1
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
2
|
Hüttmann N, Li Y, Poolsup S, Zaripov E, D’Mello R, Susevski V, Minic Z, Berezovski MV. Surface Proteome of Extracellular Vesicles and Correlation Analysis Reveal Breast Cancer Biomarkers. Cancers (Basel) 2024; 16:520. [PMID: 38339272 PMCID: PMC10854524 DOI: 10.3390/cancers16030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer (BC) is the second most frequently diagnosed cancer and accounts for approximately 25% of new cancer cases in Canadian women. Using biomarkers as a less-invasive BC diagnostic method is currently under investigation but is not ready for practical application in clinical settings. During the last decade, extracellular vesicles (EVs) have emerged as a promising source of biomarkers because they contain cancer-derived proteins, RNAs, and metabolites. In this study, EV proteins from small EVs (sEVs) and medium EVs (mEVs) were isolated from BC MDA-MB-231 and MCF7 and non-cancerous breast epithelial MCF10A cell lines and then analyzed by two approaches: global proteomic analysis and enrichment of EV surface proteins by Sulfo-NHS-SS-Biotin labeling. From the first approach, proteomic profiling identified 2459 proteins, which were subjected to comparative analysis and correlation network analysis. Twelve potential biomarker proteins were identified based on cell line-specific expression and filtered by their predicted co-localization with known EV marker proteins, CD63, CD9, and CD81. This approach resulted in the identification of 11 proteins, four of which were further investigated by Western blot analysis. The presence of transmembrane serine protease matriptase (ST14), claudin-3 (CLDN3), and integrin alpha-7 (ITGA7) in each cell line was validated by Western blot, revealing that ST14 and CLDN3 may be further explored as potential EV biomarkers for BC. The surface labeling approach enriched proteins that were not identified using the first approach. Ten potential BC biomarkers (Glutathione S-transferase P1 (GSTP1), Elongation factor 2 (EEF2), DEAD/H box RNA helicase (DDX10), progesterone receptor (PGR), Ras-related C3 botulinum toxin substrate 2 (RAC2), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), Aconitase 2 (ACO2), UTP20 small subunit processome component (UTP20), NEDD4 binding protein 2 (N4BP2), Programmed cell death 6 (PDCD6)) were selected from surface proteins commonly identified from MDA-MB-231 and MCF7, but not identified in MCF10A EVs. In total, 846 surface proteins were identified from the second approach, of which 11 were already known as BC markers. This study supports the proposition that Evs are a rich source of known and novel biomarkers that may be used for non-invasive detection of BC. Furthermore, the presented datasets could be further explored for the identification of potential biomarkers in BC.
Collapse
Affiliation(s)
- Nico Hüttmann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Vanessa Susevski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
3
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
4
|
Zhang Y, Yang L, Zhang Y, Liang Y, Zhao H, Li Y, Cai G, Wu Z, Li Z. Identification of Important Factors Causing Developmental Arrest in Cloned Pig Embryos by Embryo Biopsy Combined with Microproteomics. Int J Mol Sci 2022; 23:ijms232415975. [PMID: 36555617 PMCID: PMC9783476 DOI: 10.3390/ijms232415975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The technique of pig cloning holds great promise for the livestock industry, life science, and biomedicine. However, the prenatal death rate of cloned pig embryos is extremely high, resulting in a very low cloning efficiency. This limits the development and application of pig cloning. In this study, we utilized embryo biopsy combined with microproteomics to identify potential factors causing the developmental arrest in cloned pig embryos. We verified the roles of two potential regulators, PDCD6 and PLK1, in cloned pig embryo development. We found that siRNA-mediated knockdown of PDCD6 reduced mRNA and protein expression levels of the pro-apoptotic gene, CASP3, in cloned pig embryos. PDCD6 knockdown also increased the cleavage rate and blastocyst rate of cloned porcine embryos. Overexpression of PLK1 via mRNA microinjection also improved the cleavage rate of cloned pig embryos. This study provided a new strategy to identify key factors responsible for the developmental defects in cloned pig embryos. It also helped establish new methods to improve pig cloning efficiency, specifically by correcting the expression pattern of PDCD6 and PLK1 in cloned pig embryos.
Collapse
Affiliation(s)
- Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Liusong Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yiqian Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510030, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
5
|
Loers G, Theis T, Baixia Hao H, Kleene R, Arsha S, Samuel N, Arsha N, Young W, Schachner M. Interplay in neural functions of cell adhesion molecule close homolog of L1 (CHL1) and Programmed Cell Death 6 (PDCD6). FASEB Bioadv 2022; 4:43-59. [PMID: 35024572 PMCID: PMC8728108 DOI: 10.1096/fba.2021-00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022] Open
Abstract
Close homolog of L1 (CHL1) is a cell adhesion molecule of the immunoglobulin superfamily. It promotes neuritogenesis and survival of neurons in vitro. In vivo, CHL1 promotes nervous system development, regeneration after trauma, and synaptic function and plasticity. We identified programmed cell death 6 (PDCD6) as a novel binding partner of the CHL1 intracellular domain (CHL1-ICD). Co-immunoprecipitation, pull-down assay with CHL1-ICD, and proximity ligation in cerebellum and pons of 3-day-old and 6-month-old mice, as well as in cultured cerebellar granule neurons and cortical astrocytes indicate an association between PDCD6 and CHL1. The Ca2+-chelator BAPTA-AM inhibited the association between CHL1 and PDCD6. The treatment of cerebellar granule neurons with a cell-penetrating peptide comprising the cell surface proximal 30 N-terminal amino acids of CHL1-ICD inhibited the association between CHL1 and PDCD6 and PDCD6- and CHL1-triggered neuronal survival. These results suggest that PDCD6 contributes to CHL1 functions in the nervous system.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare NeurobiologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Helen Baixia Hao
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Ralf Kleene
- Zentrum für Molekulare NeurobiologieUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Sanjana Arsha
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Nina Samuel
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Neha Arsha
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJUSA
| |
Collapse
|
6
|
Sexually dimorphic expression of a chicken sex chromosome gene (VCP) reflects differences in gonadal development between males and females. Biochem Biophys Res Commun 2021; 582:21-27. [PMID: 34678592 DOI: 10.1016/j.bbrc.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
The chicken has a Z-W sex chromosome system, in which the males are the homogametic sex (ZZ) and the females the heterogametic sex (ZW). The smaller W chromosome is generally considered to be a highly degraded copy of the Z chromosome that retains around 28-30 homologous protein-coding genes' These Z-W homologues are thought to have important, but undefined, roles in development, and here we explore the role of one of these genes, VCP (Valosin Containing Protein) in gonadogenesis. We established RNA expression levels of both Z and W VCP homologues, the levels of VCP protein, and the cellular localization of VCP protein in male and female embryonic gonads during development. We also assessed the effects of female-to-male sex-reversal on VCP expression in developing gonads. The results showed that both VCP RNA and protein are expressed at higher levels in female than male gonads, and the expression levels of VCP protein and VCP-Z transcript, but not VCP-W transcript, are decreased in female-to-male sex reversed gonads. In addition, the spatial expression of VCP protein differs between male and female embryonic gonads: in testes, VCP protein is mainly confined to the medullary sex cords, while in ovaries, VCP protein is expressed throughout the medulla and at higher levels in the cortex. The results suggest that sexually dimorphic expression of chicken VCP reflects differences in gonadal morphology between sexes.
Collapse
|
7
|
The Penta-EF-Hand ALG-2 Protein Interacts with the Cytosolic Domain of the SOCE Regulator SARAF and Interferes with Ubiquitination. Int J Mol Sci 2020; 21:ijms21176315. [PMID: 32878247 PMCID: PMC7504102 DOI: 10.3390/ijms21176315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
ALG-2 is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in mammalian cells. In order to find new ALG-2-binding partners, we searched a human protein database and retrieved sequences containing the previously identified ALG-2-binding motif type 2 (ABM-2). After selecting 12 high-scored sequences, we expressed partial or full-length GFP-fused proteins in HEK293 cells and performed a semi-quantitative in vitro binding assay. SARAF, a negative regulator of store-operated Ca2+ entry (SOCE), showed the strongest binding activity. Biochemical analysis of Strep-tagged and GFP-fused SARAF proteins revealed ubiquitination that proceeded during pulldown assays under certain buffer conditions. Overexpression of ALG-2 interfered with ubiquitination of wild-type SARAF but not ubiquitination of the F228S mutant that had impaired ALG-2-binding activity. The SARAF cytosolic domain (CytD) contains two PPXY motifs targeted by the WW domains of NEDD4 family E3 ubiquitin ligases. The PPXY motif proximal to the ABM-2 sequence was found to be more important for both in-cell ubiquitination and post-cell lysis ubiquitination. A ubiquitination-defective mutant of SARAF with Lys-to-Arg substitutions in the CytD showed a slower degradation rate by half-life analysis. ALG-2 promoted Ca2+-dependent CytD-to-CytD interactions of SARAF. The ALG-2 dimer may modulate the stability of SARAF by sterically blocking ubiquitination and by bridging SARAF molecules at the CytDs.
Collapse
|
8
|
Jiang L, Cui J, Zhang C, Xie J, Zhang S, Fu D, Duo W. Sigma-1 receptor is involved in diminished ovarian reserve possibly by influencing endoplasmic reticulum stress-mediated granulosa cells apoptosis. Aging (Albany NY) 2020; 12:9041-9065. [PMID: 32409627 PMCID: PMC7288944 DOI: 10.18632/aging.103166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022]
Abstract
Sigma non-opioid intracellular receptor 1 (sigma-1 receptor), a non-opioid transmembrane protein, is located on cellular mitochondrial membranes and endoplasmic reticulum. Current research has demonstrated that sigma-1 receptor is related to human degenerative diseases. This study is focused on the effects of sigma-1 receptor on the pathophysiological process of diminished ovarian reserve (DOR) and granulosa cells (GCs) apoptosis. Sigma-1 receptor concentration in follicular fluid (FF) and serum were negatively correlated with basal follicle-stimulating hormone (FSH) and positively correlated with anti-mullerian hormone (AMH), antral follicle count (AFC). Sigma-1 receptor reduction in GCs was accompanied by endoplasmic reticulum stress (ERS)-mediated apoptosis in women with DOR. Plasmid transfection was used to establish SIGMAR1-overexpressed and SIGMAR1-knockdown human granulosa-like tumor (KGN) cell and thapsigargin (TG) was used to induce ERS KGN cells. We found that KGN cells treated with endogenous sigma-1 receptor ligand dehydroepiandrosterone (DHEA) and sigma-1 receptor agonist PRE-084 showed similar biological effects to SIGMAR1-overexpressed KGN cells and opposite effects to SIGMAR1-knockdown KGN cells. DHEA may improve DOR patients' pregnancy outcomes by upregulating sigma-1 receptor and downregulating ERS-mediated apoptotic genes in GCs. Thus, sigma-1 receptor may be a potential ovarian reserve biomarker, and ligand-mediated sigma-1 receptor activation could be a future approach for DOR therapy.
Collapse
Affiliation(s)
- Lile Jiang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinquan Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cuilian Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juanke Xie
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaodi Zhang
- Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongjun Fu
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Duo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Shen TC, Chang WS, Hsia TC, Li HT, Chen WC, Tsai CW, Bau DT. Contribution of programmed cell death 6 genetic variations, gender, and smoking status to lung cancer. Onco Targets Ther 2019; 12:6237-6244. [PMID: 31496727 PMCID: PMC6693085 DOI: 10.2147/ott.s205544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Programmed cell death 6 (PDCD6) is a calcium sensor participating in T-cell receptor-, Fas-, and glucocorticoid-induced programmed cell death. At the sites of lung tumors, the expression of PDCD6 is higher than that in non-tumor tissues. However, the contribution of variant PDCD6 genotypes to lung cancer is largely unknown. The current study aimed to evaluate the contributions of the PDCD6 rs4957014 and rs3756712 genotypes to the risk of lung cancer. PATIENTS AND METHODS The contributions of PDCD6 genotypes to lung cancer risk were examined among 358 patients with lung cancer and 716 age- and gender-matched healthy controls by typical polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. RESULTS The results showed that the GG but not the GT genotype of PDCD6 rs4957014 was associated with a decreased risk of lung cancer (odds ratio (OR) =0.41, 95% confidence interval (CI) =0.23-0.72, p=0.0013). The analysis of allelic frequency distributions showed that the G allele of PDCD6 rs4957014 decreased lung cancer susceptibility (p=0.0090). There was no association between PDCD6 rs3756712 genotypes and lung cancer risk. Interestingly, the GG genotype at PDCD6 rs4957014 significantly decreased the risk of lung cancer among males (adjusted OR =0.29, 95% CI =0.14-0.57) and smokers (adjusted OR =0.34, 95% CI =0.18-0.61) but not among females and non-smokers. CONCLUSION The GG genotype of PDCD6 rs4957014 may decrease lung cancer risk in males and smokers and may serve as a practical marker for early detection and the incidence of lung cancer in Taiwan.
Collapse
Affiliation(s)
- Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Hsin-Ting Li
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Chen
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Shibata H. Adaptor functions of the Ca 2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum. Biosci Biotechnol Biochem 2018; 83:20-32. [PMID: 30259798 DOI: 10.1080/09168451.2018.1525274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.
Collapse
Affiliation(s)
- Hideki Shibata
- a Department of Applied Biosciences, Graduate School of Bioagricultural Sciences , Nagoya University , Chikusa-ku , Nagoya , Japan
| |
Collapse
|
11
|
la Cour JM, Winding Gojkovic P, Ambjørner SEB, Bagge J, Jensen SM, Panina S, Berchtold MW. ALG-2 participates in recovery of cells after plasma membrane damage by electroporation and digitonin treatment. PLoS One 2018; 13:e0204520. [PMID: 30240438 PMCID: PMC6150531 DOI: 10.1371/journal.pone.0204520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
The calcium binding protein ALG-2 is upregulated in several types of cancerous tissues and cancer cell death may be a consequence of ALG-2 downregulation. Novel research suggests that ALG-2 is involved in membrane repair mechanisms, in line with several published studies linking ALG-2 to processes of membrane remodeling and transport, which may contribute to the fitness of cells or protect them from damage. To investigate the involvement of ALG-2 in cell recovery after membrane damage we disrupted the PDCD6 gene encoding the ALG-2 protein in DT-40 cells and exposed them to electroporation. ALG-2 knock-out cells were more sensitive to electroporation as compared to wild type cells. This phenotype could be reversed by reestablishing ALG-2 expression confirming that ALG-2 plays an important role in cell recovery after plasma membrane damage. We found that overexpression of wild type ALG-2 but not a mutated form unable to bind Ca2+ partially protected HeLa cells from digitonin-induced cell death. Further, we were able to inhibit the cell protective function of ALG-2 after digitonin treatment by adding a peptide with the ALG-2 binding sequence of ALIX, which has been proposed to serve as the ALG-2 downstream target in a number of processes including cell membrane repair. Our results suggest that ALG-2 may serve as a novel therapeutic target in combination with membrane damaging interventions.
Collapse
Affiliation(s)
- Jonas M la Cour
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jonas Bagge
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simone M Jensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Hashemi M, Bahari G, Markowski J, Małecki A, Łos MJ, Ghavami S. Association of PDCD6 polymorphisms with the risk of cancer: Evidence from a meta-analysis. Oncotarget 2018; 9:24857-24868. [PMID: 29872511 PMCID: PMC5973848 DOI: 10.18632/oncotarget.25324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
This study was designed to evaluate the relationship between Programmed cell death protein 6 (PDCD6) polymorphisms and cancer susceptibility. The online databases were searched for relevant case-control studies published up to November 2017. Review Manage (RevMan) 5.3 was used to conduct the statistical analysis. The pooled odds ratio (OR) with its 95% confidence interval (CI) was employed to calculate the strength of association. Overall, our results indicate that PDCD6 rs3756712 T>G polymorphism was significantly associated with decreased risk of cancer under codominant (OR = 0.82, 95%CI = 0.70-0.96, p = 0.01, TG vs TT; OR = 0.53, 95%CI = 0.39-0.72, p < 0.0001, GG vs TT), dominant (OR = 0.76, 95%CI = 0.66-0.89, p = 0.0004, TG+GG vs TT), recessive (OR = 0.57, 95%CI = 0.43-0.78, p = 0.0003, GG vs TT+TG), and allele (OR = 0.76, 95%CI = 0.67-0.86, p < 0.00001, G vs T) genetic model. The finding did not support an association between rs4957014 T>G polymorphism of PDCD6, and different cancers risk.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Jarosław Markowski
- ENT Department, School of Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Andrzej Małecki
- Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Marek J. Łos
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, Orleans, France
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. Int J Mol Sci 2018; 19:ijms19051370. [PMID: 29734677 PMCID: PMC5983650 DOI: 10.3390/ijms19051370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 01/01/2023] Open
Abstract
Bornyl cis-4-hydroxycinnamate, an active compound isolated from Piper betle stems, was investigated in terms of its effects on A2058 and A375 melanoma cell proliferation and protein expression in this study. We used flow cytometric analysis to examine the early stages of apoptosis induced by bornyl cis-4-hydroxycinnamate in the two melanoma cell lines and employed comparative proteomic analysis to investigate the effects of this compound on protein expression in A375 cells. Master maps generated by PDQuest software from two-dimensional electrophoresis (2-DE) analysis of A375 cells showed that the expression levels of 35 proteins were significantly altered, with 18 proteins upregulated and 17 downregulated. The proteomics study identified several proteins that are involved in mitochondrial dysfunction and endoplasmic reticulum stress (ER stress), in addition to apoptosis-associated proteins, including prohibitin, hypoxia-upregulated protein 1, stress 70 protein, 78 kDa glucose-regulated protein (GRP78), and protein deglycase DJ-1 (protein DJ-1) in melanoma cells exposed to bornyl cis-4-hydroxycinnamate. The treatment also resulted in a marked decline of the mitochondrial membrane potential, in cytochrome C release into the cytosol, in the activation of Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad), caspase-3, and caspase-9, and in the decreased expression of p-Bad, B-cell lymphoma 2 (Bcl-2), Bcl-xl, and induced myeloid leukemia cell differentiation protein-1 (Mcl-1), indicating that apoptosis induced by bornyl cis-4-hydroxycinnamate was mediated by the mitochondria through the caspase-dependent pathway. Also, salubrinal (an eukaryotic initiation factor 2α inhibitor; eIF2α inhibitor) was able to protect the cells from bornyl cis-4-hydroxycinnamate-induced apoptosis. Bornyl cis-4-hydroxycinnamate-related cell death also implied that the protein kinase R-like endoplasmic reticulum kinase (PERK)–eIF2α–ATF4–CHOP signal pathways was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support the conclusion that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma.
Collapse
|
14
|
BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H 2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress. Neuromolecular Med 2018; 20:252-261. [PMID: 29704115 DOI: 10.1007/s12017-018-8489-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Our previous works have shown that hydrogen sulfide (H2S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H2S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H2S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H2S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H2S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H2S against CUMS-induced depressive-like behaviors.
Collapse
|
15
|
Takahara T, Arai Y, Kono Y, Shibata H, Maki M. A microtubule-associated protein MAP1B binds to and regulates localization of a calcium-binding protein ALG-2. Biochem Biophys Res Commun 2018; 497:492-498. [PMID: 29432744 DOI: 10.1016/j.bbrc.2018.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
MAP1B (microtubule-associated protein 1B) binds to microtubules and regulates microtubule dynamics. Previously, we showed calcium-dependent interaction between MAP1B and a calcium-binding protein ALG-2 (apoptosis-linked gene 2), which is involved in regulation of the protein secretion pathway. Although ALG-2 generally binds to proteins through two consensus binding motifs such as ABM-1 and ABM-2, the absence of these motifs in MAP1B suggests a unique binding mode between MAP1B and ALG-2. Here, we identified the region of mouse MAP1B responsible for binding to ALG-2, and found point mutations that abrogated binding of MAP1B to ALG-2. Furthermore, interaction between MAP1B and ALG-2 selectively prevented ALG-2 from binding to proteins with ABM-2 such as Sec31A, suggesting competition between MAP1B and ABM-2-containing proteins for binding to ALG-2. Consistently, in MAP1B knockout cells, co-localization of ALG-2 with Sec31A was increased. Moreover, overexpression of wild-type MAP1B, but not the MAP1B mutant defective in ALG-2 binding, altered localizations of ALG-2 and Sec31A into dispersed distributions, suggesting that MAP1B regulates localizations of ALG-2 and Sec31A in the cells. Finally, we found two cancer-associated mutations of human MAP1B located near ALG-2 binding sites. The introduction of the corresponding mutations in mouse MAP1B dramatically reduced the binding ability to ALG-2. Thus, these results suggest that MAP1B plays a role in regulation of ALG-2 and Sec31A localizations, and that dysregulation of calcium-dependent binding of ALG-2 to MAP1B might influence pathological conditions such as cancers.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan.
| | - Yumika Arai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Yuta Kono
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan.
| |
Collapse
|
16
|
AAA-ATPase p97 suppresses apoptotic and autophagy-associated cell death in rheumatoid arthritis synovial fibroblasts. Oncotarget 2018; 7:64221-64232. [PMID: 27623077 PMCID: PMC5325437 DOI: 10.18632/oncotarget.11890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/02/2016] [Indexed: 01/02/2023] Open
Abstract
Valosin containing protein (p97) is a chaperone implicated in a large number of biological processes including endoplasmic reticulum (ER)-associated protein degradation and autophagy. Silencing of p97 in rheumatoid arthritis (RA) synovial fibroblasts (RASFs) increased the amount of polyubiquitinated proteins, whereas silencing of its interaction partner histone deacetylase 6 (HDAC6) had no effect. Furthermore, silencing of p97 in RASFs increased not only rates of apoptotic cell death induced by TRAIL but also induced an autophagy-associated cell death during ER stress that was accompanied by the formation of polyubiquitinated protein aggregates and large vacuoles. Finally, we demonstrated an anti-arthritic effect of siRNAs targeting p97 in collagen-induced arthritis in rats. Our data indicate that p97 may be a new potential target in the treatment of RA.
Collapse
|
17
|
Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer's disease. Mol Cell Neurosci 2017; 83:83-91. [DOI: 10.1016/j.mcn.2017.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 01/24/2023] Open
|
18
|
Kaul Z, Chakrabarti O. Tumor susceptibility gene 101 regulates predisposition to apoptosis via ESCRT machinery accessory proteins. Mol Biol Cell 2017; 28:2106-2122. [PMID: 28539405 PMCID: PMC5509423 DOI: 10.1091/mbc.e16-12-0855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
ESCRT proteins are implicated in myriad cellular processes, including endosome formation, fusion of autophagosomes/amphisomes with lysosomes, and apoptosis. The role played by these proteins in either facilitating or protecting against apoptosis is unclear. In this study, while trying to understand how deficiency of Mahogunin RING finger 1 (MGRN1) affects cell viability, we uncovered a novel role for its interactor, the ESCRT-I protein TSG101: it directly participates in mitigating ER stress-mediated apoptosis. The association of TSG101 with ALIX prevents predisposition to apoptosis, whereas ALIX-ALG-2 interaction favors a death phenotype. Altered Ca2+ homeostasis in cells and a simultaneous increase in the protein levels of ALIX and ALG-2 are required to elicit apoptosis by activating ER stress-associated caspase 4/12. We further demonstrate that in the presence of membrane-associated, disease-causing prion protein CtmPrP, increased ALIX and ALG-2 levels are detected along with ER stress markers and associated caspases in transgenic brain lysates and cells. These effects were rescued by overexpression of TSG101. This is significant because MGRN1 deficiency is closely associated with neurodegeneration and prenatal and neonatal mortality, which could be due to excess cell death in selected brain regions or myocardial apoptosis during embryonic development.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| |
Collapse
|
19
|
Rosnoblet C, Bègue H, Blanchard C, Pichereaux C, Besson-Bard A, Aimé S, Wendehenne D. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. PLANT, CELL & ENVIRONMENT 2017; 40:491-508. [PMID: 26662183 DOI: 10.1111/pce.12686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 05/06/2023]
Abstract
Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both the protein and transcript levels. Interestingly, only a small proportion of the overall NtCdc48 population appeared to be S-nitrosylated. Using gel filtration in native conditions, we confirmed that NtCdc48 was present in its hexameric active form. An immunoprecipitation-based strategy following my mass spectrometry analysis led to the identification of about a hundred NtCdc48 partners and underlined its contribution in cellular processes including targeting of ubiquitylated proteins for proteasome-dependent degradation, subcellular trafficking and redox regulation. Finally, the analysis of cryptogein-induced events in NtCdc48-overexpressing cells highlighted a correlation between NtCdc48 expression and hypersensitive cell death. Altogether, this study identified NtCdc48 as a component of cryptogein signalling and plant immunity.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Hervé Bègue
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Cécile Blanchard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Carole Pichereaux
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversité, CNRS, 31326, Castanet-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale - CNRS, Université de Toulouse, 205 route de Narbonne,, 31077, Toulouse, France
| | - Angélique Besson-Bard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Sébastien Aimé
- INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - David Wendehenne
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| |
Collapse
|
20
|
Abelaira HM, Réus GZ, Ignácio ZM, Dos Santos MAB, de Moura AB, Matos D, Demo JP, da Silva JBI, Michels M, Abatti M, Sonai B, Dal Pizzol F, Carvalho AF, Quevedo J. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex. J Psychiatr Res 2017; 87:81-87. [PMID: 28017918 DOI: 10.1016/j.jpsychires.2016.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures.
Collapse
Affiliation(s)
- Helena M Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| | - Zuleide M Ignácio
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Maria Augusta B Dos Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Airam B de Moura
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Danyela Matos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia P Demo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia B I da Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mariane Abatti
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Beatriz Sonai
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Felipe Dal Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Binelli A, Del Giacco L, Santo N, Bini L, Magni S, Parolini M, Madaschi L, Ghilardi A, Maggioni D, Ascagni M, Armini A, Prosperi L, Landi C, La Porta C, Della Torre C. Carbon nanopowder acts as a Trojan-horse for benzo(α)pyrene in Danio rerio embryos. Nanotoxicology 2017; 11:371-381. [DOI: 10.1080/17435390.2017.1306130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A. Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Del Giacco
- Department of Biosciences, University of Milan, Milan, Italy
| | - N. Santo
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Bini
- Department of Life Science, University of Siena, Siena, Italy
| | - S. Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | - M. Parolini
- Department of Biosciences, University of Milan, Milan, Italy
| | - L. Madaschi
- Department of Biosciences, University of Milan, Milan, Italy
| | - A. Ghilardi
- Department of Biosciences, University of Milan, Milan, Italy
| | - D. Maggioni
- Department of Chemistry, University of Milan, Milan, Italy
| | - M. Ascagni
- Department of Biosciences, University of Milan, Milan, Italy
| | - A. Armini
- Department of Life Science, University of Siena, Siena, Italy
| | - L. Prosperi
- Department of Biosciences, University of Milan, Milan, Italy
| | - C. Landi
- Department of Life Science, University of Siena, Siena, Italy
| | - C. La Porta
- Department of Biosciences, University of Milan, Milan, Italy
| | - C. Della Torre
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Zhang D, Wang F, Pang Y, Zhao E, Zhu S, Chen F, Cui H. ALG2 regulates glioblastoma cell proliferation, migration and tumorigenicity. Biochem Biophys Res Commun 2017; 486:300-306. [PMID: 28300556 DOI: 10.1016/j.bbrc.2017.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 12/22/2022]
Abstract
Apoptosis-linked gene-2 (ALG-2), also known as programmed cell death 6 (PDCD6), has recently been reported to be aberrantly expressed in various tumors and required for tumor cell viability. The aim of the present study was to investigate whether ALG-2 plays a crucial role in tumor cell proliferation, migration and tumorigenicity. In this study, we examined the expression of PDCD6 in glioblastoma cell lines and found that ALG-2 was generally expressed in glioblastoma cell lines. We also performed an analysis of an online database and found that high expression of ALG-2 was associated with poor prognosis (p = 0.039). We found that over-expression of ALG2 in glioblastoma could inhibit cell proliferation and, conversely, that down-regulation of ALG2 could promote cell proliferation. Further studies showed that over-expression of ALG2 inhibited the migration of tumor cells, whereas down-regulation of ALG2 promoted tumor cell migration. Finally, in vitro and in vivo studies showed that over-expression of ALG2 inhibited the tumorigenic ability of tumor cells, while down-regulation of ALG2 promoted tumor cell tumorigenic ability. In conclusion, ALG2 has a tumor suppressive role in glioblastoma and might be a potential target for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yi Pang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Sunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
23
|
Ma J, Zhang X, Feng Y, Zhang H, Wang X, Zheng Y, Qiao W, Liu X. Structural and Functional Study of Apoptosis-linked Gene-2·Heme-binding Protein 2 Interactions in HIV-1 Production. J Biol Chem 2016; 291:26670-26685. [PMID: 27784779 DOI: 10.1074/jbc.m116.752444] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/01/2016] [Indexed: 01/10/2023] Open
Abstract
In the HIV-1 replication cycle, the endosomal sorting complex required for transport (ESCRT) machinery promotes viral budding and release in the late stages. In this process, the ESCRT proteins, ALIX and TSG101, are recruited through interactions with HIV-1 Gag p6. ALG-2, also known as PDCD6, interacts with both ALIX and TSG101 and bridges ESCRT-III and ESCRT-I. In this study, we show that ALG-2 affects HIV-1 production negatively at both the exogenous and endogenous levels. Through a yeast two-hybrid screen, we identified HEBP2 as the binding partner of ALG-2, and we solved the crystal structure of the ALG-2·HEBP2 complex. The function of ALG-2·HEBP2 complex in HIV-1 replication was further explored. ALG-2 inhibits HIV-1 production by affecting Gag expression and distribution, and HEBP2 might aid this process by tethering ALG-2 in the cytoplasm.
Collapse
Affiliation(s)
- Jing Ma
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071.,the Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xianfeng Zhang
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Yanbin Feng
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071
| | - Hui Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071
| | - Xiaojun Wang
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Yonghui Zheng
- the CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, and
| | - Wentao Qiao
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, .,the Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- From the State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071,
| |
Collapse
|
24
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
25
|
Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 2016; 7:40882-40903. [PMID: 27056889 PMCID: PMC5130051 DOI: 10.18632/oncotarget.8553] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/09/2023] Open
Abstract
Engineered nanoparticles (ENPs) have been widely applied in industry, commodities, biology and medicine recently. The potential for many related threats to human health has been highlighted. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs such as brain, liver, lung, testes, etc, and cause toxic effects. Many references have studied ENP effects on the cells of different organs with related cell apoptosis noted. Understanding such pathways towards ENP induced apoptosis may aid in the design of effective cancer targeting ENP drugs. Such ENPs can either have a direct effect towards cancer cell apoptosis or can be used as drug delivery agents. Characteristics of ENPs, such as sizes, shape, forms, charges and surface modifications are all seen to play a role in determining their toxicity in target cells. Specific modifications of such characteristics can be applied to reduce ENP bioactivity and thus alleviate unwanted cytotoxicity, without affecting the intended function. This provides an opportunity to design ENPs with minimum toxicity to non-targeted cells.
Collapse
Affiliation(s)
- Dan-Dan Ma
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Abstract
A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. Significance statement: This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis.
Collapse
|
27
|
Single nucleotide polymorphisms in PDCD6 gene are associated with the development of cervical squamous cell carcinoma. Fam Cancer 2015; 14:1-8. [PMID: 25362542 DOI: 10.1007/s10689-014-9767-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The programmed cell death 6 (PDCD6), discovered as a proapoptotic calcium-binding protein, has recently been found dysregulated in tumors of various origin and contributed to cancer cell viability. The aim of this study was to determine whether SNPs in PDCD6 are associated with cervical squamous cell carcinoma (CSCC). Polymerase chain reaction-restriction fragment length polymorphism method was used to genotype two tag SNPs (rs3756712 and rs4957014) of PDCD6 in 328 CSCC patients and 541 controls. Significantly increased CSCC risks were found to be associated with T allele of rs3756712 and G allele of rs4957014 (P = 0.017, OR = 1.320, and P = 0.007, OR = 1.321, respectively). CSCC risks were associated with these two SNPs in different genetic model (P = 0.04, OR = 1.78 for rs3756712 in a recessive model, and P = 0.006, OR = 2.01 for rs4957014 in a codominant model, respectively). Results of stratified analyses revealed that rs4957014 is associated with parametrial invasion of CSCC (P = 0.044, OR = 1.414). Our results suggest that these two tag SNPs of PDCD6 are associated with CSCC, indicating that PDCD6 may play an important role in the pathogenesis of CSCC.
Collapse
|
28
|
Henzl MT, Frey BB, Wolf AJ. ALG-2 divalent-ion affinity: Calorimetric analysis of the des23 versions reveals high-affinity site for Mg(2). Biophys Chem 2015; 209:28-40. [PMID: 26705706 DOI: 10.1016/j.bpc.2015.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Michael T Henzl
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211.
| | - Benjamin B Frey
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Andrew J Wolf
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
29
|
Chen F, Li Q, Zhang Z, Lin P, Lei L, Wang A, Jin Y. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages. Int J Mol Sci 2015; 16:19780-19795. [PMID: 26307968 PMCID: PMC4581325 DOI: 10.3390/ijms160819780] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER) stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA) or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs), significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.
Collapse
Affiliation(s)
- Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Qian Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Zhe Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Lanjie Lei
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Aihua Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
31
|
Thomes PG, Osna NA, Bligh SM, Tuma DJ, Kharbanda KK. Role of defective methylation reactions in ethanol-induced dysregulation of intestinal barrier integrity. Biochem Pharmacol 2015; 96:30-38. [PMID: 25931143 DOI: 10.1016/j.bcp.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/23/2015] [Indexed: 02/05/2023]
Abstract
Alcoholic liver disease (ALD) is a major healthcare challenge worldwide. Emerging evidence reveals that ethanol administration disrupts the intestinal epithelial tight junction (TJ) complex; this defect allows for the paracellular translocation of gut-derived pathogenic molecules to reach the liver to cause inflammation and progressive liver injury. We have previously demonstrated a causative role of impairments in liver transmethylation reactions in the pathogenesis of ALD. We have further shown that treatment with betaine, a methylation agent that normalizes liver methylation potential, can attenuate ethanol-induced liver injury. Herein, we explored whether alterations in methylation reactions play a causative role in disrupting intestinal mucosal barrier function by employing an intestinal epithelial cell line. Monolayers of Caco-2 cells were exposed to ethanol or a-pan methylation reaction inhibitor, tubercidin, in the presence and absence of betaine. The structural and functional integrity of intestinal epithelial barrier was then examined. We observed that exposure to either ethanol or tubercidin disrupted TJ integrity and function by decreasing the localization of TJ protein occludin-1 to the intracellular junctions, reducing transepithelial electrical resistance and increasing dextran influx. All these detrimental effects of ethanol and tubercidin were attenuated by co-treatment with betaine. We further show that the mechanism of betaine protection was through BHMT-mediated catalysis. Collectively, our data suggest a novel mechanism for alcohol-induced gut leakiness and identifies the importance of normal methylation reactions in maintaining TJ integrity. We also propose betaine as a potential therapeutic option for leaky gut in alcohol-consuming patients who are at the risk of developing ALD.
Collapse
Affiliation(s)
- Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah M Bligh
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
32
|
Lim EJ, Heo J, Kim YH. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression. Apoptosis 2015; 20:1087-98. [DOI: 10.1007/s10495-015-1135-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Tan H, Zou W, Jiang J, Tian Y, Xiao Z, Bi L, Zeng H, Tang X. Disturbance of hippocampal H2S generation contributes to CUMS-induced depression-like behavior: involvement in endoplasmic reticulum stress of hippocampus. Acta Biochim Biophys Sin (Shanghai) 2015; 47:285-91. [PMID: 25736403 DOI: 10.1093/abbs/gmv009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chronic unpredictable mild stress (CUMS) model is a widely used experimental model of depression. Exogenous stress-induced neuronal cell death in the hippocampus is closely associated with the pathogenesis of depression. Excessive and prolonged endoplasmic reticulum (ER) stress triggers cell death. Hydrogen sulfide (H2S), the third endogenous signaling gasotransmitter, plays an important role in brain functions as a neuromodulator and a neuroprotectant. We hypothesized that the disturbance of endogenous H2S generation and ER stress in the hippocampus might be involved in CUMS-induced depression-like behaviors. Thus, the present study focused on whether CUMS disturbs the generation of endogenous H2S and up-regulates ER stress in the hippocampus and whether exogenous H2S prevents CUMS-induced depressive-like behaviors. Results showed that CUMS-treated rats exhibit depression-like behavior and hippocampal ER stress responses including up-regulated levels of glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein, and cleaved caspase-12 expression, while the endogenous generation of H2S in the hippocampus is suppressed in CUMS-treated rats. Furthermore, exogenous H2S prevents CUMS-induced depression-like behavior. These data indicated that CUMS-induced depression-like behaviors are related to the disturbance of endogenous H2S generation and ER stress in the hippocampus and suggested that endogenous H2S and ER stress are novel treatment targets of depression.
Collapse
Affiliation(s)
- Huiying Tan
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Jiamei Jiang
- Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Ying Tian
- Department of Biochemistry, University of South China, Hengyang 421001, China
| | - Zhifang Xiao
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China
| | - Lili Bi
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China
| | - Haiying Zeng
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Xiaoqing Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China Department of Physiology and Institute of Neuroscience, Medical College, University of South China, Hengyang 421001, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| |
Collapse
|
34
|
Lin P, Chen F, Sun J, Zhou J, Wang X, Wang N, Li X, Zhang Z, Wang A, Jin Y. Mycotoxin zearalenone induces apoptosis in mouse Leydig cells via an endoplasmic reticulum stress-dependent signalling pathway. Reprod Toxicol 2015; 52:71-7. [PMID: 25720297 DOI: 10.1016/j.reprotox.2015.02.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 12/26/2022]
Abstract
Zearalenone (ZEN) is a Fusarium mycotoxin that causes several reproductive disorders and genotoxic effects. This study demonstrated the involvement of endoplasmic reticulum (ER) stress in ZEN-induced mouse Leydig cell death. Our study showed that ZEN reduced cell proliferation in a murine Leydig tumour cell line in a dose-dependent manner. The involvement of apoptosis as a major cause of ZEN-induced cell death was further confirmed by the results of a caspase-3 activity assay, which showed a ZEN dose-dependent increase in cell death. Treatment of MLTC-1 and primary mouse Leydig cells with ZEN upregulated the expression of the ER stress-typical markers GRP78, CHOP and caspase-12 protein. Further, pre-treating the cells with 4-phenylbutyrate or knocking down GRP78 using lentivirus-encoded shRNA significantly diminished ZEN-induced apoptosis and inhibited the expression of CHOP and caspase-12. In summary, these results suggest that the activation of an ER stress pathway plays a key role in ZEN-induced apoptosis in the mouse Leydig cells.
Collapse
Affiliation(s)
- Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fenglei Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jin Sun
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinhua Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiangguo Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiao Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhe Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - YaPing Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Int J Mol Sci 2015; 16:3677-99. [PMID: 25667979 PMCID: PMC4346919 DOI: 10.3390/ijms16023677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
ALG-2, a 22-kDa penta-EF-hand protein, is involved in cell death, signal transduction, membrane trafficking, etc., by interacting with various proteins in mammalian cells in a Ca2+-dependent manner. Most known ALG-2-interacting proteins contain proline-rich regions in which either PPYPXnYP (type 1 motif) or PXPGF (type 2 motif) is commonly found. Previous X-ray crystal structural analysis of the complex between ALG-2 and an ALIX peptide revealed that the peptide binds to the two hydrophobic pockets. In the present study, we resolved the crystal structure of the complex between ALG-2 and a peptide of Sec31A (outer shell component of coat complex II, COPII; containing the type 2 motif) and found that the peptide binds to the third hydrophobic pocket (Pocket 3). While amino acid substitution of Phe85, a Pocket 3 residue, with Ala abrogated the interaction with Sec31A, it did not affect the interaction with ALIX. On the other hand, amino acid substitution of Tyr180, a Pocket 1 residue, with Ala caused loss of binding to ALIX, but maintained binding to Sec31A. We conclude that ALG-2 recognizes two types of motifs at different hydrophobic surfaces. Furthermore, based on the results of serial mutational analysis of the ALG-2-binding sites in Sec31A, the type 2 motif was newly defined.
Collapse
|
36
|
Zhou B, Zhang P, Tang T, Zhang K, Wang Y, Song Y, Liao H, Zhang L. Prognostic value of PDCD6 polymorphisms and the susceptibility to bladder cancer. Tumour Biol 2014; 35:7547-54. [PMID: 24792888 DOI: 10.1007/s13277-014-2010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/23/2014] [Indexed: 11/26/2022] Open
Abstract
Programmed cell death 6 (PDCD6) has recently been found dysregulated in tumors of various origin. The aim of this study is to explore the association between PDCD6 genetic polymorphisms and susceptibility to bladder cancer and survival of patients with bladder cancer. Two tag SNPs of PDCD6, rs3756712 and rs4957014, were genotyped in 332 patients with bladder cancer and 509 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and correlated with patients' survival. The frequencies of G allele and GG genotype of rs3756712 in patients were significantly lower than that of controls (P = 0.001, odds ratio [OR] = 0.68 for G allele; P = 0.024, OR = 0.53 for GG genotype in the recessive genetic model, respectively). The GT genotype of rs4957014 was associated with decreased susceptibility to bladder cancer in the overdominant genetic model (P = 0.023, OR = 0.72). Kaplan-Meier curves revealed a significant higher risk for death in superficial bladder cancer patients harboring GG homozygous of rs3756712 (P < 0.001), and an increased risk for recurrence in invasive bladder cancer patients carrying GT heterozygous of rs4957014 (P = 0.04). Multiple Cox regression analysis identified rs3756712 GG genotype as an independent prognostic factor for death in superficial bladder cancer patients (hazard ratio [HR] = 5.11, P = 0.01), and rs4957014 GT genotype as an independent prognostic factor for recurrence in invasive bladder cancer patients (HR = 1.93, P = 0.03). PDCD6 may represent a biomarker candidate gene that could help to identify a group of patients at high risk for recurrence and death.
Collapse
Affiliation(s)
- Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Missiaen L, Luyten T, Bultynck G, Parys JB, De Smedt H. Measurement of intracellular Ca2+ release in intact and permeabilized cells using 45Ca2+. Cold Spring Harb Protoc 2014; 2014:263-270. [PMID: 24591684 DOI: 10.1101/pdb.top066126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ca(2+) is an important ion that controls almost every function in a cell. Activator Ca(2+) can be released from intracellular Ca(2+) stores, and there are various ways to study this release. Here, we introduce a technique that uses radioactive (45)Ca(2+) to quantitatively measure the unidirectional release of Ca(2+) from the nonmitochondrial Ca(2+) stores in monolayers of cultured cells. This technique can be used in cells with an intact plasma membrane as well as in cells in which the plasma membrane has been permeabilized.
Collapse
Affiliation(s)
- Ludwig Missiaen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven Campus Gasthuisberg O&N I, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
38
|
Li Y, Qu X, Wang X, Liu M, Wang C, Lv Z, Li W, Tao T, Song D, Liu X. Microwave radiation injuries microvasculature through inducing endoplasmic reticulum stress. Microcirculation 2014; 21:490-498. [PMID: 24635541 DOI: 10.1111/micc.12122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/27/2014] [Accepted: 02/02/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The study aimed to investigate the effect of microwave radiation on microvasculature as well as the underlying mechanisms. METHODS Sprague Dawley rats were exposed to microwave radiation. Microvascular diameters, flow velocity, blood perfusion and permeability were measured. Cultured endothelial cells from microvessels were subjected to microwave radiation. Cytoskeleton, apoptosis, protein synthesis and the markers of endoplasmic reticulum stress including 78-kDa glucose-regulated protein and calreticulin in endothelial cells were examined. RESULTS Microwave radiation decreased microvascular diameters and blood perfusion, increased the permeability of microvessles. And microwave radiation induced the formation of stress fibers, apoptosis, and LDH leakage from microvascular endothelial cells. Also, when microvascular endothelial cells were exposed to microwaves, protein synthesis was significantly elevated. We found that upon microwave radiation, the expression of 78-kDa glucose-regulated protein and calreticulin were greatly upregulated in microvascular endothelial cells. We also investigated possible signaling pathways for endoplasmic reticulum stress-initiated apoptosis. C/EBP homologous protein (CHOP) pathway was activated in microvascular endothelial cells exposed to microwaves. CONCLUSIONS Microwave radiation induces microvascular injury by triggering the apoptotic pathway of endoplasmic reticulum stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuzhen Li
- Department of Pathophysiology, Chinese PLA General Hospital, 100853, Beijing; State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, 100853, Beijing
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang J, Guo C, Liu S, Qi H, Yin Y, Liang R, Sun MZ, Greenaway FT. Annexin A11 in disease. Clin Chim Acta 2014; 431:164-8. [PMID: 24508622 DOI: 10.1016/j.cca.2014.01.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/28/2022]
Abstract
Ubiquitously expressed in many cell types, annexin A11 (Anxa11) is a member of the multigene family of Ca(2+)-regulated phospholipid-dependent and membrane-binding annexin proteins. Studies have shown that Anxa11 plays an important role in cell division, Ca(2+) signaling, vesicle trafficking and apoptosis. The deregulation and mutation of Anxa11 are involved in systemic autoimmune diseases, sarcoidosis and the development, chemoresistance and recurrence of cancers. Malfunction of Anxa11 may lead to or enhance the metastasis, invasion and drug resistance of cancers through the platelet-derived growth factor receptor (PDGFR) pathway and/or the mitogen-activated protein kinase (MAPK)/p53 pathway. In a variety of diseases, Anxa11 is most commonly reported to function through interactions with apoptosis-linked gene-2 protein (ALG-2) and/or calcyclin (S100A6). Although it has been little studied, Anxa11 is a promising biomarker for the diagnosis, treatment and prognosis of certain diseases. In this review, the associations of Anxa11 with Ca(2+)-regulated exocytosis, cytokinesis, sex differentiation, autoimmune diseases, thrombolysis and cancers are summarized and interpreted.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Houbao Qi
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Yuling Yin
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Rui Liang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| |
Collapse
|
40
|
Wu XD, Zhang ZY, Sun S, Li YZ, Wang XR, Zhu XQ, Li WH, Liu XH. Hypoxic preconditioning protects microvascular endothelial cells against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress. Apoptosis 2013; 18:85-98. [PMID: 23108759 DOI: 10.1007/s10495-012-0766-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.
Collapse
Affiliation(s)
- Xu-Dong Wu
- Department of Out-patient, Chinese PLA General Hospital, Beijing, 100853, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sasaki-Osugi K, Imoto C, Takahara T, Shibata H, Maki M. Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA. J Biol Chem 2013; 288:33361-75. [PMID: 24078636 DOI: 10.1074/jbc.m113.497479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The intracellular Ca(2+) signaling pathway is important for the control of broad cellular processes from fertilization to cell death. ALG-2 is a Ca(2+)-binding protein that contains five serially repeated EF-hand motifs and interacts with various proteins in a Ca(2+)-dependent manner. Although ALG-2 is present both in the cytoplasm and in the nucleus, little is known about its nuclear function. Ca(2+) homeostasis endoplasmic reticulum protein (CHERP) was first identified as an endoplasmic reticulum protein that regulates intracellular Ca(2+) mobilization in human cells, but recent proteomics data suggest an association between CHERP and spliceosomes. Here, we report that CHERP, containing a Pro-rich region and a phosphorylated Ser/Arg-rich RS-like domain, is a novel Ca(2+)-dependent ALG-2-interactive target in the nucleus. Immunofluorescence microscopic analysis revealed localization of CHERP to the nucleoplasm with prominent accumulation at nuclear speckles, which are the sites of storage and modification for pre-mRNA splicing factors. Live cell time-lapse imaging showed that nuclear ALG-2 was recruited to the CHERP-localizing speckles upon Ca(2+) mobilization. Results of co-immunoprecipitation assays revealed binding of CHERP to a phosphorylated form of RNA polymerase II. Knockdown of CHERP or ALG-2 in HT1080 cells resulted in generation of alternatively spliced isoforms of the inositol 1,4,5-trisphosphate receptor 1 (IP3R1) pre-mRNA that included exons 41 and 42 in addition to the major isoform lacking exons 40-42. Furthermore, binding between CHERP and IP3R1 RNA was detected by an RNA immunoprecipitation assay using a polyclonal antibody against CHERP. These results indicate that CHERP and ALG-2 participate in regulation of alternative splicing of IP3R1 pre-mRNA and provide new insights into post-transcriptional regulation of splicing variants in Ca(2+) signaling pathways.
Collapse
Affiliation(s)
- Kanae Sasaki-Osugi
- From the Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
42
|
Petersen HJ, Smith AM. The role of the innate immune system in granulomatous disorders. Front Immunol 2013; 4:120. [PMID: 23745122 PMCID: PMC3662972 DOI: 10.3389/fimmu.2013.00120] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/05/2013] [Indexed: 12/21/2022] Open
Abstract
The dynamic structure of the granuloma serves to protect the body from microbiological challenge. This organized aggregate of immune cells seeks to contain this challenge and protect against dissemination, giving host immune cells a chance to eradicate the threat. A number of systemic diseases are characterized by this specialized inflammatory process and granulomas have been shown to develop at multiple body sites and in various tissues. Central to this process is the macrophage and the arms of the innate immune response. This review seeks to explore how the innate immune response drives this inflammatory process in a contrast of diseases, particularly those with a component of immunodeficiency. By understanding the genes and inflammatory mechanisms behind this specialized immune response, will guide research in the development of novel therapeutics to combat granulomatous diseases.
Collapse
|
43
|
Mammalian ESCRT-III-related protein IST1 has a distinctive met-pro repeat sequence that is essential for interaction with ALG-2 in the presence of Ca2+. Biosci Biotechnol Biochem 2013; 77:1049-54. [PMID: 23649269 DOI: 10.1271/bbb.130022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ALG-2 is an EF-hand-type Ca(2+)-binding protein that interacts with a variety of intracellular proteins that possess Pro-rich regions (PRRs) in mammalian cells. IST1 is an endosomal sorting complex required for transport (ESCRT)-III-related charged multivesicular body protein (CHMP)-like protein, but unlike other ESCRT-III proteins, mammalian IST1 has a PRR and a distinctive sequence of Met-Pro repeats. We found that ALG-2 binds to IST1 by Far-Western analysis using biotinylated ALG-2 as probe, and that the Met-Pro repeat sequence is essential for interaction. The results of pulldown assays using Strep-tagged ALG-2 and lysates of cells expressing GFP-fused IST1 proteins indicated that the binding of ALG-2 to IST1 is Ca(2+)-dependent, and that it is enhanced by co-expression with CHMP1 proteins. Moreover, pulldown assays using various mutants of GST-ALG-2 revealed that the ability of IST1 to bind to mutants is different from those of known ALG-2-interacting proteins, suggesting that IST1 binds to ALG-2 by a different mode of recognition.
Collapse
|
44
|
Zhang K, Zhou B, Shi S, Song Y, Zhang L. Variations in the PDCD6 gene are associated with increased uterine leiomyoma risk in the Chinese. Genet Test Mol Biomarkers 2013; 17:524-8. [PMID: 23551056 DOI: 10.1089/gtmb.2012.0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death 6 (PDCD6) participates in T cell receptor, Fas, and glucocorticoid-induced programmed cell death. To test the relationship between PDCD6 polymorphisms and uterine leiomyomas (UL) risk, we investigated the association of two SNPs (rs4957014 and rs3756712) in PDCD6 with UL risk in a case-control study of 295 unrelated premenopausal UL patients and 436 healthy postmenopausal control subjects in a population of China. Genotypes of the two SNPs were determined with the use of PCR-restriction fragment length polymorphism assay. Significantly increased UL risks were found to be associated with the T allele of rs4957014 and the T allele of rs3756712 (p=0.016, odds ratio [OR]=1.325, 95% confidence intervals [CI]=1.053-1.668 for rs4957014; p<0.0001, OR=1.898, 95% CI=1.457-2.474 for rs3756712, respectively). Increased UL risks were associated with them in different genetic models. The present study provided evidence that rs4957014 and rs3756712 are associated with UL risk, the results indicated that genetic polymorphisms in PDCD6 may contribute to the development of UL.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Földi I, Tóth AM, Szabó Z, Mózes E, Berkecz R, Datki ZL, Penke B, Janáky T. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells. Neurochem Int 2012; 62:58-69. [PMID: 23153458 DOI: 10.1016/j.neuint.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022]
Abstract
Disturbances in intraluminal endoplasmic reticulum (ER) Ca(2+) concentration leads to the accumulation of unfolded proteins and perturbation of intracellular Ca(2+) homeostasis, which has a huge impact on mitochondrial functioning under normal and stress conditions and can trigger cell death. Thapsigargin (TG) is widely used to model cellular ER stress as it is a selective and powerful inhibitor of sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases. Here we provide a representative proteome-wide picture of ER stress induced by TG in N2a neuroblastoma cells. Our proteomics study revealed numerous significant protein expression changes in TG-treated N2a cell lysates analysed by two-dimensional electrophoresis followed by mass spectrometric protein identification. The proteomic signature supports the evidence of increased bioenergetic activity of mitochondria as several mitochondrial enzymes with roles in ATP-production, tricarboxylic acid cycle and other mitochondrial metabolic processes were upregulated. In addition, the upregulation of the main ER resident proteins confirmed the onset of ER stress during TG treatment. It has become widely accepted that metabolic activity of mitochondria is induced in the early phases in ER stress, which can trigger mitochondrial collapse and subsequent cell death. Further investigations of this cellular stress response in different neuronal model systems like N2a cells could help to elucidate several neurodegenerative disorders in which ER stress is implicated.
Collapse
Affiliation(s)
- István Földi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shi S, Zhou B, Zhang K, Zhang L. Association between two single nucleotide polymorphisms of PDCD6 gene and increased endometriosis risk. Hum Immunol 2012; 74:215-8. [PMID: 23137875 DOI: 10.1016/j.humimm.2012.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/20/2012] [Accepted: 10/26/2012] [Indexed: 11/18/2022]
Abstract
Programmed cell death 6 (PDCD6), a calcium binding protein of the penta EF-hand protein family, and its receptors are involved in regulation of apoptosis pathways. To evaluate the relationship between genetic polymorphisms of PDCD6 gene and endometriosis (ED) risk, we investigated the association of two single nucleotide polymorphisms (SNPs) of PDCD6 gene (rs4957014 and rs3756712) in 220 endometriosis patients and 386 unrelated healthy controls. The genotypes of these two SNPs were determined by using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) and DNA sequencing methods. Significantly increased endometriosis risk was observed to be associated with G allele of rs4957014 locus (OR=1.31, 95% CI=1.03-1.69). We have also observed increased ED risk was statistically associated with rs4957014 polymorphism in a dominant model (OR=1.52, 95% CI=1.09-2.13). Although no association has been found between ED risk and the allele frequencies of rs3756712 locus (a marginal P=0.066, OR=1.27, 95% CI=0.98-1.65), but in a dominant model, increased endometriosis risk was significantly associated with rs3756712 polymorphism (OR=1.54, 95% CI=1.11-2.17). In conclusion, the current study indicates that PDCD6 gene may be a new susceptibility gene to endometriosis.
Collapse
Affiliation(s)
- Shaoqing Shi
- Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | | | | | | |
Collapse
|
47
|
Zhang J, Spilman P, Chen S, Gorostiza O, Matalis A, Niazi K, Bredesen DE, Rao RV. The small co-chaperone p23 overexpressing transgenic mouse. J Neurosci Methods 2012; 212:190-4. [PMID: 23022695 DOI: 10.1016/j.jneumeth.2012.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Studies from multiple laboratories have identified the roles of several ER stress-induced cell death modulators and effectors. Earlier, we described the role of p23 a small co-chaperone protein in preventing ER stress-induced cell death. p23 is cleaved by caspases at D142 to yield p19 (a 19 kDa product) during ER stress-induced cell death. Mutation of the caspase cleavage site not only blocks formation of the 19 kDa product but also attenuates the cell death process triggered by various ER stressors. Thus, uncleavable p23 (p23D142N) emerges as a reasonable candidate to test for potential inhibition of neurodegenerative disease phenotype that features misfolded proteins and ER stress. In the present work we report the generation of transgenic mouse lines that overexpress wild-type p23 or uncleavable p23 under the control of a ROSA promoter. These mice should prove useful for studying the role of p23 and/or uncleavable p23 in cellular stress-induced cell death.
Collapse
Affiliation(s)
- Junli Zhang
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Valdés A, García-Cañas V, Rocamora-Reverte L, Gómez-Martínez A, Ferragut JA, Cifuentes A. Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis. GENES AND NUTRITION 2012; 8:43-60. [PMID: 22923011 DOI: 10.1007/s12263-012-0311-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/02/2012] [Indexed: 11/24/2022]
Abstract
In this work, the effect of rosemary extracts rich on polyphenols obtained using pressurized fluids was investigated on the gene expression of human SW480 and HT29 colon cancer cells. The application of transcriptomic profiling and functional enrichment analysis was done via two computational approaches, Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. These two approaches were used for functional enrichment analysis as a previous step for a reliable interpretation of the data obtained from microarray analysis. Reverse transcription quantitative-PCR was used to confirm relative changes in mRNA levels of selected genes from microarrays. The selection of genes was based on their expression change, adjusted p value, and known biological function. According to genome-wide transcriptomics analysis, rosemary polyphenols altered the expression of ~4 % of the genes covered by the Affymetrix Human Gene 1.0ST chip in both colon cancer cells. However, only ~18 % of the differentially expressed genes were common to both cell lines, indicating markedly different expression profiles in response to the treatment. Differences in induction of G2/M arrest observed by rosemary polyphenols in the two colon adenocarcinoma cell lines suggest that the extract may be differentially effective against tumors with specific mutational pattern. From our results, it is also concluded that rosemary polyphenols induced a low degree of apoptosis indicating that other multiple signaling pathways may contribute to colon cancer cell death.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, CIAL (CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Suzuki K, Dashzeveg N, Lu ZG, Taira N, Miki Y, Yoshida K. Programmed cell death 6, a novel p53-responsive gene, targets to the nucleus in the apoptotic response to DNA damage. Cancer Sci 2012; 103:1788-94. [PMID: 22712728 DOI: 10.1111/j.1349-7006.2012.02362.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
The cellular response to genotoxic stress is multifaceted in nature. Following DNA damage, the tumor suppressor gene p53 activates and plays critical roles in cell cycle arrest, activation of DNA repair and in the event of irreparable damage, induction of apoptosis. The breakdown of apoptosis causes the accumulation of mutant cells. The elucidation of the mechanism for the p53-dependent apoptosis will be crucial in applying the strategy for cancer patients. However, the mechanism of p53-dependent apoptosis remains largely unclear. Here, we carried out ChIP followed by massively parallel DNA sequencing assay (ChIP-seq) to uncover mechanisms of apoptosis. Using ChIP-seq, we identified PDCD6 as a novel p53-responsive gene. We determined putative p53-binding sites that are important for p53 regulation in response to DNA damage in the promoter region of PDCD6. Knockdown of PDCD6 suppressed p53-dependent apoptosis. We also observed that cytochrome c release and the cleavage of PARP by caspase-3 were suppressed by depletion of PDCD6. We further observed that PDCD6 localizes in the nucleus in response to DNA damage. We identified the nuclear localization signal of PDCD6 and, importantly, the nuclear accumulation of PDCD6 significantly induced apoptosis after genotoxic stress. Therefore, we conclude that a novel p53-responsive gene PDCD6 is accumulated in the nucleus and induces apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Kazuho Suzuki
- Department of Molecular Genetics, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 2012; 32:4901-12. [PMID: 22492046 DOI: 10.1523/jneurosci.5431-11.2012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.
Collapse
|