1
|
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| | - Emily M Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of MassachusettsAmherstUnited States
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
2
|
Akizawa H, Lopes E, Fissore RA. Zn 2+ is Essential for Ca 2+ Oscillations in Mouse Eggs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536745. [PMID: 37131581 PMCID: PMC10153198 DOI: 10.1101/2023.04.13.536745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the intracellular concentration of free calcium (Ca2+) underpin egg activation and initiation of development in animals and plants. In mammals, the Ca2+ release is periodical, known as Ca2+ oscillations, and mediated by the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). Another divalent cation, zinc (Zn2+), increases exponentially during oocyte maturation and is vital for meiotic transitions, arrests, and polyspermy prevention. It is unknown if these pivotal cations interplay during fertilization. Here, using mouse eggs, we showed that basal concentrations of labile Zn2+ are indispensable for sperm-initiated Ca2+ oscillations because Zn2+-deficient conditions induced by cell-permeable chelators abrogated Ca2+ responses evoked by fertilization and other physiological and pharmacological agonists. We also found that chemically- or genetically generated eggs with lower levels of labile Zn2+ displayed reduced IP3R1 sensitivity and diminished ER Ca2+ leak despite the stable content of the stores and IP3R1 mass. Resupplying Zn2+ restarted Ca2+ oscillations, but excessive Zn2+ prevented and terminated them, hindering IP3R1 responsiveness. The findings suggest that a window of Zn2+ concentrations is required for Ca2+ responses and IP3R1 function in eggs, ensuring optimal response to fertilization and egg activation.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Emily Lopes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, United States
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
3
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
4
|
PAWH1 and PAWH2 are plant-specific components of an Arabidopsis endoplasmic reticulum-associated degradation complex. Nat Commun 2019; 10:3492. [PMID: 31375683 PMCID: PMC6677890 DOI: 10.1038/s41467-019-11480-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/16/2019] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a unique mechanism to degrade misfolded proteins via complexes containing several highly-conserved ER-anchored ubiquitin ligases such as HMG-CoA reductase degradation1 (Hrd1). Arabidopsis has a similar Hrd1-containing ERAD machinery; however, our knowledge of this complex is limited. Here we report two closely-related Arabidopsis proteins, Protein Associated With Hrd1-1 (PAWH1) and PAWH2, which share a conserved domain with yeast Altered Inheritance of Mitochondria24. PAWH1 and PAWH2 localize to the ER membrane and associate with Hrd1 via EMS-mutagenized Bri1 Suppressor7 (EBS7), a plant-specific component of the Hrd1 complex. Simultaneously elimination of two PAWHs constitutively activates the unfolded protein response and compromises stress tolerance. Importantly, the pawh1 pawh2 double mutation reduces the protein abundance of EBS7 and Hrd1 and inhibits degradation of several ERAD substrates. Our study not only discovers additional plant-specific components of the Arabidopsis Hrd1 complex but also reveals a distinct mechanism for regulating the Hrd1 stability.
Collapse
|
5
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
7
|
Wright FA, Wojcikiewicz RJH. Chapter 4 - Inositol 1,4,5-Trisphosphate Receptor Ubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:141-59. [PMID: 27378757 DOI: 10.1016/bs.pmbts.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large (∼300kDa) proteins that associate into tetrameric ion channels in the endoplasmic reticulum (ER) membrane. Activation and opening of the channel upon binding of IP3 and Ca(2+) allows the flow of Ca(2+) ions from stores within the ER lumen to the cytosol, thereby promoting a number of Ca(2+)-dependent cellular events, such as secretion, neurotransmitter release, and cell division. Intriguingly, it appears that the same conformational change that IP3Rs undergo during activation makes them a target for degradation by the ubiquitin-proteasome pathway and that this mode of processing allows the cell to tune its internal Ca(2+) response to extracellular signals. Here, we review recent studies showing that activated IP3Rs interact with an array of proteins that mediate their degradation, that IP3Rs are modified by a complex array of ubiquitin conjugates, that this ubiquitination and degradation functions to regulate IP3-mediated Ca(2+) responses in the cell, and that mutations to different proteins involved in IP3R degradation result in a set of similar diseases.
Collapse
Affiliation(s)
- F A Wright
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - R J H Wojcikiewicz
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
8
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
9
|
Wright FA, Lu JP, Sliter DA, Dupré N, Rouleau GA, Wojcikiewicz RJH. A Point Mutation in the Ubiquitin Ligase RNF170 That Causes Autosomal Dominant Sensory Ataxia Destabilizes the Protein and Impairs Inositol 1,4,5-Trisphosphate Receptor-mediated Ca2+ Signaling. J Biol Chem 2015; 290:13948-57. [PMID: 25882839 DOI: 10.1074/jbc.m115.655043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
RNF170 is an endoplasmic reticulum membrane ubiquitin ligase that contributes to the ubiquitination of activated inositol 1,4,5-trisphosphate (IP3) receptors, and also, when point mutated (arginine to cysteine at position 199), causes autosomal dominant sensory ataxia (ADSA), a disease characterized by neurodegeneration in the posterior columns of the spinal cord. Here we demonstrate that this point mutation inhibits RNF170 expression and signaling via IP3 receptors. Inhibited expression of mutant RNF170 was seen in cells expressing exogenous RNF170 constructs and in ADSA lymphoblasts, and appears to result from enhanced RNF170 autoubiquitination and proteasomal degradation. The basis for these effects was probed via additional point mutations, revealing that ionic interactions between charged residues in the transmembrane domains of RNF170 are required for protein stability. In ADSA lymphoblasts, platelet-activating factor-induced Ca(2+) mobilization was significantly impaired, whereas neither Ca(2+) store content, IP3 receptor levels, nor IP3 production were altered, indicative of a functional defect at the IP3 receptor locus, which may be the cause of neurodegeneration. CRISPR/Cas9-mediated genetic deletion of RNF170 showed that RNF170 mediates the addition of all of the ubiquitin conjugates known to become attached to activated IP3 receptors (monoubiquitin and Lys(48)- and Lys(63)-linked ubiquitin chains), and that wild-type and mutant RNF170 have apparently identical ubiquitin ligase activities toward IP3 receptors. Thus, the Ca(2+) mobilization defect seen in ADSA lymphoblasts is apparently not due to aberrant IP3 receptor ubiquitination. Rather, the defect likely reflects abnormal ubiquitination of other substrates, or adaptation to the chronic reduction in RNF170 levels.
Collapse
Affiliation(s)
- Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Justine P Lu
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | | - Nicolas Dupré
- the Neuromuscular and Neurogenetic Disease Clinic, CHU de Québec, Laval University, Quebec City, Quebec G1J 1Z4, Canada, and
| | - Guy A Rouleau
- the Montreal Neurological Institute and Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
10
|
Bernasconi R, Galli C, Kokame K, Molinari M. Autoadaptive ER-associated degradation defines a preemptive unfolded protein response pathway. Mol Cell 2013; 52:783-93. [PMID: 24239290 DOI: 10.1016/j.molcel.2013.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/23/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
Abstract
Folding-defective proteins must be cleared efficiently from the endoplasmic reticulum (ER) to prevent perturbation of the folding environment and to maintain cellular proteostasis. Misfolded proteins engage dislocation machineries (dislocons) built around E3 ubiquitin ligases that promote their transport across the ER membrane, their polyubiquitylation, and their proteasomal degradation. Here, we report on the intrinsic instability of the HRD1 dislocon and the constitutive, rapid turnover of the scaffold protein HERP. We show that HRD1 dislocon integrity relies on the presence of HRD1 clients that interrupt, in a dose-dependent manner, the UBC6e/RNF5/p97/proteasome-controlled relay that controls HERP turnover. We propose that ER-associated degradation (ERAD) deploys autoadaptive regulatory pathways, collectively defined as ERAD tuning, to rapidly adapt degradation activity to misfolded protein load and to preempt the unfolded protein response (UPR) activation.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland
| | - Carmela Galli
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland
| | - Koichi Kokame
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Maurizio Molinari
- Institute for Research in Biomedicine, Protein Folding and Quality Control, 6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Singh M, Chaudhry P, Parent S, Asselin E. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I. Endocrinology 2012; 153:426-37. [PMID: 22109885 DOI: 10.1210/en.2011-1438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.
Collapse
Affiliation(s)
- Mohan Singh
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
12
|
Carvalho AF, Pinto MP, Grou CP, Vitorino R, Domingues P, Yamao F, Sá-Miranda C, Azevedo JE. High-Yield Expression in Escherichia coli and Purification of Mouse Ubiquitin-Activating Enzyme E1. Mol Biotechnol 2011; 51:254-61. [DOI: 10.1007/s12033-011-9463-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
Sliter DA, Aguiar M, Gygi SP, Wojcikiewicz RJH. Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J Biol Chem 2010; 286:1074-82. [PMID: 21071436 DOI: 10.1074/jbc.m110.188383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are large, ubiquitously expressed, endoplasmic reticulum membrane proteins that form tetrameric IP(3) and Ca(2+)-gated Ca(2+) channels. Endogenous IP(3)Rs provide very appealing tools for studying the ubiquitin-proteasome pathway in intact mammalian cells because, upon activation, they are rapidly ubiquitinated and degraded. Using mass spectrometry, we previously examined the ubiquitination of IP(3)R1 in αT3-1 pituitary gonadotrophs and found that IP(3)R1 ubiquitination is highly complex, with receptors being modified at multiple sites by monoubiquitin and polyubiquitin chains formed through both Lys-48 and Lys-63 linkages (Sliter, D. A., Kubota, K., Kirkpatrick, D. S., Alzayady, K. J., Gygi, S. P., and Wojcikiewicz, R. J. H. (2008) J. Biol. Chem. 283, 35319-35328). Here, we have extended these studies to determine whether IP(3)R2 and IP(3)R3 are similarly modified and if ubiquitination is cell type-dependent. Using mass spectrometry and linkage-specific ubiquitin antibodies, we found that all IP(3)R types are subject to ubiquitination at approximately the same locations and that, independent of cell type, IP(3)Rs are modified by monoubiquitin and Lys-48- and Lys-63-linked ubiquitin chains, although in differing proportions. Remarkably, the attached Lys-48- and Lys-63-linked ubiquitin chains are homogeneous and are segregated to separate IP(3)R subunits, and Lys-48-linked ubiquitin chains, but not Lys-63-linked chains, are required for IP(3)R degradation. Together, these data provide unique insight into the complexities of ubiquitination of an endogenous ubiquitin-proteasome pathway substrate in unperturbed mammalian cells. Importantly, although Lys-48-linked ubiquitin chains appear to trigger proteasomal degradation, the presence of Lys-63-linked ubiquitin chains suggests that ubiquitination of IP(3)Rs may have physiological consequences beyond signaling for degradation.
Collapse
Affiliation(s)
- Danielle A Sliter
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
14
|
Role of the ubiquitin system in regulating ion transport. Pflugers Arch 2010; 461:1-21. [PMID: 20972579 DOI: 10.1007/s00424-010-0893-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022]
Abstract
Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.
Collapse
|
15
|
Ju T, Bocik W, Majumdar A, Tolman JR. Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2. Proteins 2010; 78:1291-301. [PMID: 20014027 DOI: 10.1002/prot.22648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum-associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48-linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin-tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95-107 and 130-135) flanking the active site cysteine are poorly defined. (15)N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester-linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side-chains of Asp98 or Asp99.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
16
|
Lee B, Yoon SY, Malcuit C, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+]i oscillations. J Cell Physiol 2009; 222:238-47. [PMID: 19798695 DOI: 10.1002/jcp.21945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The initiation of normal embryo development depends on the completion of all events of egg activation. In all species to date, egg activation requires an increase(s) in the intracellular concentration of calcium ([Ca(2+)](i)), which is almost entirely mediated by inositol 1,4,5-trisphosphate receptor 1 (IP(3)R1). In mammalian eggs, fertilization-induced [Ca(2+)](i) responses exhibit a periodic pattern that are called [Ca(2+)](i) oscillations. These [Ca(2+)](i) oscillations are robust at the beginning of fertilization, which occurs at the second metaphase of meiosis, but wane as zygotes approach the pronuclear stage, time after which in the mouse oscillations cease altogether. Underlying this change in frequency are cellular and biochemical changes associated with egg activation, including degradation of IP(3)R1, progression through the cell cycle, and reorganization of intracellular organelles. In this study, we investigated the system requirements for IP(3)R1 degradation and examined the impact of the IP(3)R1 levels on the pattern of [Ca(2+)](i) oscillations. Using microinjection of IP(3) and of its analogs and conditions that prevent the development of [Ca(2+)](i) oscillations, we show that IP(3)R1 degradation requires uniform and persistently elevated levels of IP(3). We also established that progressive degradation of the IP(3)R1 results in [Ca(2+)](i) oscillations with diminished periodicity while a near complete depletion of IP(3)R1s precludes the initiation of [Ca(2+)](i) oscillations. These results provide insights into the mechanism involved in the generation of [Ca(2+)](i) oscillations in mouse eggs.
Collapse
Affiliation(s)
- Bora Lee
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
17
|
Mbonye UR, Song I. Posttranscriptional and posttranslational determinants of cyclooxygenase expression. BMB Rep 2009; 42:552-60. [PMID: 19788855 DOI: 10.5483/bmbrep.2009.42.9.552] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenases (COX-1 and COX-2) are ER-resident proteins that catalyze the committed step in prostanoid synthesis. COX-1 is constitutively expressed in many mammalian cells, whereas COX-2 is usually expressed inducibly and transiently. Abnormal expression of COX-2 has been implicated in the pathogenesis of chronic inflammation and various cancers; therefore, it is subject to tight and complex regulation. Differences in regulation of the COX enzymes at the posttranscriptional and posttranslational levels also contribute significantly to their distinct patterns of expression. Rapid degradation of COX-2 mRNA has been attributed to AU-rich elements (AREs) at its 3' UTR. Recently, microRNAs that can selectively repress COX-2 protein synthesis have been identified. The mature forms of these COX proteins are very similar in structure except that COX-2 has a unique 19-amino acid (19-aa) segment located near the C-terminus. This C-terminal 19-aa cassette plays an important role in mediation of the entry of COX-2 into the ER-associated degradation (ERAD) system, which transports ER proteins to the cytoplasm for degradation by the 26S proteasome. A second pathway for COX-2 protein degradation is initiated after the enzyme undergoes suicide inactivation following cyclooxygenase catalysis. Here, we discuss these molecular determinants of COX-2 expression in detail. [BMB reports 2009; 42(9): 552-560].
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | |
Collapse
|
18
|
Ballar P, Ors AU, Yang H, Fang S. Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1. Int J Biochem Cell Biol 2009; 42:167-73. [PMID: 19828134 DOI: 10.1016/j.biocel.2009.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/11/2022]
Abstract
The most common mutation associated with cystic fibrosis is the deletion of phenylalanine 508 of cystic fibrosis transmembrane conductance regulator (CFTRDeltaF508). This mutation renders otherwise functional protein susceptible to ER-associated degradation (ERAD) and prevents CFTR from exiting the ER and trafficking to the plasma membrane. In this study, we demonstrate that RNAi-mediated silencing of gp78, an established ubiquitin ligase (E3) involved in ERAD, leads to accumulation of CFTRDeltaF508 protein in cells. gp78 facilitates the degradation of CFTRDeltaF508 by enhancing both its ubiquitination and interaction with p97/VCP. SVIP, which is the inhibitor of gp78, causes accumulation of CFTRDeltaF508. We showed that endogenous gp78 co-immunoprecipitates with Hrd1. Furthermore, the results indicate that silencing the expression of another ERAD E3, Hrd1, leads to stabilization of gp78 and decline in gp78 ubiquitination; thereby enhancing CFTRDeltaF508 degradation. The results support that gp78 is an E3 targeting CFTRDeltaF508 for degradation and Hrd1 inhibits CFTRDeltaF508 degradation by acting as an E3 for gp78.
Collapse
Affiliation(s)
- Petek Ballar
- Ege University, Faculty of Pharmacy, Izmir, 35100, Turkey.
| | | | | | | |
Collapse
|
19
|
Wang Y, Pearce MMP, Sliter DA, Olzmann JA, Christianson JC, Kopito RR, Boeckmann S, Gagen C, Leichner GS, Roitelman J, Wojcikiewicz RJH. SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1710-8. [PMID: 19751772 DOI: 10.1016/j.bbamcr.2009.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 12/13/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. While it is clear that IP(3) receptors are polyubiquitinated and are transferred to the proteasome by a p97-based complex, currently very little is known about the proteins that initially select activated IP(3) receptors for ERAD. Here, we have transfected HeLa cells to stably express m3 muscarinic receptors to allow for the study of IP(3) receptor ERAD in this cell type, and show that IP(3) receptors are polyubiquitinated and then degraded by the proteasome in response to carbachol, a muscarinic agonist. In seeking to identify proteins that mediate IP(3) receptor ERAD we found that both SPFH1 and SPFH2 (also known as erlin 1 and erlin 2), which exist as a hetero-oligomeric complex, rapidly associate with IP(3) receptors in a manner that precedes polyubiquitination and the association of p97. Suppression of SPFH1 and SPFH2 expression by RNA interference markedly inhibited carbachol-induced IP(3) receptor polyubiquitination and degradation, but did not affect carbachol-induced calcium mobilization or IkappaBalpha processing, indicating that the SPFH1/2 complex is a key player in IP(3) receptor ERAD, acting at a step after IP(3) receptor activation, but prior to IP(3) receptor polyubiquitination. Suppression of SPFH1 and SPFH2 expression had only slight effects on the turnover of some exogenous model ERAD substrates, and had no effect on sterol-induced ERAD of endogenous 3-hydroxy-3-methylglutaryl-CoA reductase. Overall, these studies show that m3 receptor-expressing HeLa cells are a valuable system for studying IP(3) receptor ERAD, and suggest that the SPFH1/2 complex is a factor that selectively mediates the ERAD of activated IP(3) receptors.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wojcikiewicz RJH, Pearce MMP, Sliter DA, Wang Y. When worlds collide: IP(3) receptors and the ERAD pathway. Cell Calcium 2009; 46:147-53. [PMID: 19709743 PMCID: PMC2752845 DOI: 10.1016/j.ceca.2009.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022]
Abstract
While cell signaling devotees tend to think of the endoplasmic reticulum (ER) as a Ca(2+) store, those who study protein synthesis tend to see it more as site for protein maturation, or even degradation when proteins do not fold properly. These two worldviews collide when inositol 1,4,5-trisphosphate (IP(3)) receptors are activated, since in addition to acting as release channels for stored ER Ca(2+), IP(3) receptors are rapidly destroyed via the ER-associated degradation (ERAD) pathway, a ubiquitination- and proteasome-dependent mechanism that clears the ER of aberrant proteins. Here we review recent studies showing that activated IP(3) receptors are ubiquitinated in an unexpectedly complex manner, and that a novel complex composed of the ER membrane proteins SPFH1 and SPFH2 (erlin 1 and 2) binds to IP(3) receptors immediately after they are activated and mediates their ERAD. Remarkably, it seems that the conformational changes that underpin channel opening make IP(3) receptors resemble aberrant proteins, which triggers their binding to the SPFH1/2 complex, their ubiquitination and extraction from the ER membrane and finally, their degradation by the proteasome. This degradation of activated IP(3) receptors by the ERAD pathway serves to reduce the sensitivity of ER Ca(2+) stores to IP(3) and may protect cells against deleterious effects of over-activation of Ca(2+) signaling pathways.
Collapse
|
21
|
Ying M, Zhan Z, Wang W, Chen D. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 2009; 447:72-85. [PMID: 19664694 DOI: 10.1016/j.gene.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/19/2022]
Abstract
The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 1048-1059], while mammal E2s experienced evolution of multigene families by gene duplications which have been accompanied by the increase in the species complexity. Because of alternatively splicing, primate-specific expansions of E2s happened once again at a transcriptional level. Both of them resulted in increasing genomic complexity and diversity of primate E2 proteomic function. The evolutionary processes of human E2 gene structure during expansions were accompanied by exon duplication and exonization of intronic sequences. Exonizations of Transposable Elements (TEs) in UBE2D3, UBE2L3 and UBE2V1 genes from primates indicate that exaptation of TEs also plays important roles in the structural innovation of primate-specific E2s and may create alternative splicing isoforms at a transcriptional level. Estimates for the ratio of dN/dS suggest that a strong purifying selection had acted upon protein-coding sequences of their orthologous UBE2D2, UBE2A, UBE2N, UBE2I and Rbx1 genes from animals, plants and fungi. The similar rates of synonymous substitutions are in accordance with the neutral mutation-random drift hypothesis of molecular evolution. Systematic detection of the origin and evolution of E2s, analyzing the evolution of E2 multigene families by gene duplications and the evolutionary processes of E2s during expansions, and testing its evolutionary force using E2s from distant phylogenetic lineages may advance our distinguishing of ancestral E2s from created E2s, and reveal previously unknown relationships between E2s and metazoan complexity. Analysis of these conserved proteins provides strong support for a close relationship between social amoeba and eukaryote, choanoflagellate and metazoan, and for the central roles of social amoeba and choanoflagellate in the origin and evolution of eukaryote and metazoan. Retracing the different stages of primate E2 exonization by monitoring genomic events over 63 Myr of primate evolution will advance our understanding of how TEs dynamically modified primate transcriptome and proteome in the past, and continue to do so.
Collapse
Affiliation(s)
- Muying Ying
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
22
|
Pearce MMP, Wormer DB, Wilkens S, Wojcikiewicz RJH. An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 2009; 284:10433-45. [PMID: 19240031 DOI: 10.1074/jbc.m809801200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How endoplasmic reticulum (ER) proteins that are substrates for the ER-associated degradation (ERAD) pathway are recognized for polyubiquitination and proteasomal degradation is largely unresolved. Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric calcium channels in ER membranes, whose primary role is to control the release of ER calcium stores, but whose levels are also regulated, in an activation-dependent manner, by the ERAD pathway. Here we report that the ER membrane protein SPFH1 and its homolog SPFH2 form a heteromeric approximately 2 MDa complex that binds to IP(3)R tetramers immediately after their activation and is required for their processing. The complex is ring-shaped (diameter approximately 250A(),) and RNA interference-mediated depletion of SPFH1 and SPFH2 blocks IP(3)R polyubiquitination and degradation. We propose that this novel SPFH1/2 complex is a recognition factor that targets IP(3)Rs and perhaps other substrates for ERAD.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Departments of Pharmacology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
23
|
Sliter DA, Kubota K, Kirkpatrick DS, Alzayady KJ, Gygi SP, Wojcikiewicz RJH. Mass spectrometric analysis of type 1 inositol 1,4,5-trisphosphate receptor ubiquitination. J Biol Chem 2008; 283:35319-28. [PMID: 18955483 DOI: 10.1074/jbc.m807288200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric channels in endoplasmic reticulum membranes of mammalian cells and mediate IP(3)-induced calcium mobilization. In response to various extracellular stimuli that persistently elevate IP(3) levels, IP(3) receptors are also ubiquitinated and then degraded by the proteasome. Here, for endogenous type 1 IP(3) receptor (IP(3)R1) activated by endogenous signaling pathways and processed by endogenous enzymes, we sought to determine the sites of ubiquitination and the composition of attached ubiquitin conjugates. Our findings are (i) that at least 11 of the 167 lysines in IP(3)R1 can be ubiquitinated and that these are clustered in the regulatory domain and are found in surface regions, (ii) that at least approximately 40% of the IP(3)R1-associated ubiquitin is monoubiquitin, (iii) that both Lys(48) and Lys(63) linkages are abundant in attached ubiquitin chains, and (iv) that Lys(63) linkages accumulate most rapidly. Additionally, we find that not all IP(3)R1 subunits in a tetramer are ubiquitinated and that nontetrameric IP(3)R1 complexes form as degradation proceeds, suggesting that ubiquitinated subunits may be selectively extracted and degraded. Overall, these data show that endogenous IP(3)R1 is tagged with an array of ubiquitin conjugates at multiple sites and that both IP(3)R1 ubiquitination and degradation are highly complex processes.
Collapse
Affiliation(s)
- Danielle A Sliter
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | |
Collapse
|
24
|
Sztretye M, Deli T, Szentesi P, Szigeti G, Csernoch L. Effect of TPEN on the calcium release of cultured C2C12 mouse myotubes. J Muscle Res Cell Motil 2008; 28:421-8. [DOI: 10.1007/s10974-008-9135-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 03/06/2008] [Indexed: 11/27/2022]
|
25
|
Pearce MMP, Wang Y, Kelley GG, Wojcikiewicz RJH. SPFH2 Mediates the Endoplasmic Reticulum-associated Degradation of Inositol 1,4,5-Trisphosphate Receptors and Other Substrates in Mammalian Cells. J Biol Chem 2007; 282:20104-15. [PMID: 17502376 DOI: 10.1074/jbc.m701862200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. Although it is clear that IP(3) receptors are polyubiquitinated upon activation and are transferred to the proteasome by a p97-based complex, currently nothing is known about the proteins that initially select activated IP(3) receptors for ERAD. Here, we sought to identify novel proteins that associate with and mediate the ERAD of endogenous activated IP(3) receptors. SPFH2, an uncharacterized SPFH domain-containing protein, rapidly associated with IP(3) receptors in a manner that preceded significant polyubiquitination and the association of p97 and related proteins. SPFH2 was found to be an ER membrane protein largely residing within the ER lumen and in resting and stimulated cells was linked to ERAD pathway components, apparently via endogenous substrates undergoing degradation. Suppression of SPFH2 expression by RNA interference markedly inhibited IP(3) receptor polyubiquitination and degradation and the processing of other ERAD substrates. Overall, these studies identify SPFH2 as a key ERAD pathway component and suggest that it may act as a substrate recognition factor.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Departments of Pharmacology and Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
26
|
Mbonye UR, Wada M, Rieke CJ, Tang HY, Dewitt DL, Smith WL. The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J Biol Chem 2006; 281:35770-8. [PMID: 17001073 DOI: 10.1074/jbc.m608281200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cyclooxygenase (COX) isoforms catalyze the committed step in prostaglandin biosynthesis. The primary structures of COX-1 and COX-2 are very similar except that COX-2 has a 19-amino acid (19-AA) segment of unknown function located just inside its C terminus. Here we provide evidence that the major role of the 19-AA cassette is to mediate entry of COX-2 into the ER-associated degradation system that transports ER proteins to the cytoplasm. COX-1 is constitutively expressed in many cells, whereas COX-2 is usually expressed inducibly and transiently. In murine NIH/3T3 fibroblasts, we find that COX-2 protein is degraded with a half-life (t(1/2)) of about 2 h, whereas COX-1 is reasonably stable (t(1/2) > 12 h); COX-2 degradation is retarded by 26 S proteasome inhibitors. Similarly, COX-1 expressed heterologously in HEK293 cells is quite stable (t(1/2) > 24 h), whereas COX-2 expressed heterologously is degraded with a t(1/2) of approximately 5 h, and its degradation is slowed by proteasome inhibitors. A deletion mutant of COX-2 was prepared lacking 18 residues of the 19-AA cassette. This mutant retains native COX-2 activity but, unlike native COX-2, is stable in HEK293 cells. Conversely, inserting the COX-2 19-AA cassette near the C terminus of COX-1 yields a mutant ins594-612 COX-1 that is unstable (t(1/2) approximately 3 h). Mutation of Asn-594, an N-glycosylation site at the beginning of the 19-AA cassette, stabilizes both COX-2 and ins594-612 COX-1; nonetheless, COX mutants that are glycosylated at Asn-594 but lack the remainder of the 19-amino acid cassette (i.e. del597-612 COX-2 and ins594-596 COX-1) are stable. Thus, although glycosylation of Asn-594 is necessary for COX-2 degradation, at least part of the remainder of the 19-AA insert is also required. Finally, kifunensine, a mannosidase inhibitor that can block entry of ER proteins into the ER-associated degradation system, retards COX-2 degradation.
Collapse
Affiliation(s)
- Uri R Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
27
|
Flierman D, Coleman CS, Pickart CM, Rapoport TA, Chau V. E2-25K mediates US11-triggered retro-translocation of MHC class I heavy chains in a permeabilized cell system. Proc Natl Acad Sci U S A 2006; 103:11589-94. [PMID: 16868077 PMCID: PMC1520313 DOI: 10.1073/pnas.0605215103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells expressing human cytomegalovirus US11 protein, newly synthesized MHC class I heavy chains (HCs) are rapidly dislocated from the endoplasmic reticulum (ER) and degraded in the cytosol, a process that is similar to ER-associated degradation (ERAD), the pathway used for degradation of misfolded ER proteins. US11-triggered movement of HCs into the cytosol requires polyubiquitination, but it is unknown which ubiquitin-conjugating and ubiquitin-ligase enzymes are involved. To identify the ubiquitin-conjugating enzyme (E2) required for dislocation, we used a permeabilized cell system, in which endogenous cytosol can be replaced by cow liver cytosol. By fractionating the cytosol, we show that E2-25K can serve as the sole E2 required for dislocation of HCs in vitro. Purified recombinant E2-25K, together with components that convert this E2 to the active E2-ubiquitin thiolester form, can substitute for crude cytosol. E2-25K cannot be replaced by the conjugating enzymes HsUbc7/Ube2G2 or Ube2G1, even though HsUbc7/Ube2G2 and its yeast homolog Ubc7p are known to participate in ERAD. The activity of E2-25K, as measured by ubiquitin dimer formation, is strikingly enhanced when added to permeabilized cells, likely by membrane-bound ubiquitin protein ligases. To identify these ligases, we tested RING domains of various ligases for their activation of E2-25K in vitro. We found that RING domains of gp78/AMFR, a ligase previously implicated in ERAD, and MARCHVII/axotrophin, a ligase of unknown function, greatly enhanced the activity of E2-25K. We conclude that in permeabilized, US11-expressing cells polyubiquitination of the HC substrate can be catalyzed by E2-25K, perhaps in cooperation with the ligase MARCHVII/axotrophin.
Collapse
Affiliation(s)
- Dennis Flierman
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Catherine S. Coleman
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Cecile M. Pickart
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University, Baltimore, MD 21205; and
| | - Tom A. Rapoport
- The Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or E-mail:
| | - Vincent Chau
- *Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- To whom correspondence may be addressed. E-mail:
or E-mail:
| |
Collapse
|
28
|
Oh RS, Bai X, Rommens JM. Human homologs of Ubc6p ubiquitin-conjugating enzyme and phosphorylation of HsUbc6e in response to endoplasmic reticulum stress. J Biol Chem 2006; 281:21480-21490. [PMID: 16720581 DOI: 10.1074/jbc.m601843200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme Ubc6p is a tail-anchored protein that is localized to the cytoplasmic face of the endoplasmic reticulum (ER) membrane and has been implicated in the degradation of many misfolded membrane proteins in yeast. We have undertaken characterization studies of two human homologs, hsUbc6 and hsUbc6e. Both possess tail-anchored protein motifs, display high conservation in their catalytic domains, and are functional ubiquitin-conjugating enzymes as determined by in vitro thiol-ester assay. Both also display induction by the unfolded protein response, a feature of many ER-associated degradation (ERAD) components. Post-translational modification involving phosphorylation of hsUbc6e was observed to be ER-stress-related and dependent on signaling of the PRK-like ER kinase (PERK). The phosphorylation site was mapped to Ser-184, which resides within the uncharacterized region linking the highly conserved catalytic core and the C-terminal transmembrane domain. Phosphorylation of hsUbc6e also did not alter stability, subcellular localization, or interaction with a partner ubiquitin-protein isopeptide ligase. Assays of hsUbc6e(S184D) and hsUbc6e(S184E), which mimic the phosphorylated state, suggest that phosphorylation may reduce capacity for forming ubiquitin-enzyme thiol-esters. The occurrence of two distinct Ubc6p homologs in vertebrates, including one with phosphorylation modification in response to ER stress, emphasizes diversity in function between these Ub-conjugating enzymes during ERAD processes.
Collapse
Affiliation(s)
- Ray S Oh
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Xinli Bai
- Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Johanna M Rommens
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
29
|
Choi SM, Choi KO, Lee N, Oh M, Park H. The zinc chelator, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine, increases the level of nonfunctional HIF-1α protein in normoxic cells. Biochem Biophys Res Commun 2006; 343:1002-8. [PMID: 16579968 DOI: 10.1016/j.bbrc.2006.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 11/26/2022]
Abstract
The hypoxia-inducible factor-1alpha (HIF-1alpha) subunit is activated in response to lack of oxygen. HIF-1alpha-specific prolyl hydroxylase and factor inhibiting HIF-1alpha (FIH-1) catalyze hydroxylation of the proline and asparagine residues of HIF-1alpha, respectively. The hydroxyproline then interacts with ubiquitin E3 ligase, the von Hippel-Lindau protein, leading to degradation of HIF-1alpha by ubiquitin-dependent proteasomes, while the hydroxylation of the asparagine residue prevents recruitment of the coactivator, cAMP-response element-binding protein (CBP), thereby decreasing the transactivation ability of HIF-1alpha. We found that the Zn-specific chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), enhances the activity of HIF-1alpha-proline hydroxylase 2 but the level of HIF-1alpha protein does not fall because TPEN also inhibits ubiquitination. Since the Zn chelator does not prevent FIH-1 from hydroxylating the asparagine residue of HIF-1alpha, its presence leads to the accumulation of HIF-1alpha that is both prolyl and asparaginyl hydroxylated and is therefore nonfunctional. In hypoxic cells, TPEN also prevents HIF-1alpha from interacting with CBP, so reducing expression of HIF-1alpha target genes. As a result, Zn chelation causes the accumulation of nonfunctional HIF-1alpha protein in both normoxia and hypoxia.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, 90 Cheonnong-dong, Tongdaemun-gu, Seoul 130-743, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Arai R, Yoshikawa S, Murayama K, Imai Y, Takahashi R, Shirouzu M, Yokoyama S. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7). Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:330-4. [PMID: 16582478 PMCID: PMC2222581 DOI: 10.1107/s1744309106009006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 03/10/2006] [Indexed: 11/10/2022]
Abstract
The human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) is involved in protein degradation, including a process known as endoplasmic reticulum-associated degradation (ERAD). The crystal structure of human UBE2G2/UBC7 was solved at 2.56 angstroms resolution. The UBE2G2 structure comprises a single domain consisting of an antiparallel beta-sheet with four strands, five alpha-helices and two 3(10)-helices. Structural comparison of human UBE2G2 with yeast Ubc7 indicated that the overall structures are similar except for the long loop region and the C-terminal helix. Superimposition of UBE2G2 on UbcH7 in a c-Cbl-UbcH7-ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way to UbcH7. In addition, the extra loop region of UBE2G2 may interact with the RING domain or its neighbouring region and may be involved in the binding specificity and stability.
Collapse
Affiliation(s)
- Ryoichi Arai
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Seiko Yoshikawa
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
| | - Kazutaka Murayama
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
- Tohoku University Biomedical Engineering Research Organization, Aoba, Sendai 980-8575, Japan
| | - Yuzuru Imai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Ryosuke Takahashi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Mikako Shirouzu
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | - Shigeyuki Yokoyama
- Protein Research Group, RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Correspondence e-mail:
| |
Collapse
|
31
|
Kikkert M, Hassink G, Wiertz E. The role of the ubiquitination machinery in dislocation and degradation of endoplasmic reticulum proteins. Curr Top Microbiol Immunol 2006; 300:57-93. [PMID: 16573237 DOI: 10.1007/3-540-28007-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitination is essential for the dislocation and degradation of proteins from the endoplasmic reticulum (ER). How exactly this is regulated is unknown at present. This review provides an overview of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) with a role in the degradation of ER proteins. Their structure and functions are described, as well as their mutual interactions. Substrate specificity and functional redundancy of E3 ligases are discussed, and other components of the ER degradation machinery that may associate with the ubiquitination system are reviewed.
Collapse
Affiliation(s)
- M Kikkert
- Department of Medical Microbiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | |
Collapse
|
32
|
Bhanumathy CD, Nakao SK, Joseph SK. Mechanism of Proteasomal Degradation of Inositol Trisphosphate Receptors in CHO-K1 Cells. J Biol Chem 2006; 281:3722-30. [PMID: 16316991 DOI: 10.1074/jbc.m509966200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs. Employing caspase-3 for IP3R cleavage, we show that Cch promotes polyubiquitination in the N-terminal domain and monoubiquitination in the C-terminal domain. The addition of extracellular Ca2+ to Ca2+-depleted Chinese hamster ovary (CHO) cells initiates IP3R degradation provided Cch is present. This effect is inhibited by thapsigargin. The data suggest that both a sustained elevation of IP3 and a minimal content of Ca2+ in the endoplasmic reticulum lumen is required to initiate IP3R degradation. Transient transfection of IP3R constructs into CHO cells indicated the selective degradation of only the SI+ splice variant of the type I IP3R. This was also the splice form present endogenously in these cells. A pore-defective, nonfunctional SI+ IP3R mutant (D2550A) was also degraded in Cch-stimulated cells. The Cch-mediated response in CHO cells provides a convenient model system to further analyze the Ca2+ dependence and structural requirements of the IP3R proteasomal degradation pathway.
Collapse
Affiliation(s)
- Cunnigaiper D Bhanumathy
- Department of Pathology, Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
33
|
Reyes LF, Sommer CA, Beltramini LM, Henrique-Silva F. Expression, purification, and structural analysis of HISUBE2G2 (human ubiquitin-conjugating enzyme). Protein Expr Purif 2006; 45:324-8. [PMID: 16214370 DOI: 10.1016/j.pep.2005.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/29/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
The ubiquitin system represents a selective mechanism for intracellular proteolysis in eukaryotic cells that involves the sequential activity of three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3). The identification of these proteins and their cellular targets, as well as structural data, are essential to understanding how this system operates in the eukaryotic cell. In the present study, the open reading frame of the human ubiquitin-conjugating enzyme UBE2G2 was isolated from a human brain cDNA panel, cloned into pET28a vector and expressed in Escherichia coli. The His-tagged protein was then purified through nickel-affinity chromatography and subjected to structural and functional studies using circular dichroism (CD) and an in vitro ubiquitin-binding assay, respectively. Our results showed that the production of the HISUBE2G2 protein in bacteria, carried out with 0.1 mM of IPTG at 30 degrees C, was successfully achieved, rendering high concentrations of soluble, pure and stable enzyme after a single purification step. The recombinant protein was able to bind ubiquitin molecules when exposed to a HeLa cell extract during the ubiquitin assay. Moreover, the fact that HISUBE2G2 was expressed in its active form is supported by the typical alpha/beta secondary structure specific to other class I E2 enzymes displayed during the CD assay.
Collapse
Affiliation(s)
- Luis F Reyes
- Laboratório de Biologia Molecular, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
34
|
Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A 2006; 103:341-6. [PMID: 16407162 PMCID: PMC1326157 DOI: 10.1073/pnas.0506618103] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient targeting of proteins for degradation from the secretory pathway is essential to homeostasis. This occurs through endoplasmic reticulum (ER)-associated degradation (ERAD). In this study, we establish that a human ubiquitin ligase (E3), gp78, and a specific E2, Ube2g2, are both critically important for ERAD of multiple substrates. gp78 exhibits a complex domain structure that, in addition to the RING finger, includes a ubiquitin-binding Cue domain and a specific binding site for Ube2g2. Disruption of either of these domains abolishes gp78-mediated ubiquitylation and protein degradation, resulting in accumulation of substrates in their fully glycosylated forms in the ER. This suggests that gp78-mediated ubiquitylation is an early step in ERAD that precedes dislocation of substrates from the ER. The in vivo requirement for both an E2-binding site distinct from the RING finger and a ubiquitin-binding domain intrinsic to an E3 suggests a previously unappreciated level of complexity in ubiquitin ligase function. These results also provide proof of principle that interrupting a specific E2-E3 interaction can selectively inhibit ERAD.
Collapse
Affiliation(s)
- Bo Chen
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, Building 560, Room 22-103, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Ubiquitylation (i.e., covalent attachment of ubiquitin moieties to proteins) of ion channels allows regulation of their activity and fate. Nedd4/Nedd4-like ubiquitin-protein ligases bind to, ubiquitylate, and modulate the internalization of several channels bearing PY motifs, whereas endoplasmic reticulum-associated degradation (involving ubiquitylation) plays an important role in the biogenesis of normal and defective channels.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Pharmacology and Toxicology, University of Lausanne, Switzerland.
| | | |
Collapse
|
36
|
Alzayady KJ, Panning MM, Kelley GG, Wojcikiewicz RJH. Involvement of the p97-Ufd1-Npl4 complex in the regulated endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 2005; 280:34530-7. [PMID: 16103111 PMCID: PMC1483127 DOI: 10.1074/jbc.m508890200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric, IP(3)-gated channels in endoplasmic reticulum membranes that govern the release of Ca(2+) from this organelle. In response to activation of certain G protein-coupled receptors that persistently elevate IP(3) concentration, IP(3) receptors are ubiquitinated and degraded by the ubiquitin-proteasome pathway. IP(3) receptor ubiquitination is mediated by the ubiquitin-conjugating enzyme, (mam)Ubc7, a component of the endoplasmic reticulum-associated degradation pathway. However, the mechanism by which ubiquitinated IP(3) receptors are transferred to the proteasome is not known. Here, we examine this process and show in several mammalian cell types that the ATPase p97 associates with IP(3) receptors in response to hormonal stimuli that induce IP(3) receptor ubiquitination. To examine the functional relevance of the p97 interaction with IP(3) receptors, we stably and specifically reduced p97 protein levels by 62 +/- 3% in Rat-1 fibroblasts using RNA interference. In these cells, endothelin-1-induced IP(3) receptor degradation was markedly retarded and the accumulation of ubiquitinated IP(3) receptors was markedly enhanced. These effects were reversed by expression of exogenous p97. In addition, Ufd1 and Npl4, which complex with p97, also associated with IP(3) receptors upon hormonal stimulation. We conclude that the p97-Ufd1-Npl4 complex couples ubiquitinated IP(3) receptors to proteasomal degradation and, thus, plays a key role in IP(3) receptor processing. These data also establish that the p97-Ufd1-Npl4 complex mediates endoplasmic reticulum-associated degradation in mammalian cells.
Collapse
Affiliation(s)
| | | | - Grant G. Kelley
- Medicine, SUNY Upstate Medical University, Syracuse, New York 13210-2339
| | | |
Collapse
|
37
|
Abstract
The three iodothyronine deiodinases catalyze the initiation (D1, D2) and termination (D3) of thyroid hormone effects in vertebrates. A recently conceived three-dimensional model predicts that these enzymes share a similar structural organization and belong to the thioredoxin (TRX) fold superfamily. Their active center is a selenocysteine- containing pocket defined by the beta1-alpha1-beta2 motifs of the TRX fold and a domain that shares strong similarities with the active site of iduronidase, a member of the clan GH-A fold of glycoside hydrolases. All three deiodinases form homodimers through disulfide bridges when transiently expressed but because these enzymes are present at such low levels in vivo, it is not clear if deiodinase dimers are formed at endogenous levels. At least for D1 and D2, dimers are catalytically active but only one monomer partner is required for catalytic activity. While D1 and D3 are long-lived plasma membrane proteins (t1/2 10-12 hour), D2 is an endoplasmic reticulum resident protein with a half-life of approximately 40 minutes. Exposure to thyroxine (T4) shortens D2 half-life even further ( approximately 10 min) while during hypo-thyroidism D2 activity disappears with a halflife of approximately 5 hours. This D2 inactivating mechanism is mediated by selective conjugation to ubiquitin, a process that is accelerated by T(4) catalysis and thus maintains local triiodothyronine (T(3)) homeostasis. Remarkably, D2 ubiquitination is reversible and activity restored after deubiquitination. This is because D2 interacts with and is a substrate of the pVHL-interacting deubiquitinating enzymes (VDU1 and VDU2), and thus the ubiquitination-deubiquitination cycles regulates the supply of active thyroid hormone in D2-expressing cells.
Collapse
Affiliation(s)
- Antonio C Bianco
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
38
|
Escobar MA, Hoelz DJ, Sandoval JA, Hickey RJ, Grosfeld JL, Malkas LH. Profiling of nuclear extract proteins from human neuroblastoma cell lines: the search for fingerprints. J Pediatr Surg 2005; 40:349-58. [PMID: 15750928 DOI: 10.1016/j.jpedsurg.2004.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Neuroblastoma (NB) commonly presents with advanced disease at diagnosis and is associated with poor survival. If identified early, however, survival is improved suggesting a benefit of early detection. The authors have used proteomics technology in an attempt to identify novel markers that permit early detection of NB and characterize its molecular makeup. METHODS Three different human NB cell lines SK-N-AS, SK-N-DZ, and SK-N-FI were subjected to series of biochemical fractionation steps to extract nuclear proteins. These proteins were analyzed for differential expression by 2-dimensional polyacrylamide gel electrophoresis. Polypeptides of interest were subsequently identified by liquid chromatography-linked tandem mass spectrometry. RESULTS Multiple proteins were identified in these human NB cell lines including SET (a ubiquitous nuclear protein), stathmin (a cytosolic signal transduction protein), and grp94 (a heat shock protein). SET is a putative oncogene associated with the chromosomal translocation (6;9) leading to acute undifferentiated leukemia. Stathmin is an oncogene found in greater abundance in leukemic cells compared to nonleukemic cells. A total of 94-kDa glucose-regulated protein has been shown to be protective in human breast cancer cells in vitro and related with the occurrence, differentiation, and progression of human lung cancer. The first protein has not been previously associated with NB. CONCLUSIONS The identification of these 3 previously unrecognized cancer-related potential biomarkers in human NB cell lines may prove useful in developing diagnostic tests. The proteomic methodology of 2-dimensional polyacrylamide gel electrophoresis/mass spectrometry also provides an improved opportunity to understand the natural history of NB and develop novel chemotherapeutic agents for this prevalent childhood malignancy with a dismal outcome.
Collapse
Affiliation(s)
- Mauricio A Escobar
- Section of Pediatric Surgery, Department of Surgery, Riley Children's Hospital, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
39
|
Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 2004; 101:17616-21. [PMID: 15598740 PMCID: PMC539732 DOI: 10.1073/pnas.0408134101] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an expansion in the number of polyglutamine-encoding CAG repeats in the gene that encodes the huntingtin (htt) protein. A property of the mutant protein that is intimately involved in the development of the disease is the propensity of the glutamine-expanded protein to misfold and generate an N-terminal proteolytic htt fragment that is toxic and prone to aggregation. Intracellular antibodies (intrabodies) against htt have been shown to reduce htt aggregation by binding to the toxic fragment and inactivating it or preventing its misfolding. Intrabodies may therefore be a useful gene-therapy approach to treatment of the disease. However, high levels of intrabody expression have been required to obtain even limited reductions in aggregation. We have engineered a single-domain intracellular antibody against htt for robust aggregation inhibition at low expression levels by increasing its affinity in the absence of a disulfide bond. Furthermore, the engineered intrabody variable light-chain (V(L))12.3, rescued toxicity in a neuronal model of HD. We also found that V(L)12.3 inhibited aggregation and toxicity in a Saccharomyces cerevisiae model of HD. V(L)12.3 is significantly more potent than earlier anti-htt intrabodies and is a potential candidate for gene therapy treatment for HD. To our knowledge, this is the first attempt to improve affinity in the absence of a disulfide bond to improve intrabody function. The demonstrated importance of disulfide bond-independent binding for intrabody potency suggests a generally applicable approach to the development of effective intrabodies against other intracellular targets.
Collapse
Affiliation(s)
- David W Colby
- Department of Chemical Engineering and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Q, Farah M, Webster JM, Wojcikiewicz RJ. Bortezomib rapidly suppresses ubiquitin thiolesterification to ubiquitin-conjugating enzymes and inhibits ubiquitination of histones and type I inositol 1,4,5-trisphosphate receptor. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1263.3.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The proteasome inhibitor bortezomib is an emerging anticancer agent. Although the proteasome is clearly its locus of action, the early biochemical consequences of bortezomib treatment are poorly defined. Here, we show in cultured cells that bortezomib and other proteasome inhibitors rapidly inhibit free ubiquitin levels and ubiquitin thiolesterification to ubiquitin-conjugating enzymes. Inhibition of thiolesterification correlated with a reduction in the ubiquitination of certain substrates, exemplified by a dramatic decline in histone monoubiquitination and a decrease in the rate of inositol 1,4,5-trisphosphate receptor polyubiquitination. Thus, in addition to the expected effect of blocking the degradation of polyubiquitinated substrates, bortezomib can also inhibit ubiquitination. The effect of bortezomib on histone monoubiquitination may contribute to its therapeutic actions.
Collapse
Affiliation(s)
- Qun Xu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Michelle Farah
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Jack M. Webster
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| | - Richard J.H. Wojcikiewicz
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York
| |
Collapse
|
41
|
Bianco AC. Triplets! Unexpected structural similarity among the three enzymes that catalyze initiation and termination of thyroid hormone effects. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2004; 48:16-24. [PMID: 15611815 DOI: 10.1590/s0004-27302004000100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The three iodothyronine deiodinases catalyze the initiation (D1, D2) and termination (D3) of thyroid hormone effects in vertebrates. A recently conceived 3-dimensional model predicts that these enzymes share a similar structural organization and belong to the thioredoxin (TRX) fold superfamily. Their active center is a selenocysteine-containing pocket defined by the beta1-alpha1-beta2 motifs of the TRX fold and a domain that shares strong similarities with the active site of iduronidase, a member of the clan GH-A fold of glycoside hydrolases. While D1 and D3 are long-lived plasma membrane proteins, D2 is an endoplasmic reticulum resident protein with a half-life of only 20 min. D2 inactivation is mediated by selective UBC-7-mediated conjugation to ubiquitin, a process that is accelerated by T4 catalysis, thus maintaining local T3 homeostasis. In addition, D2 interacts with and is a substrate of the pVHL-interacting deubiquitinating enzymes (VDU1 and VDU2); thus deubiquitination regulates the supply of active thyroid hormone in D2-expressing cells.
Collapse
Affiliation(s)
- Antonio C Bianco
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
42
|
Wojcikiewicz RJH. Regulated ubiquitination of proteins in GPCR-initiated signaling pathways. Trends Pharmacol Sci 2004; 25:35-41. [PMID: 14723977 DOI: 10.1016/j.tips.2003.11.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transmission of information through G-protein-coupled receptor (GPCR)-initiated signaling pathways is modulated in several ways. Although phosphorylation of some of the proteins that populate these pathways is a well-known modulatory process, recent studies have shown that signaling proteins can also undergo regulated ubiquitination in response to GPCR activation, with diverse consequences. To date, three GPCRs, some of their associated proteins and certain downstream mediators, notably inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] receptors, have been shown to be ubiquitinated following GPCR activation. Regulated ubiquitination causes proteasomal degradation of Ins(1,4,5)P(3) receptors and appears to control GPCR endocytosis and trafficking. Defining the roles of ubiquitination in GPCR-mediated signaling is an important task because novel drugs that perturb the ubiquitin-proteasome pathway are now being approved as therapeutic agents.
Collapse
Affiliation(s)
- Richard J H Wojcikiewicz
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210-2339, USA.
| |
Collapse
|