1
|
Breus O, Dickmeis T. Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol Chem 2020; 402:363-378. [PMID: 33021959 DOI: 10.1515/hsz-2020-0269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Important roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.
Collapse
Affiliation(s)
- Oksana Breus
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
3
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
4
|
An Alternative Splice Variant of Zebrafish Cx52.6 is Expressed in Retinal Horizontal Cells. Neuroscience 2018; 388:191-202. [PMID: 30048782 DOI: 10.1016/j.neuroscience.2018.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
Abstract
Retinal horizontal cells (HCs) are inhibitory neurons, which modulate the transmission of light-elicited signals from photoreceptors to bipolar cells in the outer retina. HCs of the same physiological type are extensively coupled via gap junctions. In the zebrafish retina, the population of HCs comprises up to four morphologically distinct subtypes. Four different connexins (Cx52.6, Cx52.7, Cx52.9 and Cx55.5) were detected in these cells with overlapping expression patterns. In this study, we show that Cx52.6 is alternatively spliced in the retina, resulting in an additional isoform, designated as Cx53.4, which differs from the originally described Cx52.6 only by the final C-terminal peptide (12 vs. 4 aa). Further protein sequence alignments revealed that Cx53.4 represents the counterpart of alternatively spliced mouse Cx57 and human Cx62. RT-PCR analyses of mRNA expression in different adult zebrafish tissues showed that Cx53.4 is expressed exclusively in the retina. The localization of Cx53.4 protein within the retina was analyzed using a specific antibody. Immunofluorescence analyses demonstrated that the expression of Cx53.4 is restricted to HCs of all four subtypes. Further, immunoelectron microscopy confirmed the presence of Cx53.4 in gap junctions between HC dendrites and between their axon terminals.
Collapse
|
5
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Klaassen LJ, de Graaff W, van Asselt JB, Klooster J, Kamermans M. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J Neurophysiol 2016; 116:2799-2814. [PMID: 27707811 DOI: 10.1152/jn.00449.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022] Open
Abstract
The functional and morphological connectivity between various horizontal cell (HC) types (H1, H2, H3, and H4) and photoreceptors was studied in zebrafish retina. Since HCs are strongly coupled by gap junctions and feedback from HCs to photoreceptors depends strongly on connexin (Cx) hemichannels, we characterized the various HC Cxs (Cx52.6, Cx52.7, Cx52.9, and Cx55.5) in Xenopus oocytes. All Cxs formed hemichannels that were conducting at physiological membrane potentials. The Cx hemichannels differed in kinetic properties and voltage dependence, allowing for specific tuning of the coupling of HCs and the feedback signal from HCs to cones. The morphological connectivity between HC layers and cones was determined next. We used zebrafish expressing green fluorescent protein under the control of Cx promoters. We found that all HCs showed Cx55.5 promoter activity. Cx52.7 promoter activity was exclusively present in H4 cells, while Cx52.9 promoter activity occurred only in H1 cells. Cx52.6 promoter activity was present in H4 cells and in the ventral quadrant of the retina also in H1 cells. Finally, we determined the spectral sensitivities of the HC layers. Three response types were found. Monophasic responses were generated by HCs that contacted all cones (H1 cells), biphasic responses were generated by HCs that contacted M, S, and UV cones (H2 cells), and triphasic responses were generated by HCs that contacted either S and UV cones (H3 cells) or rods and UV cones (H4 cells). Electron microscopy confirms that H4 cells innervate cones. This indicates that rod-driven HCs process spectral information during photopic and luminance information during scotopic conditions.
Collapse
Affiliation(s)
- Lauw J Klaassen
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Wim de Graaff
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Jorrit B van Asselt
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Jan Klooster
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and .,Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yoshikawa S, Vila A, Segelken J, Lin YP, Mitchell CK, Nguyen D, O'Brien J. Zebrafish connexin 79.8 (Gja8a): A lens connexin used as an electrical synapse in some neurons. Dev Neurobiol 2016; 77:548-561. [PMID: 27402207 DOI: 10.1002/dneu.22418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 11/07/2022]
Abstract
In the mammalian central nervous system, a remarkably small number of connexins is used in electrical synapses, with the majority formed from Cx36. A larger number has been detected in teleosts, with some seeming to serve restricted roles. Here, we report the discovery of a new connexin expressed in the zebrafish lens and a limited set of neurons. Zebrafish cx79.8 (gja8a), previously annotated incorrectly as cx50.5 based on a partial cDNA sequence, is a homologue of mammalian Cx50 (Gja8). We examined its expression through transgenic promoter-reporter constructs, in situ hybridization, and immunolabeling, and examined regulation of coupling in transfected HeLa cells. cx79.8 was expressed most strongly in the lens, but expression was also found in several groups of neurons in the cerebellum and related areas at the midbrain-hindbrain boundary, in cone photoreceptors, and in neurons in the retinal inner nuclear and ganglion cell layers. Labeling in the retina with antibodies against two C-terminal epitopes revealed numerous small punctate spots in the inner plexiform layer and along the somata of cones. Abundant gap junctions were labeled in the outer 1/3 of the lens, but were absent from the center, suggesting that the epitopes or the entire protein was absent from the center. Cx79.8 tracer coupling was strongly regulated by phosphorylation, and was extremely low in control conditions in HeLa cells due to protein phosphatase 2A activity. These properties allow coupling to be strongly restricted in situ, a frequently observed property for electrical synapses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 548-561, 2017.
Collapse
Affiliation(s)
- Shunichi Yoshikawa
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas
| | - Alejandro Vila
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jasmin Segelken
- Visual Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ya-Ping Lin
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas
| | - Cheryl K Mitchell
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas
| | - Duc Nguyen
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas
| | - John O'Brien
- Richard S. Ruiz M.D., Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
8
|
Abstract
Electrical synapses are an omnipresent feature of nervous systems, from the simple nerve nets of cnidarians to complex brains of mammals. Formed by gap junction channels between neurons, electrical synapses allow direct transmission of voltage signals between coupled cells. The relative simplicity of this arrangement belies the sophistication of these synapses. Coupling via electrical synapses can be regulated by a variety of mechanisms on times scales ranging from milliseconds to days, and active properties of the coupled neurons can impart emergent properties such as signal amplification, phase shifts and frequency-selective transmission. This article reviews the biophysical characteristics of electrical synapses and some of the core mechanisms that control their plasticity in the vertebrate central nervous system.
Collapse
Affiliation(s)
- Sebastian Curti
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
9
|
Sanchez HA, Bienkowski R, Slavi N, Srinivas M, Verselis VK. Altered inhibition of Cx26 hemichannels by pH and Zn2+ in the A40V mutation associated with keratitis-ichthyosis-deafness syndrome. J Biol Chem 2014; 289:21519-32. [PMID: 24939841 DOI: 10.1074/jbc.m114.578757] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Excessive opening of undocked Cx26 hemichannels in the plasma membrane is associated with disease pathogenesis in keratitis-ichthyosis-deafness (KID) syndrome. Thus far, excessive opening of KID mutant hemichannels has been attributed, almost solely, to aberrant inhibition by extracellular Ca(2+). This study presents two new possible contributing factors, pH and Zn(2+). Plasma pH levels and micromolar concentrations of Zn(2+) inhibit WT Cx26 hemichannels. However, A40V KID mutant hemichannels show substantially reduced inhibition by these factors. Using excised patches, acidification was shown to be effective from either side of the membrane, suggesting a protonation site accessible to H(+) flux through the pore. Sensitivity to pH was not dependent on extracellular aminosulfonate pH buffers. Single channel recordings showed that acidification did not affect unitary conductance or block the hemichannel but rather promoted gating to the closed state with transitions characteristic of the intrinsic loop gating mechanism. Examination of two nearby KID mutants in the E1 domain, G45E and D50N, showed no changes in modulation by pH or Zn(2+). N-bromo-succinimide, but not thiol-specific reagents, attenuated both pH and Zn(2+) responses. Individually mutating each of the five His residues in WT Cx26 did not reveal a key His residue that conferred sensitivity to pH or Zn(2+). From these data and the crystal structure of Cx26 that suggests that Ala-40 contributes to an intrasubunit hydrophobic core, the principal effect of the A40V mutation is probably a perturbation in structure that affects loop gating, thereby affecting multiple factors that act to close Cx26 hemichannels via this gating mechanism.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- From the Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rick Bienkowski
- the Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Nefeli Slavi
- the Department of Biological Sciences, SUNY College of Optometry, New York, New York 10036
| | - Miduturu Srinivas
- the Department of Biological Sciences, SUNY College of Optometry, New York, New York 10036
| | - Vytas K Verselis
- From the Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461,
| |
Collapse
|
10
|
Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 2013; 34:1-18. [PMID: 23313713 DOI: 10.1016/j.preteyeres.2012.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, School of Medicine, New York University, 550 First Avenue, MSB 149, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
11
|
Ul-Hussain M, Dermietzel R, Zoidl G. Connexins and Cap-independent translation: role of internal ribosome entry sites. Brain Res 2012; 1487:99-106. [PMID: 22771397 DOI: 10.1016/j.brainres.2012.05.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/18/2012] [Indexed: 02/05/2023]
Abstract
Cap-independent translation using an internal ribosome entry site instead of the 5'-Cap structure has been discovered in positive-sense RNA viruses and eukaryotic genomes including a subset of gap junction forming connexins genes. With a growing number of mutations found in human connexin genes and studies on genetically modified mouse models mechanisms highlighting the important role of gap junctional communication in multicellular organism it is obvious that mechanism need to be in place to preserve this critical property even under conditions when Cap-mediated translation is scrutinized. To ensure sustained gap junctional communication, rapid initiation of translation of preexisting connexin mRNAs is one possibility, and the presence of internal ribosome entry sites in gap junction genes comply with such a requirement. In this review, we will summarize past and recent findings to build a case for IRES mediated translation as an alternative regulatory pathway facilitating gap junctional communication. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Biotechnology, University of Kashmir, India; Neuroanatomy, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
12
|
Hirasawa H, Yamada M, Kaneko A. Acidification of the synaptic cleft of cone photoreceptor terminal controls the amount of transmitter release, thereby forming the receptive field surround in the vertebrate retina. J Physiol Sci 2012; 62:359-75. [PMID: 22773408 PMCID: PMC10717482 DOI: 10.1007/s12576-012-0220-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate retina, feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the formation of the center-surround receptive field of retinal cells, which induces contrast enhancement of visual images. The mechanism underlying surround inhibition is not fully understood. In this review, we discuss this issue, focusing on our recent hypothesis that acidification of the synaptic cleft of the cone photoreceptor terminal causes this inhibition by modulating the Ca channel of the terminals. We present evidence that the acidification is caused by proton excretion from HCs by a vacuolar type H(+) pump. Recent publications supporting or opposing our hypothesis are discussed.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Masahiro Yamada
- Laboratory for Neuroinformatics, Riken Brain Science Institute, Wako, Saitama, 351-0198 Japan
| | - Akimichi Kaneko
- Graduate School of Health Sciences, Kio University, 4-2-2 Umami-naka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832 Japan
| |
Collapse
|
13
|
Klaassen LJ, Fahrenfort I, Kamermans M. Connexin hemichannel mediated ephaptic inhibition in the retina. Brain Res 2012; 1487:25-38. [PMID: 22796289 DOI: 10.1016/j.brainres.2012.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Connexins are the building blocks of gap-junctions; sign conserving electrical synapses. Recently it has been shown that connexins can also function as hemichannels and can mediate a sign inverting inhibitory synaptic signal from horizontal cells to cones via an ephaptic mechanism. In this review we will discuss the critical requirements for such an ephaptic interaction and relate these to the available experimental evidence. The highly conserved morphological structure of the cone synapse together with a number of specific connexin proteins and proteoglycans present in the synaptic complex of the cones creates a synaptic environment that allows ephaptic interactions. The connexins involved are members of a special group of connexins, encoded by the GJA9 and GJA10 genes. Surprisingly, in contrast to many other vertebrates, mouse and other rodents seem to lack a GJA9 encoded connexin. The specific combination of substances that block feedback and the highly specific modification of feedback in a zebrafish lacking Cx55.5 hemichannels all point to an ephaptic feedback mechanism from horizontal cells to cones. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Lauw J Klaassen
- The Netherlands Institute for Neuroscience, Department of Retinal Signal Processing, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Sun Z, Risner ML, van Asselt JB, Zhang DQ, Kamermans M, McMahon DG. Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells. J Neurophysiol 2012; 107:2624-32. [PMID: 22357795 DOI: 10.1152/jn.01126.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Connexin channels mediate electrical synaptic transmission when assembled as cell-to-cell pores at gap junctions and can mediate transmembrane currents when expressed in plasma membranes as hemichannels. They are widely expressed in the vertebrate retina where in electrical synapses they are critical for transmission of visual signals. While the roles of connexins in electrical synapses are well-studied, the function and roles of connexin hemichannels in the nervous system are less well understood. Genetic deletion in zebrafish of connexin (Cx) 55.5 alters horizontal cell feedback to cones, spectral responses, and visual behavior. Here, we have characterized the properties of hemichannel currents in zebrafish retinal horizontal cells and examined the roles of two connexin isoforms, Cx55.5 and Cx52.6, that are coexpressed in these cells. We report that zebrafish horizontal cells express hemichannel currents that conduct inward current at physiological negative potentials and Ca(2+) levels. Manipulation of Cx55.5 and Cx52.6 gene expression in horizontal cells of adult zebrafish revealed that both Cx55.5 and Cx52.6 contribute to hemichannel currents; however, Cx55.5 expression is necessary for high-amplitude currents. Similarly, coexpression of Cx55.5 with Cx52.6 in oocytes increased hemichannel currents in a supra-additive manner. Taken together these results demonstrate that zebrafish horizontal cell hemichannel currents exhibit the functional characteristics necessary to contribute to synaptic feedback at the first visual synapse, that both Cx55.5 and Cx52.6 contribute to hemichannel currents, and that Cx55.5 may have an additional regulatory function enhancing the amplitude of hemichannel currents.
Collapse
Affiliation(s)
- Ziyi Sun
- Dept. of Biological Sciences, Vanderbilt Univ., Nashville, TN 37235-1634, USA
| | | | | | | | | | | |
Collapse
|
15
|
Prochnow N, Hoffmann S, Dermietzel R, Zoidl G. Replacement of a single cysteine in the fourth transmembrane region of zebrafish pannexin 1 alters hemichannel gating behavior. Exp Brain Res 2012; 199:255-64. [PMID: 19701745 DOI: 10.1007/s00221-009-1957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/18/2009] [Indexed: 01/09/2023]
Abstract
Pannexin1 (Panx1) is a novel candidate for an electrical synapse protein in the retina. At present Panx1 is considered to function as a hemichannel. Since information about the gating properties of Panx1 channels to date rely on blocker pharmacology, we have begun to establish a structural context of channel function starting with site directed mutagenesis of cysteine residues in transmembrane domains of Panx1. Dye uptake and whole cell voltage clamp recordings of transfected N2a cells demonstrate that zfPanx1 forms voltage activated hemichannels with a large unitary conductance in vitro. The function of this channel was significantly reduced following mutation of a single cysteine residue (C282W) in the fourth transmembrane region. This result suggests a role of this domain in gating of the Panx1 hemichannel.
Collapse
Affiliation(s)
- Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum 44780, Germany.
| | | | | | | |
Collapse
|
16
|
Regulation of Intercellular Calcium Signaling Through Calcium Interactions with Connexin-Based Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:777-94. [DOI: 10.1007/978-94-007-2888-2_34] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Klaassen LJ, Sun Z, Steijaert MN, Bolte P, Fahrenfort I, Sjoerdsma T, Klooster J, Claassen Y, Shields CR, Ten Eikelder HMM, Janssen-Bienhold U, Zoidl G, McMahon DG, Kamermans M. Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 2011; 9:e1001107. [PMID: 21811399 PMCID: PMC3139627 DOI: 10.1371/journal.pbio.1001107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/07/2011] [Indexed: 11/19/2022] Open
Abstract
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina. Contrast enhancement is a fundamental feature of our visual system, initiated at the first synaptic connections in the retina. These are the synapses between photoreceptors (rods and cones) and their targets, horizontal cells and bipolar cells. Horizontal cells receive input from many cones and subsequently send a feedback signal to photoreceptors. Bipolar cells, however, receive direct input from only a few photoreceptors, but also receive indirect inhibitory input from surrounding cones via the horizontal cell feedback pathway. This organization induces the classic center/surround organization of bipolar cells and is considered the first step in contrast enhancement. Exactly how horizontal cells send feedback signals to photoreceptors has remained a mystery, however. One hypothesis posits that connexin hemichannels are involved. In this study, we tested this hypothesis using mutant zebrafish that lack connexin hemichannels specifically in horizontal cells. Our electrophysiology experiments showed that feedback is indeed reduced in these mutants, confirming that connexin hemichannels play an important role in feedback from horizontal cells to cones. In addition, we find that these mutant fish have decreased contrast sensitivity at a behavioral level, illustrating that functionally relevant contrast enhancement begins at the first synapse of the visual system.
Collapse
Affiliation(s)
- Lauw J. Klaassen
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ziyi Sun
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Marvin N. Steijaert
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Petra Bolte
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Iris Fahrenfort
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Trijntje Sjoerdsma
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jan Klooster
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Yvonne Claassen
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Colleen R. Shields
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | | | | | - Georg Zoidl
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University, Bochum, Germany
- Department of Cytology, Ruhr University, Bochum, Germany
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maarten Kamermans
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Söhl G, Joussen A, Kociok N, Willecke K. Expression of connexin genes in the human retina. BMC Ophthalmol 2010; 10:27. [PMID: 20979653 PMCID: PMC2984586 DOI: 10.1186/1471-2415-10-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gap junction channels allow direct metabolically and electrical coupling between adjacent cells in various mammalian tissues. Each channel is composed of 12 protein subunits, termed connexins (Cx). In the mouse retina, Cx43 could be localized mostly between astroglial cells whereas expression of Cx36, Cx45 and Cx57 genes has been detected in different neuronal subtypes. In the human retina, however, the expression pattern of connexin genes is largely unknown. METHODS Northern blot hybridizations, RT-PCR as well as immunofluorescence analyses helped to explore at least partially the expression pattern of the following human connexin genes GJD2 (hCx36), GJC1 (hCx45), GJA9 (hCx59) and GJA10 (hCx62) in the human retina. RESULTS Here we report that Northern blot hybridization signals of the orthologuous hCx36 and hCx45 were found in human retinal RNA. Immunofluorescence signals for both connexins could be located in both inner and outer plexiform layer (IPL, OPL). Expression of a third connexin gene denoted as GJA10 (Cx62) was also detected after Northern blot hybridization in the human retina. Interestingly, its gene structure is similar to that of Gja10 (mCx57) being expressed in mouse horizontal cells. RT-PCR analysis suggested that an additional exon of about 25 kb further downstream, coding for 12 amino acid residues, is spliced to the nearly complete reading frame on exon2 of GJA10 (Cx62). Cx59 mRNA, however, with high sequence identity to zebrafish Cx55.5 was only weakly detectable by RT-PCR in cDNA of human retina. CONCLUSION In contrast to the neuron-expressed connexin genes Gjd2 coding for mCx36, Gjc1 coding for mCx45 and Gja10 coding for mCx57 in the mouse, a subset of 4 connexin genes, including the unique GJA9 (Cx59) and GJA10 (Cx62), could be detected at least as transcript isoforms in the human retina. First immunofluorescence analyses revealed a staining pattern of hCx36 and hCx45 expression both in the IPL and OPL, partially reminiscent to that in the mouse, although additional post-mortem material is needed to further explore their sublamina-specific distribution. Appropriate antibodies against Cx59 and Cx62 protein will clarify expression of these proteins in future studies.
Collapse
Affiliation(s)
- Goran Söhl
- Institut für Genetik der Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
- Martinus Gymnasium Linz, Martinusstraße 1, 53545 Linz am Rhein, Germany
| | - Antonia Joussen
- Zentrum für Augenheilkunde der Universität Köln, Abteilung für Netzhaut und Glaskörperchirurgie, Kerpener Str. 62, 50924 Köln, Germany
- Klinik für Augenheilkunde der Charité - Universitätsmedizin Berlin Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Norbert Kociok
- Zentrum für Augenheilkunde der Universität Köln, Abteilung für Netzhaut und Glaskörperchirurgie, Kerpener Str. 62, 50924 Köln, Germany
- Augenklinik des Universitätsklinikums Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Klaus Willecke
- Institut für Genetik der Universität Bonn, Römerstr. 164, 53117 Bonn, Germany
- LIMES Institut, Universität Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| |
Collapse
|
19
|
Expression of connexin 35/36 in retinal horizontal and bipolar cells of carp. Neuroscience 2009; 164:1161-9. [DOI: 10.1016/j.neuroscience.2009.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/23/2022]
|
20
|
D'hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B. Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 2009; 31:953-74. [PMID: 19644918 DOI: 10.1002/bies.200800236] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intercellular communication (IC) is mediated by gap junctions (GJs) and hemichannels, which consist of proteins. This has been particularly well documented for the connexin (Cx) family. Initially, Cxs were thought to be the only proteins capable of GJ formation in vertebrates. About 10 years ago, however, a new GJ-forming protein family related to invertebrate innexins (Inxs) was discovered in vertebrates, and named the pannexin (Panx) family. Panxs, which are structurally similar to Cxs, but evolutionarily distinct, have been shown to be co-expressed with Cxs in vertebrates. Both protein families show distinct properties and have their own particular function. Identification of the mechanisms that control Panx channel gating is a major challenge for future work. In this review, we focus on the specific properties and role of Panxs in normal and pathological conditions.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N, Leuven, Belgium
| | | | | | | | | |
Collapse
|
21
|
Zoidl G, Kremer M, Zoidl C, Bunse S, Dermietzel R. Molecular Diversity of Connexin and Pannexin Genes in the Retina of the ZebrafishDanio rerio. ACTA ACUST UNITED AC 2009; 15:169-83. [DOI: 10.1080/15419060802014081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Palacios-Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J Physiol 2009; 587:3251-69. [PMID: 19433576 DOI: 10.1113/jphysiol.2009.171496] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse connexin57 (Cx57) is expressed most abundantly in horizontal cells of the retina, and forms gap junction (GJ) channels, which constitute a structural basis for electrical and metabolic intercellular communication, and unapposed hemichannels (UHCs) that are involved in an exchange of ions and metabolites between the cytoplasm and extracellular milieu. By combining fluorescence imaging and dual whole-cell voltage clamp methods, we showed that HeLa cells expressing Cx57 and C-terminally fused with enhanced green fluorescent protein (Cx57-EGFP) form junctional plaques (JPs) and that only cell pairs exhibiting at least one JP demonstrate cell-to-cell electrical coupling and transfer of negatively and positively charged dyes with molecular mass up to approximately 400 Da. The permeability of the single Cx57 GJ channel to Alexa fluor-350 is approximately 90-fold smaller than the permeability of Cx43, while its single channel conductance (57 pS) is only 2-fold smaller than Cx43 (110 pS). Gating of Cx57-EGFP/Cx45 heterotypic GJ channels reveal that Cx57 exhibit a negative gating polarity, i.e. channels tend to close at negativity on the cytoplasmic side of Cx57. Alkalization of pH(i) from 7.2 to 7.8 increased gap junctional conductance (g(j)) of approximately 100-fold with pK(a) = 7.41. We show that this g(j) increase was caused by an increase of both the open channel probability and the number of functional channels. Function of Cx57 UHCs was evaluated based on the uptake of fluorescent dyes. We found that under control conditions, Cx57 UHCs are closed and open at [Ca(2+)](o) = approximately 0.3 mm or below, demonstrating that a moderate reduction of [Ca(2+)](o) can facilitate the opening of Cx57 UHCs. This was potentiated with intracellular alkalization. In summary, our data show that the open channel probability of Cx57 GJs can be modulated by pH(i) with very high efficiency in the physiologically relevant range and may explain pH-dependent regulation of cell-cell coupling in horizontal cell in the retina.
Collapse
Affiliation(s)
- Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
23
|
Ul-Hussain M, Zoidl G, Klooster J, Kamermans M, Dermietzel R. IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro. BMC Mol Biol 2008; 9:52. [PMID: 18505575 PMCID: PMC2435236 DOI: 10.1186/1471-2199-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 05/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes of the interneuronal coupling mediated by electrical synapse proteins in response to light adaptation and receptive field shaping are a paramount feature in the photoreceptor/horizontal cell/bipolar cell (PRC/HC/BPC) complex of the outer retina. The regulation of these processes is not fully understood at the molecular level but they may require information transfer to the nucleus by locally generated messengers. Electrical synapse proteins may comprise a feasible molecular determinant in such an information-laden signalling pathway. RESULTS Connexin55.5 (Cx55.5) is a connexin with horizontal cell-restricted expression in zebrafish accumulating at dendritic sites within the PRC/HC/BPC complex in form of hemichannels where light-dependent plasticity occurs. Here we provide evidence for the generation of a carboxy-terminal domain of Cx55.5. The protein product is translated from the Cx55.5 mRNA by internal translation initiation from an in-frame ATG codon involving a putative internal ribosome entry site (IRES) element localized in the coding region of Cx55.5. This protein product resembling an 11 kDa domain of Cx55.5 is partially located in the nucleus in vivo and in vitro. CONCLUSION Our results demonstrate the generation of a second protein from the coding region of Cx55.5 by an IRES mediated process. The nuclear occurrence of a fraction of this protein provides first evidence that this electrical synapse protein may participate in a putative cytoplasmic to nuclear signal transfer. This suggests that Cx55.5 could be involved in gene regulation making structural plasticity at the PRC/HC/BPC complex feasible.
Collapse
Affiliation(s)
- Mahboob Ul-Hussain
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, University Street 150, D-44801 Bochum, Germany.
| | | | | | | | | |
Collapse
|
24
|
Ciolofan C, Lynn BD, Wellershaus K, Willecke K, Nagy JI. Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience 2007; 148:473-88. [PMID: 17681699 DOI: 10.1016/j.neuroscience.2007.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/29/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Horizontal cells form gap junctions with each other in mammalian retina, and lacZ reporter analyses have recently indicated that these cells express the Cx57 gene, which codes for the corresponding gap junctional protein. Using anti-connexin57 antibodies, we detected connexin57 protein in immunoblots of mouse retina, and found punctate immunolabeling of this connexin co-distributed with calbindin-positive horizontal cells in the retinal outer plexiform layer. Double immunofluorescence labeling was conducted to determine the spatial relationships of connexin36, connexin57, the gap junction-associated protein zonula occludens-1 and the photoreceptor ribbon synapse-associated protein bassoon in the outer plexiform layer. Connexin36 was substantially co-localized with zonula occludens-1 in the outer plexiform layer, and both of these proteins were frequently located in close spatial proximity to bassoon-positive ribbon synapses. Connexin57 was often found adjacent to, but not overlapping with, connexin36-positive and zonula occludens-1-positive puncta, and was also located adjacent to bassoon-positive ribbon synapses at rod spherules, and intermingled with such synapses at cone pedicles. These results suggest zonula occludens-1 interaction with connexin36 but not with Cx57 in the outer plexiform layer, and an absence of connexin57/connexin36 heterotypic gap junctional coupling in mouse retina. Further, an arrangement of synaptic contacts within rod spherules is suggested whereby gap junctions between horizontal cell terminals containing connexin57 occur in very close proximity to ribbon synapses formed by rod photoreceptors, as well as in close proximity to Cx36-containing gap junctions between rods and cones.
Collapse
Affiliation(s)
- C Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | | | | |
Collapse
|
25
|
Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MVL, Sáez JC. Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 2007; 218:49-63. [PMID: 17705051 DOI: 10.1007/s00232-007-9043-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Accepted: 06/15/2007] [Indexed: 01/04/2023]
Abstract
In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca(2+) concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
26
|
González D, Gómez-Hernández JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: An integrative appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:66-106. [PMID: 17470374 DOI: 10.1016/j.pbiomolbio.2007.03.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The importance of electrical and molecular signaling through connexin (Cx) channels is now widely recognized. The transfer of ions and other small molecules between adjacent cells is regulated by multiple stimuli, including voltage. Indeed, Cx channels typically exhibit complex voltage sensitivity. Most channels are sensitive to the voltage difference between the cell interiors (or transjunctional voltage, V(j)), while other channels are also sensitive to absolute inside-outside voltage (i.e., the membrane potential, V(m)). The first part of this review is focused on the description of the distinct forms of voltage sensitivity and the gating mechanisms that regulate hemichannel activity, both individually and as components of homotypic and heterotypic gap junctions. We then provide an up to date and precise picture of the molecular and structural aspects of how V(j) and V(m) are sensed, and how they, therefore, control channel opening and closing. Mutagenic strategies coupled with structural, biochemical and electrophysical studies are providing significant insights into how distinct forms of voltage dependence are brought about. The emerging picture indicates that Cx channels can undergo transitions between multiple conductance states driven by distinct voltage-gating mechanisms. Each hemichannel may contain a set of two V(j) gates, one fast and one slow, which mediate the transitions between the main open state to the residual state and to the fully closed state, respectively. Eventually, a V(m) gate regulates channel transitions between the open and closed states. Clusters of charged residues within separate domains of the Cx molecule have been identified as integral parts of the V(j) and V(m) sensors. The charges at the first positions of the amino terminal cytoplasmic domain determine the magnitude and polarity of the sensitivity to fast V(j)-gating, as well as contributing to the V(j)-rectifying properties of ion permeation. Additionally, important advances have been made in identifying the conformational rearrangements responsible for fast V(j)-gating transitions to the residual state in the Cx43 channel. These changes involve an intramolecular particle-receptor interaction between the carboxy terminal domain and the cytoplasmic loop.
Collapse
Affiliation(s)
- Daniel González
- Research Department, Unit of Experimental Neurology, Ramón y Cajal Hospital, Carretera de Colmenar Viejo km 9, Madrid, Spain
| | | | | |
Collapse
|
27
|
Shields CR, Klooster J, Claassen Y, Ul-Hussain M, Zoidl G, Dermietzel R, Kamermans M. Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. J Comp Neurol 2007; 501:765-79. [PMID: 17299759 DOI: 10.1002/cne.21282] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Connexins in retinal horizontal cells (HC) function in the processing of visual information. For example, gap junction-forming connexins may contribute to the spatial integration of visual stimuli. Additionally, connexin hemichannels have been hypothesized to participate in the feedback pathway from HCs to cones. To verify the identities of the zebrafish HC connexins, we performed promoter expression and immunohistochemical studies of connexin 52.6 (Cx52.6) and Cx55.5. Zebrafish embryos were microinjected with Cx52.6 or Cx55.5 promoter sequences and a green fluorescent protein reporter construct. Light and electron microscopic (EM) analysis showed green fluorescent protein expression exclusively in retinal HCs. Immunohistochemistry confirmed that HCs express Cx52.6 and Cx55.5 proteins. Light microscopy revealed Cx52.6 and Cx55.5 in the retinal inner nuclear and outer plexiform layers. Double labeling for Cx55.5 or Cx52.6 and cell-specific markers (tyrosine hydroxylase, protein kinase C-alpha, or GluR2) demonstrated that these connexins do not localize to interplexiform or ON bipolar cells, but most likely are present in HCs. Preembedding immuno-EM confirmed the HC-specific expression of Cx52.6 and Cx55.5 and illustrated the presence of these two connexins in gap junctions between HCs. The EM data also revealed robust labeling for Cx55.5 in hemichannels on HC dendrites in photoreceptor synaptic terminals. Voltage-clamp experiments in cultured cells demonstrated that Cx55.5-containing hemichannels can open at physiological membrane potentials. These results offer the first in vivo demonstration of the HC-specific activities of the Cx52.6 and Cx55.5 promoters. Furthermore, these data provide the first proof at the protein level for retinal HC-specific connexins in the zebrafish.
Collapse
Affiliation(s)
- Colleen R Shields
- Retinal Signal Processing, Netherlands Institute for Neuroscience, Netherlands Royal Academy of Sciences, 1105BA Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
"Hemichannels" are defined as the halves of gap junction channels (also termed connexons) that are contributed by one cell; "hemichannels" are considered to be functional if they are open in nonjunctional membranes in the absence of pairing with partners from adjacent cells. Several recent reviews have summarized the blossoming literature regarding functional "hemichannels", in some cases encyclopedically. However, most of these previous reviews have been written with the assumption that all data reporting "hemichannel" involvement really have studied phenomena in which connexons actually form the permeability or conductance pathway. In this review, we have taken a slightly different approach. We review the concept of "hemichannels", summarize properties that might be expected of half gap junctions and evaluate the extent to which the properties of presumptive "hemichannels" match expectations. Then we consider functions attributed to hemichannels, provide an overview of other channel types that might fulfill similar roles and provide sets of criteria that might be applied to verify involvement of connexin hemichannels in cell and tissue function. One firm conclusion is reached. The study of hemichannels is technically challenging and fraught with opportunities for misinterpretation, so that future studies must apply rigorous standards for detection of hemichannel expression and function. At the same time there are reasons to expect surprises, including the possibility that some time honored techniques for studying gap junctions may prove unsuitable for detecting hemichannels. We advise hemichannel researchers to proceed with caution and an open mind.
Collapse
Affiliation(s)
- David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Zu-Cheng Ye
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
29
|
Abstract
In the nervous system, interneuronal communication can occur via indirect or direct transmission. The mode of indirect communication involves chemical synapses, in which transmitters are released into the extracellular space to subsequently bind to the postsynaptic cell membrane. Direct communication is mediated by electrical synapses, and will be the focus of this review. The most prevalent group of electrical synapses are neuronal gap junctions (both terms are used interchangeably in this article), which directly connect the intracellular space of two cells by gap junction channels. The structural components of gap junction channels in the nervous system are connexin proteins, and, as recently identified, pannexin proteins. Connexin gap junction channels enable the intercellular, bidirectional transport of ions, metabolites, second messengers and other molecules smaller than 1 kD. More than 20 connexin genes have been found in the mouse and human genome. With the cloning of connexin36 (Cx36), a connexin protein with predominantly neuronal expression, the biochemical correlate of electrotonic transmission between neurons was identified. We outline the distribution of Cx36 as well as two other neuronal connexins (Cx57 and Cx45) in the nervous system, describing their spatial and temporal expression patterns. One focus in this review was the retina, as it shows many and diverse electrical synapses whose connexin components have been identified in fish and mammals. In view of the function of neuronal gap junctions, the network of inhibitory interneurons will be reviewed in detail, focussing on the hippocampus. Although in vivo data on pannexin proteins are still restricted to information on mRNA expression, electrophysiological data and the expression pattern in the nervous system have been included.
Collapse
Affiliation(s)
- Carola Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany.
| | | |
Collapse
|
30
|
Eastman SD, Chen THP, Falk MM, Mendelson TC, Iovine MK. Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics 2006; 87:265-74. [PMID: 16337772 DOI: 10.1016/j.ygeno.2005.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/17/2022]
Abstract
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.
Collapse
Affiliation(s)
- Stephen D Eastman
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca B-217, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
31
|
De Boer TP, Kok B, Neuteboom KIE, Spieker N, De Graaf J, Destrée OHJ, Rook MB, Van Veen TAB, Jongsma HJ, Vos MA, De Bakker JMT, Van Der Heyden MAG. Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis. Dev Dyn 2005; 233:864-71. [PMID: 15895416 DOI: 10.1002/dvdy.20420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Connexin-containing gap junctions play an essential role in vertebrate development. More than 20 connexin isoforms have been identified in mammals. However, the number identified in Xenopus trails with only six isoforms described. Here, identification of a new connexin isoform from Xenopus laevis is described. Connexin40.4 was found by screening expressed sequence tag databases and carrying out polymerase chain reaction on genomic DNA. This new connexin has limited amino acid identity with mammalian (<50%) connexins, but conservation is higher (approximately 62%) with fish. During Xenopus laevis development, connexin40.4 was first expressed after the mid-blastula transition. There was prominent expression in the presomitic paraxial mesoderm and later in the developing somites. In adult frogs, expression was detected in kidney and stomach as well as in brain, heart, and skeletal muscle. Ectopic expression of connexin40.4 in HEK293 cells, resulted in formation of gap junction like structures at the cell interfaces. Similar ectopic expression in neural N2A cells resulted in functional electrical coupling, displaying mild, asymmetric voltage dependence. We thus cloned a novel connexin from Xenopus laevis, strongly expressed in developing somites, with no apparent orthologue in mammals.
Collapse
Affiliation(s)
- Teun P De Boer
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R. Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 2005; 21:3277-90. [PMID: 16026466 DOI: 10.1111/j.1460-9568.2005.04139.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Until recently, members of the connexin gene family were believed to comprise the sole molecular component forming gap junction channels in vertebrates. The recent discovery of the pannexin gene family has challenged this view, as these genes may encode for a putative second class of gap junction proteins in vertebrates. The expression of pannexin genes overlaps with those cellular networks known to exhibit a high degree of gap junctional coupling. We investigated the spatio-temporal mRNA distribution of one member of this gene family, pannexin1 (Panx1), in the brain and retina of mice using quantitative real-time polymerase chain reaction and a combination of in situ hybridization and immunohistochemistry for cellular resolution. Our results demonstrate a widespread expression of Panx1 in the brain, retina and other non-neuronal tissues. In the cortex, cerebellum and eye, Panx1 is expressed at early embryonic time points and peaks around embryonic day 18 followed by a decline towards adulthood. Most notably, Panx1 is detectable in neurons of many brain nuclei, which are known to be coupled by gap junctions as well as in previously unrecognized areas. Abundant expression was found in the adult hippocampal and neocortical pyramidal cells and interneurons, neurons of the reticular thalamus, the inferior olive, magnocellular hypothalamic neurons, midbrain and brain stem motoneurons, Purkinje cells and the retina.
Collapse
Affiliation(s)
- Arundhati Ray
- Department of Neuroanatomy and Molecular Brain Research, Faculty of Medicine, Ruhr University, Bochum, Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
Animal species use specialized cell-to-cell channels, called gap junctions, to allow for a direct exchange of ions and small metabolites between their cells' cytoplasm. In invertebrates, gap junctions are formed by innexins, while vertebrates use connexin (Cx) proteins as gap-junction-building blocks. Recently, innexin homologs have been found in vertebrates and named pannexins. From progress in the different genome projects, it has become evident that every class of vertebrates uses their own unique set of Cxs to build their gap junctions. Here, we review all known Xenopus Cxs with respect to their expression, regulation, and function. We compare Xenopus Cxs with those of zebrafish and mouse, and provide evidence for the existence of several additional, non-identified, amphibian Cxs. Finally, we identify two new Xenopus pannexins by screening EST libraries.
Collapse
Affiliation(s)
- Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. ACTA ACUST UNITED AC 2005; 47:290-303. [PMID: 15572178 PMCID: PMC3651737 DOI: 10.1016/j.brainresrev.2004.08.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2004] [Indexed: 01/24/2023]
Abstract
Gap junction channels and hemichannels formed of connexin subunits are found in most cell types in vertebrates. Gap junctions connect cells via channels not open to the extracellular space and permit the passage of ions and molecules of approximately 1 kDa. Single connexin hemichannels, which are connexin hexamers, are present in the surface membrane before docking with a hemichannel in an apposed membrane. Because of their high conductance and permeability in cell-cell channels, it had been thought that connexin hemichannels remained closed until docking to form a cell-cell channel. Now it is clear that at least some hemichannels can open to allow passage of molecules between the cytoplasm and extracellular space. Here we review evidence that gap junction channels may allow intercellular diffusion of necrotic or apoptotic signals, but may also allow diffusion of ions and substances from healthy to injured cells, thereby contributing to cell survival. Moreover, opening of gap junction hemichannels may exacerbate cell injury or mediate paracrine or autocrine signaling. In addition to the cell specific features of an ischemic insult, propagation of cell damage and death within affected tissues may be affected by expression and regulation of gap junction channels and hemichannels formed by connexins.
Collapse
Affiliation(s)
- Jorge E. Contreras
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | - Helmuth A. Sánchez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Corresponding author. Tel.: +56 2 6862860; fax: +56 2 2225515. (H.A. Sánchez)
| | - Loreto P. Véliz
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | | | - Michael V.L. Bennett
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan C. Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
35
|
Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MVL. Connexin-based gap junction hemichannels: gating mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:215-24. [PMID: 15955306 PMCID: PMC3617572 DOI: 10.1016/j.bbamem.2005.01.014] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 01/16/2023]
Abstract
Connexins (Cxs) form hemichannels and gap junction channels. Each gap junction channel is composed of two hemichannels, also termed connexons, one from each of the coupled cells. Hemichannels are hexamers assembled in the ER, the Golgi, or a post Golgi compartment. They are transported to the cell surface in vesicles and inserted by vesicle fusion, and then dock with a hemichannel in an apposed membrane to form a cell-cell channel. It was thought that hemichannels should remain closed until docking with another hemichannel because of the leak they would provide if their permeability and conductance were like those of their corresponding cell-cell channels. Now it is clear that hemichannels formed by a number of different connexins can open in at least some cells with a finite if low probability, and that their opening can be modulated under various physiological and pathological conditions. Hemichannels open in different kinds of cells in culture with conductance and permeability properties predictable from those of the corresponding gap junction channels. Cx43 hemichannels are preferentially closed in cultured cells under resting conditions, but their open probability can be increased by the application of positive voltages and by changes in protein phosphorylation and/or redox state. In addition, increased activity can result from the recruitment of hemichannels to the plasma membrane as seen in metabolically inhibited astrocytes. Mutations of connexins that increase hemichannel open probability may explain cellular degeneration in several hereditary diseases. Taken together, the data indicate that hemichannels are gated by multiple mechanisms that independently or cooperatively affect their open probability under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
36
|
Bruzzone R, Barbe MT, Jakob NJ, Monyer H. Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 2005; 92:1033-43. [PMID: 15715654 DOI: 10.1111/j.1471-4159.2004.02947.x] [Citation(s) in RCA: 373] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several new findings have emphasized the role of neuron-specific gap junction proteins (connexins) and electrical synapses in processing sensory information and in synchronizing the activity of neuronal networks. We have recently shown that pannexins constitute an additional family of proteins that can form gap junction channels in a heterologous expression system and are also widely expressed in distinct neuronal populations in the brain, where they may represent a novel class of electrical synapses. In this study, we have exploited the hemichannel-forming properties of pannexins to investigate their sensitivity to well-known connexin blockers. By combining biochemical and electrophysiological approaches, we report here further evidence for the interaction of pannexin1 (Px1) with Px2 and demonstrate that the pharmacological sensitivity of heteromeric Px1/Px2 is similar to that of homomeric Px1 channels. In contrast to most connexins, both Px1 and Px1/Px2 hemichannels were not gated by external Ca2+. In addition, they exhibited a remarkable sensitivity to blockade by carbenoxolone (with an IC50 of approximately 5 microm), whereas flufenamic acid exerted only a modest inhibitory effect. The opposite was true in the case of connexin46 (Cx46), thus indicating that gap junction blockers are able to selectively modulate pannexin and connexin channels.
Collapse
|
37
|
Iacobas DA, Iacobas S, Li WEI, Zoidl G, Dermietzel R, Spray DC. Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiol Genomics 2004; 20:211-23. [PMID: 15585606 DOI: 10.1152/physiolgenomics.00229.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used mouse 27k cDNA arrays to compare gene expression patterns in four sets of three hearts each of neonatal wild types and four sets of three hearts each of littermates lacking the major cardiac gap junction protein, connexin43 (Cx43). Each individual set of hearts was hybridized against aliquots of an RNA standard prepared from selected mouse tissues, allowing calculation of variability and coordination of gene expression among the samples from both genotypes. Overall variance of gene expression was found to be markedly higher in wild-type hearts than in those from Cx43 null littermates. Expression levels of 586 of 5,613 adequately quantifiable distinct genes with known protein products were statistically altered in the Cx43 null hearts, 38 upregulated and 548 downregulated compared with wild types. Downregulation was confirmed for seven tested genes by quantitative RT-PCR. Functions of proteins encoded by the altered genes encompassed all functional categories, with largest percent changes in genes involved in intracellular transport and transcription factors. Among the downregulated genes in the Cx43 null hearts were those related to neuronal and glial function, suggesting that cardiac innervation might be compromised as a consequence of Cx43 deletion. This was supported by immunodetection of sympathetic innervation, using antibodies to the synaptic vesicle protein synaptophysin and to the adrenergic nerve terminal marker tyrosine hydroxylase. These findings reinforce the proposal that the cardiac abnormality in Cx43 null animals may be contributed by altered innervation and indicate that Cx43 deletion has consequences in addition to reduced intercellular communication.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Neuroscience Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Valiunas V, Mui R, McLachlan E, Valdimarsson G, Brink PR, White TW. Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol Cell Physiol 2004; 287:C1596-604. [PMID: 15282192 DOI: 10.1152/ajpcell.00225.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A subset of connexins can form unopposed hemichannels in expression systems, providing an opportunity for comparison of hemichannel gating properties with those of intact gap junction channels. Zebrafish connexin35 (Cx35) is a member of the Cx35/Cx36 subgroup of connexins highly expressed in the retina and brain. In the present study, we have shown that Cx35 expression in Xenopus oocytes and N2A cells produced large outward whole cell currents on cell depolarization. Using whole cell, cell-attached, and excised patch configurations, we obtained multichannel and single-channel current recordings attributable to the Cx35 hemichannels (I(hc)) that were activated and increased by stepwise depolarization of membrane potential (V(m)) and deactivated by hyperpolarization. The currents were not detected in untransfected N2A cells or in control oocytes injected with antisense Cx38. However, water-injected oocytes that were not treated with antisense showed activities attributable to Cx38 hemichannels that were easily distinguishable from Cx35 hemichannels by a significantly larger unitary conductance (gamma(hc): 250-320 pS). The gamma(hc) of Cx35 hemichannels exhibited a pronounced V(m) dependence; i.e., gamma(hc) increased/decreased with relative hyperpolarization/depolarization (gamma(hc) was 72 pS at V(m) = -100 mV and 35 pS at V(m) = 100 mV). Extrapolation to V(m) = 0 mV predicted a gamma(hc) of 48 pS, suggesting a unitary conductance of intact Cx35 gap junction channels of approximately 24 pS. Channel gating was also V(m) dependent: open time declined with negative V(m) and increased with positive V(m). The ability to break down the complex gating of intact intercellular channels into component hemichannels in vitro will help to evaluate putative physiological roles for hemichannels in vivo.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics, State University of New York, T5-147, Basic Science Tower, Stony Brook, NY 11794-8661, USA
| | | | | | | | | | | |
Collapse
|
39
|
Parpura V, Scemes E, Spray DC. Mechanisms of glutamate release from astrocytes: gap junction "hemichannels", purinergic receptors and exocytotic release. Neurochem Int 2004; 45:259-64. [PMID: 15145541 DOI: 10.1016/j.neuint.2003.12.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 11/16/2022]
Abstract
Neuronal exocytotic release of glutamate at synapses involves a highly specialized vesicular apparatus, consisting of a variety of proteins connected to the vesicles or required for vesicular fusion to the presynaptic membrane. Astrocytes also release glutamate, and recent evidence indicates that this release can modify neuronal function. Several mechanisms have been proposed for astrocytic release of glutamate under pathological conditions, such as reversal of glutamate transporters and opening of volume sensitive ion channels. In this review we limit our discussion to findings supporting the exocytotic release of glutamate, as well as two new pathways implicated in this release, the ionotropic (P2X) purinergic receptors and gap junction hemichannels.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Cell Biology and Neuroscience, Center for Nanoscale Science and Engineering, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
40
|
Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K. Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 2004; 19:2633-40. [PMID: 15147297 DOI: 10.1111/j.0953-816x.2004.03360.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horizontal cells are interneurons of the vertebrate retina that exhibit strong electrical and tracer coupling but the identity of the channel-forming connexins has remained elusive. Here we show that horizontal cells of the mouse retina express connexin57 (Cx57). We have generated Cx57-deficient mice by replacing the Cx57 coding region with a lacZ reporter gene, expressed under control of the endogenous Cx57 promoter. These mice were fertile and showed no obvious anatomical or behavioural abnormalities. Cx57 mRNA was expressed in the retina of wild-type littermates but was absent from the retina of Cx57-deficient mice. Previously reported results that the Cx57 gene was very weakly expressed in several other mouse tissues turned out to be unspecific. Cx57 mRNA is abundantly expressed in the retina and weakly in the thymus of adult mice but absent in all other adult tissues tested, including brain. Furthermore, Cx57 is expressed in embryonic kidney at E16.5 to E18.5 days post-conception, as indicated by the pattern of lacZ expression. Within the retina, lacZ signals were assigned exclusively to horizontal cells based on co-localization with cell-type-specific marker proteins. Microinjection of Neurobiotin into horizontal cells of isolated retinae revealed less than 1% of tracer coupling in Cx57-deficient retinae compared with wild-type controls. Cx57 is the first connexin identified in mammalian horizontal cells and the first connexin whose expression is apparently restricted to only one type of neuron.
Collapse
Affiliation(s)
- Sonja Hombach
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, 53117 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|