 DOI: 10.1002/pro.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective. Here, we report the cryo-EM SPR structures of glycosyltransferase ArnC from Salmonella typhimurium determined in apo and UDP-bound forms at resolutions 2.75 Å and 3.8 Å, respectively. The structure of the ArnC protomer comprises three distinct regions: an N-terminal glycosyltransferase domain, transmembrane region, and the interface helices (IHs). ArnC forms a tetramer with C2 symmetry, where the C-terminal strand inserts into the adjacent protomer. This tetrameric state is further stabilized by two distinct interfaces formed by ArnC that form a network of hydrogen bonds and salt bridges. The binding of UDP induces conformational changes that stabilize the loop between residues H201 to S213, and part of the putative catalytic pocket formed by IH1 and IH2. The surface property analysis revealed a hydrophobic cavity formed by TM1 and TM2 in the apo state, which is disrupted upon UDP binding. The comparison of ArnC structures to their homologs GtrB and DPMS suggests the key residues involved in ArnC catalytic activity.
Collapse
Affiliation(s)
- Dhruvin H. Patel
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Elina Karimullina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Yirui Guo
- Ligo AnalyticsDallasTexasUSA
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Deepak T. Patel
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Tabitha Emde
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dominika Borek
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
4
|
Bray AS, Broberg CA, Hudson AW, Wu W, Nagpal RK, Islam M, Valencia-Bacca JD, Shahid F, Hernandez GE, Nutter NA, Walker KA, Bennett EF, Young TM, Barnes AJ, Ornelles DA, Miller VL, Zafar MA. Klebsiella pneumoniae employs a type VI secretion system to overcome microbiota-mediated colonization resistance. Nat Commun 2025; 16:940. [PMID: 39843522 PMCID: PMC11754592 DOI: 10.1038/s41467-025-56309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microbial species must compete for space and nutrients to persist in the gastrointestinal (GI) tract, and our understanding of the complex pathobiont-microbiota interactions is far from complete. Klebsiella pneumoniae, a problematic, often drug-resistant nosocomial pathogen, can colonize the GI tract asymptomatically, serving as an infection reservoir. To provide insight on how K. pneumoniae interacts with the resident gut microbiome, we conduct a transposon mutagenesis screen using a murine model of GI colonization with an intact microbiota. Among the genes identified were those encoding a type VI secretion system (T6SS), which mediates contact-dependent killing of gram-negative bacteria. From several approaches, we demonstrate that the T6SS is critical for K. pneumoniae gut colonization. Metagenomics and in vitro killing assays reveal that K. pneumoniae reduces Betaproteobacteria species in a T6SS-dependent manner, thus identifying specific species targeted by K. pneumoniae. We further show that T6SS gene expression is controlled by several transcriptional regulators and that expression only occurs in vitro under conditions that mimic the gut environment. By enabling K. pneumoniae to thrive in the gut, the T6SS indirectly contributes to the pathogenic potential of this organism. These observations advance our molecular understanding of how K. pneumoniae successfully colonizes the GI tract.
Collapse
Affiliation(s)
- Andrew S Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew W Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | - Ravinder K Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL, USA
| | - Maidul Islam
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Juan D Valencia-Bacca
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Fawaz Shahid
- Wake Forest University, Winston Salem, Winston Salem, NC, USA
| | - Giovanna E Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Noah A Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kimberly A Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Emma F Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Taylor M Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Andrew J Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Koper K, Han SW, Kothadia R, Salamon H, Yoshikuni Y, Maeda HA. Multisubstrate specificity shaped the complex evolution of the aminotransferase family across the tree of life. Proc Natl Acad Sci U S A 2024; 121:e2405524121. [PMID: 38885378 PMCID: PMC11214133 DOI: 10.1073/pnas.2405524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Sang-Woo Han
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Biotechnology, Konkuk University, Chungju27478, South Korea
| | - Ramani Kothadia
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hugh Salamon
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan 060-8589
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo183-8538, Japan
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
6
|
Baijal K, Abramchuk I, Herrera CM, Mah TF, Trent MS, Lavallée-Adam M, Downey M. Polyphosphate kinase regulates LPS structure and polymyxin resistance during starvation in E. coli. PLoS Biol 2024; 22:e3002558. [PMID: 38478588 PMCID: PMC10962826 DOI: 10.1371/journal.pbio.3002558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work, we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (Δppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and Δppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of the required building blocks. From our data set, we were particularly interested in Arn and EptA proteins, which were down-regulated in Δppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins in K-12 strains and a uropathogenic isolate, and provide evidence that this mis-regulation in Δppk cells stems from a failure to induce the BasRS two-component system during starvation. We also show that Δppk mutants unable to up-regulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Li YT, Xiao YH, Liu Y, Hu N, Wu C, Huang X, Zeng L. Characterisation of highly virulent and colistin-resistant ST367-KL1 Klebsiella quasipneumoniae subsp. similipneumoniae Strain. J Glob Antimicrob Resist 2024; 36:267-275. [PMID: 38272213 DOI: 10.1016/j.jgar.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To elucidate the characteristics of a colistin-resistant and hypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae strain (KP8) using whole genome sequencing and various phenotypic assays. METHODS Antimicrobial susceptibility testing was performed using broth microdilution. Whole genome sequencing and comparative genomics were utilised to elucidate genomic characteristics. Phenotypic assays to evaluate virulence factors included measurements of mucosal viscosity, biofilm production, siderophore production, infection of A549 cells, serum-killing assays, and Galleria mellonella infection models. RESULTS Whole-genome sequencing revealed that the strain (KP8) belongs to sequence type 367 (ST367) and capsular type 1 (KL1), and it harbours several virulence genes, including regulator of mucoid phenotype (rmpA/A2), salmochelin (iroBCDN) and aerobactin (iucABCDiutA). Antibiotic susceptibility tests showed that KP8 was resistant to colistin. Genome analysis showed that the colistin resistance of KP8 might be related to amino acid insertions in pmrB (L215_D217, insL) and pagP (M1_S3, insV). Importantly, KP8 demonstrated comparable mucosal viscosity, biofilm production capacity, siderophore production levels to hvKP. Serum-killing experiments, A549 cell infection models, and G. mellonella infection models further indicated that KP8 displayed high virulence, akin to the hypervirulent strain NUTH-K2044. Notably, global genome analysis of the K. quasipneumoniae subsp. similipneumoniae strains highlighted that the ST367 lineage has a higher tendency to carry virulence-associated genes compared to other sequence types. The prevalence of virulence-associated factors concentrated within Chinese ST367 isolates reinforces this observation. CONCLUSION These findings further enhance our understanding of the resistance and pathogenicity of ST367 K. quasipneumoniae subsp. similipneumoniae strain and also providing a broader perspective on the global epidemiological landscape.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Public Health, Nanchang University, Nanchang, China
| | - Yang-Hua Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Public Health, Nanchang University, Nanchang, China
| | - Yanling Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Niya Hu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chengwei Wu
- School of Public Health, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Fleitas O, Fontes W, De Souza CM, Da Costa MC, Cardoso MH, Castro MS, Sousa MV, Ricart CAO, Ramada MHS, Duque HM, Porto WF, Silva ON, Franco OL. A proteomic perspective on the resistance response of Klebsiella pneumoniae to antimicrobial peptide PaDBS1R1. J Antimicrob Chemother 2024; 79:112-122. [PMID: 37966053 DOI: 10.1093/jac/dkad354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The synthetic antimicrobial peptide, PaDBS1R1, has been reported as a powerful anti-Klebsiella pneumoniae antimicrobial. However, there is only scarce knowledge about whether K. pneumoniae could develop resistance against PaDBS1R1 and which resistance mechanisms could be involved. OBJECTIVES Identify via label-free shotgun proteomics the K. pneumoniae resistance mechanisms developed against PaDBS1R1. METHODS An adaptive laboratory evolution experiment was performed to obtain a PaDBS1R1-resistant K. pneumoniae lineage. Antimicrobial susceptibility was determined through microdilution assay. Modifications in protein abundances between the resistant and sensitive lineages were measured via label-free quantitative shotgun proteomics. Enriched Gene Ontology terms and KEGG pathways were identified through over-representation analysis. Data are available via ProteomeXchange with identifier PXD033020. RESULTS K. pneumoniae ATCC 13883 parental strain challenged with increased subinhibitory PaDBS1R1 concentrations allowed the PaDBS1R1-resistant K. pneumoniae lineage to emerge. Proteome comparisons between PaDBS1R1-resistant K. pneumoniae and PaDBS1R1-sensitive K. pneumoniae under PaDBS1R1-induced stress conditions enabled the identification and quantification of 1702 proteins, out of which 201 were differentially abundant proteins (DAPs). The profiled DAPs comprised 103 up-regulated proteins (adjusted P value < 0.05, fold change ≥ 2) and 98 down-regulated proteins (adjusted P value < 0.05, fold change ≤ 0.5). The enrichment analysis suggests that PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery could be relevant resistance mechanisms against PaDBS1R1. CONCLUSIONS Based on experimental evolution and a label-free quantitative shotgun proteomic approach, we showed that K. pneumoniae developed resistance against PaDBS1R1, whereas PhoPQ-guided LPS modifications and CpxRA-dependent folding machinery appear to be relevant resistance mechanisms against PaDBS1R1.
Collapse
Affiliation(s)
- Osmel Fleitas
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Wagner Fontes
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Camila M De Souza
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Mylena C Da Costa
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon H Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana S Castro
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo V Sousa
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Carlos A O Ricart
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Laboratório de Bioquímica e Química de Proteínas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Harry M Duque
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Osmar N Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Evangélica de Anapólis, University City, 75083-515 Anápolis-GO, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
9
|
Novikova PV, Bhanu Busi S, Probst AJ, May P, Wilmes P. Functional prediction of proteins from the human gut archaeome. ISME COMMUNICATIONS 2024; 4:ycad014. [PMID: 38486809 PMCID: PMC10939349 DOI: 10.1093/ismeco/ycad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 03/17/2024]
Abstract
The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, Methanobrevibacter smithii represents a highly active and clinically relevant methanogenic archaeon, being involved in gastrointestinal disorders, such as inflammatory bowel disease and obesity. Herein, we present an integrated approach using sequence and structure information to improve the annotation of M. smithii proteins using advanced protein structure prediction and annotation tools, such as AlphaFold2, trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, we found 707 754 proteins exclusively present in the human gut. Having analysed archaeal proteins together with 87 282 994 bacterial proteins, we identified unique archaeal proteins and archaeal-bacterial homologs. We then predicted and characterized functional domains and structures of 73 unique and homologous archaeal protein clusters linked the human gut and M. smithii. We refined annotations based on the predicted structures, extending existing sequence similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms, virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases that could be associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain horizontal gene transfer between Clostridia species and M. smithii, which includes sporulation Stage V proteins AE and AD. Our study broadens the understanding of archaeal biology, particularly M. smithii, and highlights the importance of considering both sequence and structure for the prediction of protein function.
Collapse
Affiliation(s)
- Polina V Novikova
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8 BB, United Kingdom
| | - Alexander J Probst
- Environmental Metagenomics, Department of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, for Environmental Microbiology and Biotechnology, University Duisburg-Essen, Duisburg 47057, Germany
| | - Patrick May
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Paul Wilmes
- Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| |
Collapse
|
10
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. mSphere 2023; 8:e0005923. [PMID: 37676915 PMCID: PMC10597456 DOI: 10.1128/msphere.00059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 09/09/2023] Open
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp. is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B (PMB). We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments PMB tolerance in UPEC. Here, we demonstrate-for the first time-that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to PMB. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacterales. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in Escherichia coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes could lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexis Hollingsworth
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Muñoz-Escudero D, Breazeale SD, Lee M, Guan Z, Raetz CRH, Sousa MC. Structure and Function of ArnD. A Deformylase Essential for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance. Biochemistry 2023; 62:2970-2981. [PMID: 37782650 PMCID: PMC10914315 DOI: 10.1021/acs.biochem.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the pmrE and arnBCADTEF loci, with ArnT ultimately transferring the amino sugar from undecaprenyl-phospho-4-deoxy-4-amino-l-arabinose (C55P-Ara4N) to lipid A. However, Ara4N is N-formylated prior to its transfer to undecaprenyl-phosphate by ArnC, requiring a deformylase activity downstream in the pathway to generate the final C55P-Ara4N donor. Here, we show that deletion of the arnD gene in an Escherichia coli mutant that constitutively expresses the arnBCADTEF operon leads to accumulation of the formylated ArnC product undecaprenyl-phospho-4-deoxy-4-formamido-l-arabinose (C55P-Ara4FN), suggesting that ArnD is the downstream deformylase. Purification of Salmonella typhimurium ArnD (stArnD) shows that it is membrane-associated. We present the crystal structure of stArnD revealing a NodB homology domain structure characteristic of the metal-dependent carbohydrate esterase family 4 (CE4). However, ArnD displays several distinct features: a 44 amino acid insertion, a C-terminal extension in the NodB fold, and sequence divergence in the five motifs that define the CE4 family, suggesting that ArnD represents a new family of carbohydrate esterases. The insertion is responsible for membrane association as its deletion results in a soluble ArnD variant. The active site retains a metal coordination H-H-D triad, and in the presence of Co2+ or Mn2+, purified stArnD efficiently deformylates C55P-Ara4FN confirming its role in Ara4N biosynthesis. Mutations D9N and H233Y completely inactivate stArnD implicating these two residues in a metal-assisted acid-base catalytic mechanism.
Collapse
Affiliation(s)
- Daniel Muñoz-Escudero
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Steven D. Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Myeongseon Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | - Marcelo C. Sousa
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
12
|
Baijal K, Abramchuk I, Herrera CM, Stephen Trent M, Lavallée-Adam M, Downey M. Proteomics analysis reveals a role for E. coli polyphosphate kinase in membrane structure and polymyxin resistance during starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.546892. [PMID: 37461725 PMCID: PMC10350021 DOI: 10.1101/2023.07.06.546892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized. In this work we used label-free mass spectrometry to study the response of bacteria that cannot produce polyP (∆ppk) during starvation to identify novel pathways regulated by PPK. In response to starvation, we found 92 proteins significantly differentially expressed between wild-type and ∆ppk mutant cells. Wild-type cells were enriched for proteins related to amino acid biosynthesis and transport, while Δppk mutants were enriched for proteins related to translation and ribosome biogenesis, suggesting that without PPK, cells remain inappropriately primed for growth even in the absence of required building blocks. From our dataset, we were particularly interested in Arn and EptA proteins, which were downregulated in ∆ppk mutants compared to wild-type controls, because they play a role in lipid A modifications linked to polymyxin resistance. Using western blotting, we confirm differential expression of these and related proteins, and provide evidence that this mis-regulation in ∆ppk cells stems from a failure to induce the BasS/BasR two-component system during starvation. We also show that ∆ppk mutants unable to upregulate Arn and EptA expression lack the respective L-Ara4N and pEtN modifications on lipid A. In line with this observation, loss of ppk restores polymyxin sensitivity in resistant strains carrying a constitutively active basR allele. Overall, we show a new role for PPK in lipid A modification during starvation and provide a rationale for targeting PPK to sensitize bacteria towards polymyxin treatment. We further anticipate that our proteomics work will provide an important resource for researchers interested in the diverse pathways impacted by PPK.
Collapse
Affiliation(s)
- Kanchi Baijal
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Iryna Abramchuk
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Carmen M. Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Purcell AB, Simpson BW, Trent MS. Impact of the cAMP-cAMP Receptor Protein Regulatory Complex on Lipopolysaccharide Modifications and Polymyxin B Resistance in Escherichia coli. J Bacteriol 2023; 205:e0006723. [PMID: 37070977 PMCID: PMC10210979 DOI: 10.1128/jb.00067-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Gram-negative bacteria have a unique cell surface that can be modified to maintain bacterial fitness in diverse environments. A well-defined example is the modification of the lipid A component of lipopolysaccharide (LPS), which promotes resistance to polymyxin antibiotics and antimicrobial peptides. In many organisms, such modifications include the addition of the amine-containing constituents 4-amino-4-deoxy-l-arabinose (l-Ara4N) and phosphoethanolamine (pEtN). Addition of pEtN is catalyzed by EptA, which uses phosphatidylethanolamine (PE) as its substrate donor, resulting in production of diacylglycerol (DAG). DAG is then quickly recycled into glycerophospholipid (GPL) synthesis by the DAG kinase A (DgkA) to produce phosphatidic acid, the major GPL precursor. Previously, we hypothesized that loss of DgkA recycling would be detrimental to the cell when LPS is heavily modified. Instead, we found that DAG accumulation inhibits EptA activity, preventing further degradation of PE, the predominant GPL of the cell. However, DAG inhibition of pEtN addition results in complete loss of polymyxin resistance. Here, we selected for suppressors to find a mechanism of resistance independent of DAG recycling or pEtN modification. Disrupting the gene encoding the adenylate cyclase, cyaA, fully restored antibiotic resistance without restoring DAG recycling or pEtN modification. Supporting this, disruptions of genes that reduce CyaA-derived cAMP formation (e.g., ptsI) or disruption of the cAMP receptor protein, Crp, also restored resistance. We found that loss of the cAMP-CRP regulatory complex was necessary for suppression and that resistance arises from a substantial increase in l-Ara4N-modified LPS, bypassing the need for pEtN modification. IMPORTANCE Gram-negative bacteria can alter the structure of their LPS to promote resistance to cationic antimicrobial peptides, including polymyxin antibiotics. Polymyxins are considered last-resort antibiotics for treatment against multidrug-resistant Gram-negative organisms. Here, we explore how changes in general metabolism and carbon catabolite repression pathways can alter LPS structure and influence polymyxin resistance.
Collapse
Affiliation(s)
- Alexandria B. Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Brent W. Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Hurst MN, Beebout CJ, Hollingsworth A, Guckes KR, Purcell A, Bermudez TA, Williams D, Reasoner SA, Trent MS, Hadjifrangiskou M. The QseB response regulator imparts tolerance to positively charged antibiotics by controlling metabolism and minor changes to LPS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523522. [PMID: 36711705 PMCID: PMC9882033 DOI: 10.1101/2023.01.10.523522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The modification of lipopolysaccharide (LPS) in Escherichia coli and Salmonella spp . is primarily controlled by the two-component system PmrAB. LPS modification allows bacteria to avoid killing by positively charged antibiotics like polymyxin B. We previously demonstrated that in uropathogenic E. coli (UPEC), the sensor histidine kinase PmrB also activates a non-cognate transcription factor, QseB, and this activation somehow augments polymyxin B tolerance in UPEC. Here, we demonstrate - for the first time - that in the absence of the canonical LPS transcriptional regulator, PmrA, QseB can direct some modifications on the LPS. In agreement with this observation, transcriptional profiling analyses demonstrate regulatory overlaps between PmrA and QseB in terms of regulating LPS modification genes. However, both PmrA and QseB must be present for UPEC to mount robust tolerance to polymyxin B. Transcriptional and metabolomic analyses also reveal that QseB transcriptionally regulates the metabolism of glutamate and 2-oxoglutarate, which are consumed and produced during the modification of lipid A. We show that deletion of qseB alters glutamate levels in the bacterial cells. The qseB deletion mutant, which is susceptible to positively charged antibiotics, is rescued by exogenous addition of 2-oxoglutarate. These findings uncover a previously unknown mechanism of metabolic control of antibiotic tolerance that may be contributing to antibiotic treatment failure in the clinic. IMPORTANCE Although antibiotic prescriptions are guided by well-established susceptibility testing methods, antibiotic treatments oftentimes fail. The presented work is significant, because it uncovers a mechanism by which bacteria transiently avoid killing by antibiotics. This mechanism involves two closely related transcription factors, PmrA and QseB, which are conserved across Enterobacteriaceae. We demonstrate that PmrA and QseB share regulatory targets in lipid A modification pathway and prove that QseB can orchestrate modifications of lipid A in E. coli in the absence of PmrA. Finally, we show that QseB controls glutamate metabolism during the antibiotic response. These results suggest that rewiring of QseB-mediated metabolic genes can lead to stable antibiotic resistance in subpopulations within the host, thereby contributing to antibiotic treatment failure.
Collapse
Affiliation(s)
- Melanie N. Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Kirsten R. Guckes
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tomas A. Bermudez
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diamond Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN, USA
- Center for Personalized Microbiology, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
16
|
Intraintestinal Analysis of the Functional Activity of Microbiomes and Its Application to the Common Marmoset Intestine. mSystems 2022; 7:e0052022. [PMID: 36005400 PMCID: PMC9601136 DOI: 10.1128/msystems.00520-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The intestinal microbiome is closely related to host health, and metatranscriptomic analysis can be used to assess the functional activity of microbiomes by quantifying microbial gene expression levels, helping elucidate the interactions between the microbiome and the environment. However, the functional changes in the microbiome along the host intestinal tract remain unknown, and previous analytical methods have limitations, such as potentially overlooking unknown genes due to dependence on existing databases. The objective of this study is to develop a computational pipeline combined with next-generation sequencing for spatial covariation analysis of the functional activity of microbiomes at multiple intestinal sites (biogeographic locations) within the same individual. This method reconstructs a reference metagenomic sequence across multiple intestinal sites and integrates the metagenome and metatranscriptome, allowing the gene expression levels of the microbiome, including unknown bacterial genes, to be compared among multiple sites. When this method was applied to metatranscriptomic analysis in the intestinal tract of common marmosets, a New World monkey, the reconstructed metagenome covered most of the expressed genes and revealed that the differences in microbial gene expression among the cecum, transverse colon, and feces were more dynamic and sensitive to environmental shifts than the abundances of the genes. In addition, metatranscriptomic profiling at three intestinal sites of the same individual enabled covariation analysis incorporating spatial relevance, accurately predicting the function of a total of 10,856 unknown genes. Our findings demonstrate that our proposed analytical method captures functional changes in microbiomes at the gene resolution level. IMPORTANCE We developed an analysis method that integrates metagenomes and metatranscriptomes from multiple intestinal sites to elucidate how microbial function varies along the intestinal tract. This method enables spatial covariation analysis of the functional activity of microbiomes and accurate identification of gene expression changes among intestinal sites, including changes in the expression of unknown bacterial genes. Moreover, we applied this method to the investigation of the common marmoset intestine, which is anatomically and pharmacologically similar to that of humans. Our findings indicate the expression pattern of the microbiome varies in response to changes in the internal environment along the intestinal tract, and this microbial change may affect the intestinal environment.
Collapse
|
17
|
RecT Affects Prophage Lifestyle and Host Core Cellular Processes in Pseudomonas aeruginosa. Appl Environ Microbiol 2022; 88:e0106822. [PMID: 36073944 PMCID: PMC9499030 DOI: 10.1128/aem.01068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a ΔrecT mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of pg40, which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. IMPORTANCE Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.
Collapse
|
18
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
19
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
20
|
The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0051921. [PMID: 34549997 PMCID: PMC8557868 DOI: 10.1128/spectrum.00519-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To combat infections, the mammalian host limits availability of essential transition metals such as iron (Fe), zinc (Zn), and manganese (Mn) in a strategy termed "nutritional immunity." The innate immune protein calprotectin (CP) contributes to nutritional immunity by sequestering these metals to exert antimicrobial activity against a broad range of microbial pathogens. One such pathogen is Pseudomonas aeruginosa, which causes opportunistic infections in vulnerable populations, including individuals with cystic fibrosis. CP was previously shown to withhold Fe(II) and Zn(II) from P. aeruginosa and induce Fe and Zn starvation responses in this pathogen. In this work, we performed quantitative, label-free proteomics to further elucidate how CP impacts metal homeostasis pathways in P. aeruginosa. We report that CP induces an incomplete Fe starvation response, as many Fe-containing proteins that are repressed by Fe limitation are not affected by CP treatment. The Zn starvation response elicited by CP seems to be more complete than the Fe starvation response and includes increases in Zn transporters and Zn-independent proteins. CP also induces the expression of membrane-modifying proteins, and metal depletion studies indicate this response results from the sequestration of multiple metals. Moreover, the increased expression of membrane-modifying enzymes upon CP treatment correlates with increased tolerance to polymyxin B. Thus, the response of P. aeruginosa to CP treatment includes both single- and multimetal starvation responses and includes many factors related to virulence potential, broadening our understanding of this pathogen's interaction with the host. IMPORTANCE Transition metal nutrients are critical for growth and infection by all pathogens, and the innate immune system withholds these metals from pathogens to limit their growth in a strategy termed "nutritional immunity." While multimetal depletion by the host is appreciated, the majority of studies have focused on individual metals. Here, we use the innate immune protein calprotectin (CP), which complexes with several metals, including iron (Fe), zinc (Zn), and manganese (Mn), and the opportunistic pathogen Pseudomonas aeruginosa to investigate multimetal starvation. Using an unbiased label-free proteomics approach, we demonstrate that multimetal withholding by CP induces a regulatory response that is not merely additive of individual metal starvation responses, including the induction of lipid A modification proteins.
Collapse
|
21
|
Shprung T, Wani NA, Wilmes M, Mangoni ML, Bitler A, Shimoni E, Sahl HG, Shai Y. Opposing Effects of PhoPQ and PmrAB on the Properties of Salmonella enterica serovar Typhimurium: Implications on Resistance to Antimicrobial Peptides. Biochemistry 2021; 60:2943-2955. [PMID: 34547893 PMCID: PMC8638962 DOI: 10.1021/acs.biochem.1c00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The increasing number of resistant
bacteria is a major threat worldwide,
leading to the search for new antibiotic agents. One of the leading
strategies is the use of antimicrobial peptides (AMPs), cationic and
hydrophobic innate immune defense peptides. A major target of AMPs
is the bacterial membrane. Notably, accumulating data suggest that
AMPs can activate the two-component systems (TCSs) of Gram-negative
bacteria. These include PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB), responsible
for remodeling of the bacterial cell surface. To better understand
this mechanism, we utilized bacteria deficient either in one system
alone or in both and biophysical tools including fluorescence spectroscopy,
single-cell atomic force microscopy, electron microscopy, and mass
spectrometry (MoskowitzS. M.;Antimicrob. Agents Chemother.2012, 56, 1019−103022106224; ChengH. Y.;J. Biomed. Sci.2010, 17, 6020653976). Our data suggested that the two systems have opposing
effects on the properties of Salmonella enterica. The knockout of PhoPQ made the bacteria more susceptible to AMPs
by making the surface less rigid, more polarized, and permeable with
a slightly more negatively charged cell wall. In addition, the periplasmic
space is thinner. In contrast, the knockout of PmrAB did not affect
its susceptibility, while it made the bacterial outer layer very rigid,
less polarized, and less permeable than the other two mutants, with
a negatively charged cell wall similar to the WT. Overall, the data
suggest that the coexistence of systems with opposing effects on the
biophysical properties of the bacteria contribute to their membrane
flexibility, which, on the one hand, is important to accommodate changing
environments and, on the other hand, may inhibit the development of
meaningful resistance to AMPs.
Collapse
Affiliation(s)
- Tal Shprung
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Wilmes
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences A. Rossi Fanelli, Faculty of Pharmacy and Medicine, Sapienza University of Rome, CU27, 00185 Roma, Italy
| | - Arkadi Bitler
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hans-Georg Sahl
- Pharmaceutical Microbiology Section, Institute for Medical Microbiology, Immunology and Parasitology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Scarbrough BA, Eade CR, Reid AJ, Williams TC, Troutman JM. Lipopolysaccharide Is a 4-Aminoarabinose Donor to Exogenous Polyisoprenyl Phosphates through the Reverse Reaction of the Enzyme ArnT. ACS OMEGA 2021; 6:25729-25741. [PMID: 34632229 PMCID: PMC8495848 DOI: 10.1021/acsomega.1c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/11/2023]
Abstract
Modification of the lipid A portion of LPS with cationic monosaccharides provides resistance to polymyxins, which are often employed as a last resort to treat multidrug-resistant bacterial infections. Here, we describe the use of fluorescent polyisoprenoids, liquid chromatography-mass spectrometry, and bacterial genetics to probe the activity of membrane-localized proteins that utilize the 55-carbon lipid carrier bactoprenyl phosphate (BP). We have discovered that a substantial background reaction occurs when B-strain E. coli cell membrane fractions are supplemented with exogenous BP. This reaction involves proteins associated with the arn operon, which is necessary for the covalent modification of lipid A with the cationic 4-aminoarabinose (Ara4N). Using a series of arn operon gene deletion mutants, we identified that the modification was dependent on ArnC, which is responsible for forming BP-linked Ara4N, or ArnT, which transfers Ara4N to lipid A. Surprisingly, we found that the majority of the Ara4N-modified isoprenoid was due to the reverse reaction catalyzed by ArnT and demonstrate this using heat-inactivated membrane fractions, isolated lipopolysaccharide fractions, and analyses of a purified ArnT. This work provides methods that will facilitate thorough and rapid investigation of bacterial outer membrane remodeling and the evaluation of polyisoprenoid precursors required for covalent glycan modifications.
Collapse
Affiliation(s)
- Beth A. Scarbrough
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Colleen R. Eade
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Amanda J. Reid
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Tiffany C. Williams
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Jerry M. Troutman
- Department
of Chemistry, The University of North Carolina
at Charlotte, Charlotte, North Carolina 28223-0001, United States
- Nanoscale
Science Program, The University of North
Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
- . Phone: 704-687-5180
| |
Collapse
|
23
|
Andersson J, Fuller M, Ashenden A, Holt SA, Köper I. Increasing Antibiotic Susceptibility: The Use of Cationic Gold Nanoparticles in Gram-Negative Bacterial Membrane Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9735-9743. [PMID: 34347499 DOI: 10.1021/acs.langmuir.1c01150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance will be one of the most prominent challenges to health-care systems in the coming decades, with the OECD predicting that up to 2.4 million deaths will be caused between 2015 and 2050 by drug-resistant bacterial infections in first-world countries alone, with infections costing health-care systems billions of dollars each year. Developing new methods to increase bacterial susceptibility toward drugs is an important step in treating resistant infections. Here, the synergistic effects of gold nanoparticles and the antibiotic drug colistin sulfate have been examined. A tethered lipid bilayer membrane was used to mimic a Gram-negative bacterial cell membrane. Exposing the membrane to gold nanoparticles prior to adding the antibiotic significantly increased the effect of the antibiotic on the membrane. Cationic gold nanoparticles could thus be used to enhance bacterial susceptibility to antibiotics, leading to a more potent treatment.
Collapse
Affiliation(s)
- Jakob Andersson
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park 5042, South Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science Technology Institute, Lucas Heights 2234, New South Wales, Australia
- Austrian Institute of Technology GmbH, Giefinggase 4, 1210 Vienna, Austria
| | - Melanie Fuller
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park 5042, South Australia
- Australian Centre for Neutron Scattering, Australian Nuclear Science Technology Institute, Lucas Heights 2234, New South Wales, Australia
| | - Alex Ashenden
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park 5042, South Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australian Nuclear Science Technology Institute, Lucas Heights 2234, New South Wales, Australia
| | - Ingo Köper
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park 5042, South Australia
| |
Collapse
|
24
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
25
|
Borg AJE, Beerens K, Pfeiffer M, Desmet T, Nidetzky B. Stereo-electronic control of reaction selectivity in short-chain dehydrogenases: Decarboxylation, epimerization, and dehydration. Curr Opin Chem Biol 2021; 61:43-52. [PMID: 33166830 DOI: 10.1016/j.cbpa.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022]
Abstract
Sugar nucleotide-modifying enzymes of the short-chain dehydrogenase/reductase type use transient oxidation-reduction by a tightly bound nicotinamide cofactor as a common strategy of catalysis to promote a diverse set of reactions, including decarboxylation, single- or double-site epimerization, and dehydration. Although the basic mechanistic principles have been worked out decades ago, the finely tuned control of reactivity and selectivity in several of these enzymes remains enigmatic. Recent evidence on uridine 5'-diphosphate (UDP)-glucuronic acid decarboxylases (UDP-xylose synthase, UDP-apiose/UDP-xylose synthase) and UDP-glucuronic acid-4-epimerase suggests that stereo-electronic constraints established at the enzyme's active site control the selectivity, and the timing of the catalytic reaction steps, in the conversion of the common substrate toward different products. The mechanistic idea of stereo-electronic control is extended to epimerases and dehydratases that deprotonate the Cα of the transient keto-hexose intermediate. The human guanosine 5'-diphosphate (GDP)-mannose 4,6-dehydratase was recently shown to use a minimal catalytic machinery, exactly as predicted earlier from theoretical considerations, for the β-elimination of water from the keto-hexose species.
Collapse
Affiliation(s)
- Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
26
|
Panta PR, Doerrler WT. A Burkholderia thailandensis DedA Family Membrane Protein Is Required for Proton Motive Force Dependent Lipid A Modification. Front Microbiol 2021; 11:618389. [PMID: 33510730 PMCID: PMC7835334 DOI: 10.3389/fmicb.2020.618389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
The DedA family is a conserved membrane protein family found in most organisms. A Burkholderia thailandensis DedA family protein, named DbcA, is required for high-level colistin (polymyxin E) resistance, but the mechanism awaits elucidation. Modification of lipopolysaccharide lipid A with the cationic sugar aminoarabinose (Ara4N) is required for colistin resistance and is dependent upon protonmotive force (PMF) dependent transporters. B. thailandensis ΔdbcA lipid A contains only small amounts of Ara4N, likely leading to colistin sensitivity. Two B. thailandensis operons are required for lipid A modification with Ara4N, one needed for biosynthesis of undecaprenyl-P-Ara4N and one for transport of the lipid linked sugar and subsequent lipid A modification. Here, we directed overexpression of each arn operon by genomic insertion of inducible promoters. We found that overexpression of arn operons in ΔdbcA can partially, but not completely, restore Ara4N modification of lipid A and colistin resistance. Artificially increasing the PMF by lowering the pH of the growth media also increased membrane potential, amounts of Ara4N, and colistin resistance of ΔdbcA. In addition, the products of arn operons are essential for acid tolerance, suggesting a physiological function of Ara4N modification. Finally, we show that ΔdbcA is sensitive to bacitracin and expression of a B. thailandensis UppP/BacA homolog (BTH_I1512) can partially restore resistance to bacitracin. Expression of a different UppP/BacA homolog (BTH_I2750) can partially restore colistin resistance, without changing the lipid A profile. This work suggests that maintaining optimal membrane potential at slightly alkaline pH media by DbcA is responsible for proper modification of lipid A by Ara4N and provides evidence of lipid A modification-dependent and -independent mechanisms of colistin resistance in B. thailandensis.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
27
|
Adak T, Morales DL, Cook AJ, Grigg JC, Murphy MEP, Tanner ME. ArnD is a deformylase involved in polymyxin resistance. Chem Commun (Camb) 2020; 56:6830-6833. [PMID: 32432293 DOI: 10.1039/d0cc02241a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The modification of lipid A with cationic 4-amino-4-deoxy-l-arabinose residues serves to confer resistance against cationic peptide antibiotics in Gram-negative bacteria. In this work, the enzyme ArnD is shown to act as a metal-dependent deformylase in the biosynthesis of this carbohydrate.
Collapse
Affiliation(s)
- Taniya Adak
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Cui L, Wei X, Wang X, Bai L, Lin S, Feng Y. A Validamycin Shunt Pathway for Valienamine Synthesis in Engineered Streptomyces hygroscopicus 5008. ACS Synth Biol 2020; 9:294-303. [PMID: 31940432 DOI: 10.1021/acssynbio.9b00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Valienamine is the key functional component of many natural glycosidase inhibitors, including the crop protectant validamycin A and the clinical antidiabetic agent acarbose. Due to its important biomedical activity, it is also the prominent lead compound for the exploration of therapeutic agents, such as the stronger α-glucosidase inhibitor voglibose. Currently, the main route for obtaining valienamine is a multistep biosynthetic process involving the synthesis and degradation of validamycin A. Here, we established an alternative, vastly simplified shunt pathway for the direct synthesis of valienamine based on an envisioned non-natural transamination in the validamycin A producer Streptomyces hygroscopicus 5008. We first identified candidate aminotransferases for the non-natural ketone substrate valienone and conducted molecular evolution in vitro. The WecE enzyme from Escherichia coli was verified to complete the envisioned step with >99.9% enantiomeric excess and was further engineered to produce a 32.6-fold more active mutant, VarB, through protein evolution. Subsequently, two copies of VarB were introduced into the host, and the new shunt pathway produced 0.52 mg/L valienamine after a 96-h fermentation. Our study thus illustrates a dramatically simplified alternative shunt pathway for valienamine production and introduces a promising foundational platform for increasing the production of valienamine and its valuable N-modified derivatives for use in pharmaceutical applications.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Wei
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinran Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Simpson DH, Hapeshi A, Rogers NJ, Brabec V, Clarkson GJ, Fox DJ, Hrabina O, Kay GL, King AK, Malina J, Millard AD, Moat J, Roper DI, Song H, Waterfield NR, Scott P. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. Chem Sci 2019; 10:9708-9720. [PMID: 32015803 PMCID: PMC6977464 DOI: 10.1039/c9sc03532j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
A range of new water-compatible optically pure metallohelices - made by self-assembly of simple non-peptidic organic components around Fe ions - exhibit similar architecture to some natural cationic antimicrobial peptides (CAMPs) and are found to have high, structure-dependent activity against bacteria, including clinically problematic Gram-negative pathogens. A key compound is shown to freely enter rapidly dividing E. coli cells without significant membrane disruption, and localise in distinct foci near the poles. Several related observations of CAMP-like mechanisms are made via biophysical measurements, whole genome sequencing of tolerance mutants and transcriptomic analysis. These include: high selectivity for binding of G-quadruplex DNA over double stranded DNA; inhibition of both DNA gyrase and topoisomerase I in vitro; curing of a plasmid that contributes to the very high virulence of the E. coli strain used; activation of various two-component sensor/regulator and acid response pathways; and subsequent attempts by the cell to lower the net negative charge of the surface. This impact of the compound on multiple structures and pathways corresponds with our inability to isolate fully resistant mutant strains, and supports the idea that CAMP-inspired chemical scaffolds are a realistic approach for antimicrobial drug discovery, without the practical barriers to development that are associated with natural CAMPS.
Collapse
Affiliation(s)
- Daniel H Simpson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - Alexia Hapeshi
- Warwick Medical School , University of Warwick , Coventry , CV4 7AL , UK
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - David J Fox
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - Ondrej Hrabina
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
- Department of Biophysics , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Gemma L Kay
- Warwick Medical School , University of Warwick , Coventry , CV4 7AL , UK
| | - Andrew K King
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - Jaroslav Malina
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Andrew D Millard
- Warwick Medical School , University of Warwick , Coventry , CV4 7AL , UK
| | - John Moat
- School of Life Sciences , University of Warwick , Gibbet Hill Campus , Coventry , CV4 7AL , UK
| | - David I Roper
- School of Life Sciences , University of Warwick , Gibbet Hill Campus , Coventry , CV4 7AL , UK
| | - Hualong Song
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | | | - Peter Scott
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| |
Collapse
|
30
|
Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/im9.0000000000000002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Cryo-electron microscopy structures of ArnA, a key enzyme for polymyxin resistance, revealed unexpected oligomerizations and domain movements. J Struct Biol 2019; 208:43-50. [PMID: 31344437 DOI: 10.1016/j.jsb.2019.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/20/2019] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria evade the attack of cationic antimicrobial peptides through modifying their lipid A structure in their outer membranes with 4-amino-4-deoxy-L-arabinose (Ara4N). ArnA is a crucial enzyme in the lipid A modification pathway and its deletion abolishes the polymyxin resistance of gram-negative bacteria. Previous studies by X-ray crystallography have shown that full-length ArnA forms a three-bladed propeller-shaped hexamer. Here, the structures of ArnA determined by cryo-electron microscopy (cryo-EM) reveal that ArnA exists in two 3D architectures, hexamer and tetramer. This is the first observation of a tetrameric ArnA. The hexameric cryo-EM structure is similar to previous crystal structures but shows differences in domain movements and conformational changes. We propose that ArnA oligomeric states are in a dynamic equilibrium, where the hexamer state is energetically more favorable, and its domain movements are important for cooperating with downstream enzymes in the lipid A-Ara4N modification pathway. The results provide us with new possibilities to explore inhibitors targeting ArnA.
Collapse
|
32
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
33
|
Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, Lim SHE, Lai KS. Disruption of KPC-producing Klebsiella pneumoniae membrane via induction of oxidative stress by cinnamon bark (Cinnamomum verum J. Presl) essential oil. PLoS One 2019; 14:e0214326. [PMID: 30939149 PMCID: PMC6445408 DOI: 10.1371/journal.pone.0214326] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/10/2019] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
Collapse
Affiliation(s)
- Shun-Kai Yang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland, School of Medicine, Perdana University, Serdang, Selangor, Malaysia
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Riaz Akseer
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, School of Medicine, Perdana University, Serdang, Selangor, Malaysia
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Kok-Song Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
34
|
Zhang H, Hou M, Xu Y, Srinivas S, Huang M, Liu L, Feng Y. Action and mechanism of the colistin resistance enzyme MCR-4. Commun Biol 2019; 2:36. [PMID: 30701201 PMCID: PMC6347640 DOI: 10.1038/s42003-018-0278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Colistin is the last-resort antibiotic against lethal infections with multidrug-resistant bacterial pathogens. A rainbow coalition of mobile colistin resistance (mcr) genes raises global health concerns. Here, we describe the action and mechanism of colistin resistance imparted by MCR-4, a recently-identified member from the broader MCR family. We found that MCR-4 originates from the silenced variant of Shewanella frigidimarina via progressive evolution and forms a phylogenetically-distinct group from the well-studied MCR-1/2 family. Domain-swapping experiments further confirmed that MCR-1 and MCR-4 transmembrane and catalytic domains are not functionally-interchangeable. However, structural and functional analyses demonstrated that MCR-4 possesses a similar PE lipid substrate-recognizable cavity and exploits an almost-identical ping-pong catalysis mechanism. MCR-4 also can alleviate colistin-triggered accumulation of reactive oxygen species (ROS). Taken together, this finding constitutes a functional proof that MCR-4 proceeds in a distinct evolutionary path to fulfill a consistent molecular mechanism, resulting in phenotypic colistin resistance.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mengyun Hou
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Lizhang Liu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
35
|
Segev-Zarko LA, Kapach G, Josten M, Klug YA, Sahl HG, Shai Y. Deficient Lipid A Remodeling by the arnB Gene Promotes Biofilm Formation in Antimicrobial Peptide Susceptible Pseudomonas aeruginosa. Biochemistry 2018. [PMID: 29518324 DOI: 10.1021/acs.biochem.8b00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistant bacteria possess various mechanisms that can sense environmental stresses such as antibiotics and antimicrobial peptides and rapidly respond to defend themselves. Two known defense strategies are biofilm formation and lipopolysaccharide (LPS) modification. Though LPS modifications are observed in biofilm-embedded bacteria, their effect on biofilm formation is unknown. Using biochemical and biophysical methods coupled with confocal microscopy, atomic force microscopy, and transmission electron microscopy, we show that biofilm formation is promoted in a Pseudomonas aeruginosa PAO1 strain with a loss of function mutation in the arnB gene. This loss of function prevents the addition of the positively charged sugar 4-amino-4-deoxy-l-arabinose to lipid A of LPS under restrictive magnesium conditions. The data reveal that the arnB mutant, which is susceptible to antimicrobial peptides, forms a biofilm that is more robust than that of the wild type. This is in line with the observations that the arnB mutant exhibits outer surface properties such as hydrophobicity and net negative charge that promote the formation of biofilms. Moreover, when grown under Mg2+ limitation, both the wild type and the arnB mutant exhibited a reduction in the level of membrane-bound polysaccharides. The data suggest that the loss of polysaccharides exposes the membrane and alters its biophysical properties, which in turn leads to more biofilm formation. In summary, we show for the first time that blocking a specific lipid A modification promotes biofilm formation, suggesting a trade-off between LPS remodeling and resistance mechanisms of biofilm formation.
Collapse
Affiliation(s)
- Li-Av Segev-Zarko
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Gal Kapach
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yoel Alexander Klug
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
36
|
Zamyatina A. Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein J Org Chem 2018; 14:25-53. [PMID: 29379577 PMCID: PMC5769089 DOI: 10.3762/bjoc.14.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
The immediate immune response to infection by Gram-negative bacteria depends on the structure of a lipopolysaccharide (LPS, also known as endotoxin), a complex glycolipid constituting the outer leaflet of the bacterial outer membrane. Recognition of picomolar quantities of pathogenic LPS by the germ-line encoded Toll-like Receptor 4 (TLR4) complex triggers the intracellular pro-inflammatory signaling cascade leading to the expression of cytokines, chemokines, prostaglandins and reactive oxygen species which manifest an acute inflammatory response to infection. The "endotoxic principle" of LPS resides in its amphiphilic membrane-bound fragment glycophospholipid lipid A which directly binds to the TLR4·MD-2 receptor complex. The lipid A content of LPS comprises a complex mixture of structural homologs varying in the acylation pattern, the length of the (R)-3-hydroxyacyl- and (R)-3-acyloxyacyl long-chain residues and in the phosphorylation status of the β(1→6)-linked diglucosamine backbone. The structural heterogeneity of the lipid A isolates obtained from bacterial cultures as well as possible contamination with other pro-inflammatory bacterial components makes it difficult to obtain unambiguous immunobiological data correlating specific structural features of lipid A with its endotoxic activity. Advanced understanding of the therapeutic significance of the TLR4-mediated modulation of the innate immune signaling and the central role of lipid A in the recognition of LPS by the innate immune system has led to a demand for well-defined materials for biological studies. Since effective synthetic chemistry is a prerequisite for the availability of homogeneous structurally distinct lipid A, the development of divergent and reproducible approaches for the synthesis of various types of lipid A has become a subject of considerable importance. This review focuses on recent advances in synthetic methodologies toward LPS substructures comprising lipid A and describes the synthesis and immunobiological properties of representative lipid A variants corresponding to different bacterial species. The main criteria for the choice of orthogonal protecting groups for hydroxyl and amino functions of synthetically assembled β(1→6)-linked diglucosamine backbone of lipid A which allows for a stepwise introduction of multiple functional groups into the molecule are discussed. Thorough consideration is also given to the synthesis of 1,1'-glycosyl phosphodiesters comprising partial structures of 4-amino-4-deoxy-β-L-arabinose modified Burkholderia lipid A and galactosamine-modified Francisella lipid A. Particular emphasis is put on the stereoselective construction of binary glycosyl phosphodiester fragments connecting the anomeric centers of two aminosugars as well as on the advanced P(III)-phosphorus chemistry behind the assembly of zwitterionic double glycosyl phosphodiesters.
Collapse
Affiliation(s)
- Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
37
|
Hollaus R, Kosma P, Zamyatina A. Stereoselective Synthesis of α- and β-l-Ara4N Glycosyl H-Phosphonates and a Neoglycoconjugate Comprising Glycosyl Phosphodiester Linked β-l-Ara4N. Org Lett 2016; 19:78-81. [PMID: 28009171 PMCID: PMC5223274 DOI: 10.1021/acs.orglett.6b03358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Stereoselective synthesis
of variably protected α- and β-l-Ara4N glycosyl
H-phosphonates as key intermediates in the
syntheses of β-l-Ara4N-modified LPS structures and
α-l-Ara4N-containing biosynthetic precursors is reported.
A facile one-pot approach toward β-l-Ara4N glycosyl
H-phosphonates includes anomeric deallylation of protected 4-azido
β-l-Ara4N via terminal olefin isomerization followed
by ozonolysis and methanolysis of formyl groups to furnish exclusively
β-configured lactols that are phosphitylated with retention
of configuration. The carbohydrate epitope of β-l-Ara4N-modified
Lipid A, βGlcN(1→6)αGlcN(1→P←1)β-l-Ara4N, was stereoselectively synthesized and linked to maleimide-activated
bovine serum albumin.
Collapse
Affiliation(s)
- Ralph Hollaus
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
38
|
Furse S, Scott DJ. Three-Dimensional Distribution of Phospholipids in Gram Negative Bacteria. Biochemistry 2016; 55:4742-7. [PMID: 27509296 DOI: 10.1021/acs.biochem.6b00541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exploration of the molecular structure of the bacterial cell envelope informs our understanding of its role in bacterial growth. This is crucial for research into both inhibiting and promoting bacterial growth as well as fundamental studies of cell cycle control. The spatial arrangement of the lipids in the cell envelope of Gram negative bacteria in particular has attracted considerable research attention in recent years. In this mini-review, we explore advances in understanding the spatial distribution of lipids in the model Gram negative prokaryote Escherichia coli. This includes the distribution of lipids in three dimensions, (a) lateral distribution within a monolayer, (b) asymmetry between bilayers and monolayers, and (c) distribution as a function of progress through membrane division (temporal shifts). We conclude that lipid distribution in E. coli and probably all bacteria is dynamic despite a narrow lipid profile and that the biophysical properties of the membrane are inhomogeneous as a result. Finally, we suggest that further work in this field may indicate how lipid distribution is controlled and what this means for bacterial growth and metabolism and even cell cycle control.
Collapse
Affiliation(s)
- Samuel Furse
- MBI, Department of Molecular Biology, University of Bergen , Thormøhlensgate 55, 5008 Bergen, Norway
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, University of Nottingham , College Road, Sutton Bonington, Nottinghamshire LE12 5RD, U.K.,ISIS Spallation Neutron Source, STFC, Rutherford Appleton Laboratory , Harwell Science and Innovation Campus, Harwell, Oxon OX11 0QX, U.K
| |
Collapse
|
39
|
Cui L, Zhu Y, Guan X, Deng Z, Bai L, Feng Y. De Novo Biosynthesis of β-Valienamine in Engineered Streptomyces hygroscopicus 5008. ACS Synth Biol 2016; 5:15-20. [PMID: 26436873 DOI: 10.1021/acssynbio.5b00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C7N aminocyclitol β-valienamine is a lead compound for the development of new biologically active β-glycosidase inhibitors as chemical chaperone therapeutic agents for lysosomal storage diseases. Its chemical synthesis is challenging due to the presence of multichiral centers in the structure. Herein, we took advantage of a heterogeneous aminotransferase with stereospecificity and designed a novel pathway for producing β-valienamine in Streptomyces hygroscopicus 5008, a validamycin producer. The aminotransferase BtrR from Bacillus circulans was able to convert valienone to β-valienamine with an optical purity of up to >99.9% enantiomeric excess value in vitro. When the aminotransferase gene was introduced into a mutant of S. hygroscopicus 5008 accumulating valienone, 20 mg/L of β-valienamine was produced after 96 h cultivation in shaking flasks. This work provides a powerful alternative for preparing the chiral intermediates for pharmaceutical development.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqing Guan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Fischer U, Hertlein S, Grimm C. The structure of apo ArnA features an unexpected central binding pocket and provides an explanation for enzymatic cooperativity. ACTA ACUST UNITED AC 2015; 71:687-96. [PMID: 25760615 DOI: 10.1107/s1399004714026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022]
Abstract
The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Hertlein
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
41
|
Hollaus R, Ittig S, Hofinger A, Haegman M, Beyaert R, Kosma P, Zamyatina A. Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential. Chemistry 2015; 21:4102-14. [PMID: 25630448 PMCID: PMC4517147 DOI: 10.1002/chem.201406058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 11/08/2022]
Abstract
Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram-negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4-amino-4-deoxy-β-l-arabinose (β-l-Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro-inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β-l-Ara4N at the anomeric phosphate and its Ara4N-free counterpart. The double glycosyl phosphodiester was assembled by triazolyl-tris-(pyrrolidinyl)phosphonium-assisted coupling of the β-l-Ara4N H-phosphonate to α-lactol of β(1→6) diglucosamine, pentaacylated with (R)-(3)-acyloxyacyl- and Alloc-protected (R)-(3)-hydroxyacyl residues. The intermediate 1,1′-glycosyl-H-phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β-l-Ara4N-substituted Burkholderia Lipid A. The β-l-Ara4N modification significantly enhanced the pro-inflammatory innate immune signaling of otherwise non-endotoxic Burkholderia Lipid A.
Collapse
Affiliation(s)
- Ralph Hollaus
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria)
| | | | | | | | | | | | | |
Collapse
|
42
|
Aoyagi KL, Brooks BD, Bearden SW, Montenieri JA, Gage KL, Fisher MA. LPS modification promotes maintenance of Yersinia pestis in fleas. MICROBIOLOGY-SGM 2014; 161:628-38. [PMID: 25533446 DOI: 10.1099/mic.0.000018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yersinia pestis, the causative agent of plague, can be transmitted by fleas by two different mechanisms: by early-phase transmission (EPT), which occurs shortly after flea infection, or by blocked fleas following long-term infection. Efficient flea-borne transmission is predicated upon the ability of Y. pestis to be maintained within the flea. Signature-tagged mutagenesis (STM) was used to identify genes required for Y. pestis maintenance in a genuine plague vector, Xenopsylla cheopis. The STM screen identified seven mutants that displayed markedly reduced fitness in fleas after 4 days, the time during which EPT occurs. Two of the mutants contained insertions in genes encoding glucose 1-phosphate uridylyltransferase (galU) and UDP-4-amino-4-deoxy-l-arabinose-oxoglutarate aminotransferase (arnB), which are involved in the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) and resistance to cationic antimicrobial peptides (CAMPs). These Y. pestis mutants were more susceptible to the CAMPs cecropin A and polymyxin B, and produced lipid A lacking Ara4N modifications. Surprisingly, an in-frame deletion of arnB retained modest levels of CAMP resistance and Ara4N modification, indicating the presence of compensatory factors. It was determined that WecE, an aminotransferase involved in biosynthesis of enterobacterial common antigen, plays a novel role in Y. pestis Ara4N modification by partially offsetting the loss of arnB. These results indicated that mechanisms of Ara4N modification of lipid A are more complex than previously thought, and these modifications, as well as several factors yet to be elucidated, play an important role in early survival and transmission of Y. pestis in the flea vector.
Collapse
Affiliation(s)
- Kari L Aoyagi
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA
| | - Benjamin D Brooks
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA
| | - Scott W Bearden
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - John A Montenieri
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Kenneth L Gage
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Mark A Fisher
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
43
|
Hwang S, Li Z, Bar-Peled Y, Aronov A, Ericson J, Bar-Peled M. The biosynthesis of UDP-d-FucNAc-4N-(2)-oxoglutarate (UDP-Yelosamine) in Bacillus cereus ATCC 14579: Pat and Pyl, an aminotransferase and an ATP-dependent Grasp protein that ligates 2-oxoglutarate to UDP-4-amino-sugars. J Biol Chem 2014; 289:35620-32. [PMID: 25368324 DOI: 10.1074/jbc.m114.614917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface glycan switching is often observed when micro-organisms transition between different biotic and abiotic niches, including biofilms, although the advantages of this switching to the organism are not well understood. Bacillus cereus grown in a biofilm-inducing medium has been shown to synthesize an unusual cell wall polysaccharide composed of the repeating subunit →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, where galactose is linked to the hydroxyglutarate moiety of FucNAc-4-amido-(2)-hydroxyglutarate. The molecular mechanism involved in attaching 2-hydroxyglutarate to 4-amino-FucNAc has not been determined. Here, we show two genes in B. cereus ATCC 14579 encoding enzymes involved in the synthesis of UDP-FucNAc-4-amido-(2)-oxoglutarate (UDP-Yelosamine), a modified UDP-sugar not previously reported to exist. Using mass spectrometry and real time NMR spectroscopy, we show that Bc5273 encodes a C4″-aminotransferase (herein referred to as Pat) that, in the presence of pyridoxal phosphate, transfers the primary amino group of l-Glu to C-4″ of UDP-4-keto-6-deoxy-d-GlcNAc to form UDP-4-amino-FucNAc and 2-oxoglutarate. Pat also converts 4-keto-xylose, 4-keto-glucose, and 4-keto-2-acetamido-altrose to their corresponding UDP-4-amino-sugars. Bc5272 encodes a carboxylate-amine ligase (herein referred as Pyl) that, in the presence of ATP and Mg(II), adds 2-oxoglutarate to the 4-amino moiety of UDP-4-amino-FucNAc to form UDP-Yelosamine and ADP. Pyl is also able to ligate 2-oxoglutarate to other 4-amino-sugar derivatives to form UDP-Yelose, UDP-Solosamine, and UDP-Aravonose. Characterizing the metabolic pathways involved in the formation of modified nucleotide sugars provides a basis for understanding some of the mechanisms used by bacteria to modify or alter their cell surface polysaccharides in response to changing growth and environmental challenges.
Collapse
Affiliation(s)
- Soyoun Hwang
- From the Complex Carbohydrate Research Center and
| | - Zi Li
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | - Avi Aronov
- From the Complex Carbohydrate Research Center and
| | | | - Maor Bar-Peled
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
44
|
Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum. mBio 2014; 5:mBio.01460-14. [PMID: 25118243 PMCID: PMC4145685 DOI: 10.1128/mbio.01460-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (colibacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nutritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum-active and inactive-involved metabolic genes. In particular, the serum metabolic response is coordinated by three transcriptional regulators, Fur, BasR, and CysB. Fur alone was responsible for more than 80% of the serum-induced transcriptional response. Consistent with its role as a major serum response regulator, deletion of Fur renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in colisepticemia and virulence. IMPORTANCE Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains have emerged as major pathogens, especially in community- and hospital-acquired infections. These bacteria cause a large spectrum of syndromes, the most serious of which is septicemia, a condition with a high mortality rate. These bacterial strains are characterized by high resistance to serum, otherwise highly toxic to most bacteria. To understand the basis of this resistance, we carried out system-wide analyses of the response of ExPEC strains to serum by using proteomics and deep RNA sequencing. The major changes in gene expression induced by exposure to serum involved metabolic genes, not necessarily implicated in relation to virulence. One metabolic regulator-Fur-involved in iron metabolism was responsible for more than 80% of the serum-induced response, and its deletion renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in virulence.
Collapse
|
45
|
Wang X, Quinn PJ, Yan A. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 2014; 90:408-27. [PMID: 24838025 PMCID: PMC4402001 DOI: 10.1111/brv.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
46
|
Ah YM, Kim AJ, Lee JY. Colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents 2014; 44:8-15. [PMID: 24794735 DOI: 10.1016/j.ijantimicag.2014.02.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022]
Abstract
Increasing use of colistin for multidrug-resistant Gram-negative bacterial infections has led to the emergence of colistin resistance in Klebsiella pneumoniae in several countries worldwide, including Europe (especially Greece), and colistin resistance rates are continually increasing. Heteroresistance rates, which were significantly higher than resistance rates, were found to be important. Although the mechanism underlying resistance is unclear, it has been suggested that it is related to lipopolysaccharide modification via diverse routes. Several factors have been reported as being associated with colistin resistance, with improper use and patient-to-patient transmission being most often cited. Total infections and infection-related mortality from colistin-resistant K. pneumoniae are high, but currently there are no established treatment regimens. However, several combination regimens that are mainly colistin-based have been found to be successful for treating such infections.
Collapse
Affiliation(s)
- Young-Mi Ah
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-no, Sangnok-gu, Ansan, Gyeonggi-do 462-791, South Korea
| | - Ah-Jung Kim
- Department of Pharmacy, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, South Korea
| | - Ju-Yeun Lee
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-no, Sangnok-gu, Ansan, Gyeonggi-do 462-791, South Korea.
| |
Collapse
|
47
|
Lee M, Sousa MC. Structural basis for substrate specificity in ArnB. A key enzyme in the polymyxin resistance pathway of Gram-negative bacteria. Biochemistry 2014; 53:796-805. [PMID: 24460375 PMCID: PMC3985747 DOI: 10.1021/bi4015677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Cationic Antimicrobial Peptides (CAMPs)
represent a first line
of defense against bacterial colonization. When fighting Gram-negative
bacteria, CAMPs initially interact electrostatically with the negatively
charged phosphate groups in lipid A and are thought to kill bacteria
by disrupting their membrane integrity. However, many human pathogens,
including Salmonella and Pseudomonas, have evolved lipid A modification mechanisms
that result in resistance to CAMPs and related antibiotics such as
Colistin. The addition of 4-amino-4-deoxy-l-Arabinose (Ara4N)
to a phosphate group in lipid A is one such modification, frequently
found in Pseudomonas isolated from
cystic fibrosis patients. The pathway for biosynthesis of Ara4N-lipid
A requires conversion of UDP-Glucuronic acid into UDP-Ara4N and subsequent
transfer of the amino-sugar to lipid A. ArnB is a pyridoxal-phosphate
(PLP) dependent transaminase that catalyzes a crucial step in the
pathway: synthesis of UDP-Ara4N from UDP-4-keto-pentose. Here we present
the 2.3 Å resolution crystal structure of an active site mutant
of ArnB (K188A) in complex with the reaction intermediate aldimine
formed by UDP-Ara4N and PLP. The sugar–nucleotide binding site
is in a cleft between the subunits of the ArnB dimer with the uracil
buried at the interface and the UDP ribose and phosphate groups exposed
to the solvent. The Ara4N moiety is found in the 4C1 conformation and its positioning, stabilized by interactions
with both the protein and cofactor, is compatible with catalysis.
The structure suggests strategies for the development of specific
inhibitors that may prove useful in the treatment of resistant bacteria
such as Pseudomonas found in cystic
fibrosis patients.
Collapse
Affiliation(s)
- Myeongseon Lee
- Department of Chemistry and Biochemistry, University of Colorado at Boulder , Boulder, Colorado 80309-0596, United States
| | | |
Collapse
|
48
|
Carlson-Banning KM, Chou A, Liu Z, Hamill RJ, Song Y, Zechiedrich L. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae. PLoS One 2013; 8:e69646. [PMID: 23936064 PMCID: PMC3720592 DOI: 10.1371/journal.pone.0069646] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 12/27/2022] Open
Abstract
Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5–15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.
Collapse
Affiliation(s)
- Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew Chou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhen Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard J. Hamill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
50
|
May JF, Groisman EA. Conflicting roles for a cell surface modification in Salmonella. Mol Microbiol 2013; 88:970-83. [PMID: 23646936 DOI: 10.1111/mmi.12236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O-antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram-negative bacteria. We determined that activation of the PmrA/PmrB two-component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA-activated gene wzz(st), which encodes the protein that determines long O-antigen chain length and confers resistance to complement-mediated killing. By contrast, this growth defect did not require the wzz(fepE) gene, which controls production of very long O-antigen, or other PmrA-activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O-antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer-membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O-antigen in its LPS to respond to the different conditions it faces during infection.
Collapse
Affiliation(s)
- John F May
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|