1
|
Gentile G, De Stefano F, Sorrentino C, D'Angiolo R, Lauretta C, Giovannelli P, Migliaccio A, Castoria G, Di Donato M. Androgens as the "old age stick" in skeletal muscle. Cell Commun Signal 2025; 23:167. [PMID: 40181329 PMCID: PMC11969971 DOI: 10.1186/s12964-025-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Aging is associated with a reduction in skeletal muscle fiber size and number, leading to a decline in physical function and structural integrity-a condition known as sarcopenia. This syndrome is further characterized by elevated levels of inflammatory mediators that promote skeletal muscle catabolism and reduce anabolic signaling.Androgens are involved in various biological processes, including the maintenance, homeostasis and trophism of skeletal muscle mass. The decline in androgen levels contributes, indeed, to androgen deficiency in aging people. Such clinical syndrome exacerbates the muscle loss and fosters sarcopenia progression. Nevertheless, the mechanism(s) by which the reduction in androgen levels influences sarcopenia risk and progression remains debated and the therapeutic benefits of androgen-based interventions are still unclear. Given the significant societal and economic impacts of sarcopenia, investigating the androgen/androgen receptor axis in skeletal muscle function is essential to enhance treatment efficacy and reduce healthcare costs.This review summarizes current knowledge on the role of male hormones and their-dependent signaling pathways in sarcopenia. We also highlight the cellular and molecular features of this condition and discuss the mechanisms by which androgens preserve the muscle homeostasis. The pros and cons of clinical strategies and emerging therapies aimed at mitigating muscle degeneration and aging-related decline are also presented.
Collapse
Affiliation(s)
- Giulia Gentile
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Ferdinando De Stefano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Carmela Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Rosa D'Angiolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Carmine Lauretta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy.
| |
Collapse
|
2
|
Yao M, Rosario ER, Soper JC, Pike CJ. Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase-Protein Kinase B-Glycogen Synthase Kinase 3β Signaling. Neuroscience 2025; 568:503-518. [PMID: 35777535 PMCID: PMC9797620 DOI: 10.1016/j.neuroscience.2022.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022]
Abstract
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease (AD). How testosterone modulates AD risk remains to be fully elucidated, although regulation of tau phosphorylation has been suggested as a contributing protective action. To investigate the relationship between testosterone and tau phosphorylation, we first evaluated the effect of androgen status on tau phosphorylation in 3xTg-AD mice. Depletion of endogenous androgens via gonadectomy resulted in increased tau phosphorylation that was prevented by acute testosterone treatment. Parallel alterations in the phosphorylation of both glycogen synthase kinase 3β (GSK3β) and protein kinase B (Akt) suggest possible components of the underlying signaling pathway. To further explore mechanism, primary cultured neurons were treated with a physiological concentration of testosterone or its active metabolite dihydrotestosterone (DHT). Results showed that testosterone and DHT induced significant decreases in phosphorylated tau and significant increases in phosphorylation of Akt and GSK3β. Pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) effectively inhibited androgen-induced increases in Akt and GSK3β phosphorylation, and decreases in tau phosphorylation. In addition, androgen receptor (AR) knock-down by small interfering RNA prevented androgen-induced changes in the phosphorylation of Akt, GSK3β and tau, suggesting an AR-dependent mechanism. Additional experiments demonstrated androgen-induced changes in Akt, GSK3β and tau phosphorylation in AR-expressing PC12 cells but not in AR-negative PC12 cells. Together, these results suggest an AR-dependent pathway involving PI3K-Akt-GSK3β signaling through which androgens can reduce tau phosphorylation. These findings identify an additional protective mechanism of androgens that can improve neural health and inhibit development of AD.
Collapse
Affiliation(s)
- Mingzhong Yao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily R Rosario
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Carroll Soper
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Kheradkhah G, Sheibani M, Kianfar T, Toreyhi Z, Azizi Y. A comprehensive review on the effects of sex hormones on chemotherapy-induced cardiotoxicity: are they lucrative or unprofitable? CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:86. [PMID: 39627907 PMCID: PMC11613924 DOI: 10.1186/s40959-024-00293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Chemotherapy is one of the routine treatment for preventing rapid growth of the tumor cells. However, chemotherapeutic agents, especially doxorubicin cause damages to the normal cells especially cardiomyocytes. Cardiotoxicity induced by chemotherapeutic drugs lead to the myocardial cell injury and finally causes left ventricular dysfunction. It seems that there were some differences in the severity of cardiovascular side effects of drugs used in the treatment of cancers. Sex hormones in male and female play crucial roles in cardiovascular development and physiological function of the heart and blood vessels. Gender differences and sex-specific hormones influence various aspects of cardiovascular health, including ventricular function, mitochondrial autophagy, and the development of abdominal aortic aneurysms. The most important gender related hormones are LH, FSH, testosterone, estrogen, progesterone, prolactin and oxytocin. They exert very important cardiovascular effects via different signaling mechanisms. Sex related hormones are also important in the cardiovascular side effects of chemotherapeutic agents, so that chronic cardiotoxicity induced by anthracyclines is more common in women. During different stages of life (before, during, and after sexual life), the levels of these hormones will be changed. This alterations can affect cardiovascular function during physiological conditions and pathological process. Because of the importance of the sex related hormones in the cardiac function, in this review we tried to comprehensively elucidate the role of these physiological hormones in cardiotoxicity induced by chemotherapeutic agents with emphasizing their signaling mechanisms.
Collapse
Affiliation(s)
- Golnaz Kheradkhah
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tina Kianfar
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Toreyhi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Barker RM, Chambers A, Kehoe PG, Rowe E, Perks CM. Untangling the role of tau in sex hormone responsive cancers: lessons learnt from Alzheimer's disease. Clin Sci (Lond) 2024; 138:1357-1369. [PMID: 39469929 PMCID: PMC11522895 DOI: 10.1042/cs20230317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Tubulin associated unit has been extensively studied in neurodegenerative diseases including Alzheimer's disease (AD), whereby its hyperphosphorylation and accumulation contributes to disease pathogenesis. Tau is abundantly expressed in the central nervous system but is also present in non-neuronal tissues and in tumours including sex hormone responsive cancers such as breast and prostate. Curiously, hormonal effects on tau also exist in an AD context from numerous studies on menopause, hormone replacement therapy, and androgen deprivation therapy. Despite sharing some risk factors, most importantly advancing age, there are numerous reports from population studies of, currently poorly explained inverse associations between cancer and Alzheimer's disease. We previously reviewed important components of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signalling pathway and their differential modulation in relation to the two diseases. Similarly, receptor tyrosine kinases, estrogen receptor and androgen receptor have all been implicated in the pathogenesis of both cancer and AD. In this review, we focus on tau and its effects in hormone responsive cancer in terms of development, progression, and treatment and in relation to sex hormones and PI3K/Akt signalling molecules including IRS-1, PTEN, Pin1, and p53.
Collapse
Affiliation(s)
- Rachel M. Barker
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Alfie Chambers
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Patrick G. Kehoe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | - Edward Rowe
- Dementia Research Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning & Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK
| |
Collapse
|
5
|
Huber AK, Kaczorowski A, Schneider F, Böning S, Görtz M, Langhoff D, Schwab C, Stenzinger A, Hohenfellner M, Duensing A, Duensing S. Digital spatial profiling identifies the tumor center as a topological niche in prostate cancer characterized by an upregulation of BAD. Sci Rep 2024; 14:20281. [PMID: 39217197 PMCID: PMC11366015 DOI: 10.1038/s41598-024-71070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer is characterized by a high degree of intratumoral heterogeneity. However, little is known about the spatial distribution of cancer cells with respect to specific functional characteristics and the formation of spatial niches. Here, we used digital spatial profiling (DSP) to investigate differences in protein expression in the tumor center versus the tumor periphery. Thirty-seven regions of interest were analyzed for the expression of 47 proteins, which included components of the PI3K-AKT, MAPK, and cell death signaling pathways as well as immune cell markers. A total of 1739 data points were collected from five patients. DSP identified the BCL-2 associated agonist of cell death (BAD) protein as the most significantly upregulated protein in the tumor center. BAD upregulation was confirmed by conventional immunohistochemistry, which furthermore showed a phosphorylation of BAD at serine 112 indicating its inactivation. Knockdown of BAD in prostate cancer cells in vitro led to decreased cell viability and colony growth. Clinically, high BAD expression was associated with a shorter time to biochemical recurrence in 158 mostly high-risk prostate cancer patients. Collectively, our results suggest that the tumor center is a topological niche with high BAD expression that may drive prostate cancer progression.
Collapse
Affiliation(s)
- Ann-Kathrin Huber
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Felix Schneider
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Sarah Böning
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Magdalena Görtz
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - David Langhoff
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Yingsunthonwattana W, Sangsuriya P, Supungul P, Tassanakajon A. Litopenaeus vannamei heat shock protein 90 (LvHSP90) interacts with white spot syndrome virus protein, WSSV322, to modulate hemocyte apoptosis during viral infection. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109695. [PMID: 38871140 DOI: 10.1016/j.fsi.2024.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
As cellular chaperones, heat shock protein can facilitate viral infection in different steps of infection process. Previously, we have shown that the suppression of Litopenaeus vannamei (Lv)HSP90 not only results in a decline of white spot syndrome virus (WSSV) infection but also induces apoptosis in shrimp hemocyte cells. However, the mechanism underlying how LvHSP90 involved in WSSV infection remains largely unknown. In this study, a yeast two-hybrid assay and co-immunoprecipitation revealed that LvHSP90 interacts with the viral protein WSSV322 which function as an anti-apoptosis protein. Recombinant protein (r) LvHSP90 and rWSSV322 inhibited cycloheximide-induced hemocyte cell apoptosis in vitro. Co-silencing of LvHSP90 and WSSV322 in WSSV-infected shrimp led to a decrease in expression level of viral replication marker genes (VP28, ie-1) and WSSV copy number, while caspase 3/7 activity was noticeably induced. The number of apoptotic cells, confirmed by Hoechst 33342 staining assay and annexin V/PI staining, was significantly higher in LvHSP90 and WSSV322 co-silenced-shrimp than the control groups. Moreover, the co-silencing of LvHSP90 and WSSV322 triggered apoptosis by the mitochondrial pathway, resulting in the upregulation of pro-apoptotic protein expression (bax) and the downregulation of anti-apoptotic protein expression (bcl, Akt). This process also involved the release of cytochrome c (CytC) from the mitochondria and a decrease in mitochondrial membrane potential (MMP). These findings suggest that LvHSP90 interacts with WSSV322 to facilitate viral replication by inhibiting host apoptosis during WSSV infection.
Collapse
Affiliation(s)
- Warumporn Yingsunthonwattana
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Osei-Ntansah A, Oliver T, Lofton T, Falzarano C, Carr K, Huang R, Wilson A, Damaser E, Harvey G, Rahman MA, Andrisse S. Liver Androgen Receptor Knockout Improved High-fat Diet Induced Glucose Dysregulation in Female Mice But Not Male Mice. J Endocr Soc 2024; 8:bvae021. [PMID: 38425436 PMCID: PMC10904101 DOI: 10.1210/jendso/bvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 03/02/2024] Open
Abstract
Previous research has indicated that liver androgen receptors may play a role in modulating disease. This study aims to investigate the pathophysiology of high-fat diet (HFD) induced dysglycemia in male and female liver androgen receptor knockout (LivARKO) mice. We performed metabolic tests on LivARKO female and male mice fed a HFD or a control diet (from Research Diets Inc.) during months 1 or 2 after starting the diet. Additionally, we performed Western blot and quantitative real-time PCR analysis on the livers of the mice to examine intermediates in the insulin signaling pathway. LivARKO-HFD female mice displayed no difference in glucose tolerance compared to female LivARKO-Control (Con) mice, whereas in wild-type female mice, HFD impaired glucose tolerance (IGT). Our data suggests that starting at 1 month, LivARKO may be protecting female mice from HFD-induced metabolic dysfunction. LivARKO-HFD female mice displayed significantly worse insulin sensitivity at 15 minutes compared to LivARKO-Con female mice, but, strangely, LivARKO-HFD female mice had significantly better insulin sensitivity at 60 and 90 minutes compared to LivARKO-Con female mice. Despite protecting against IGT, LivARKO did not protect against HFD-induced hyperinsulinemia in female mice. In contrast to females, male LivARKO-HFD mice displayed impaired glucose tolerance compared to male LivARKO-Con mice. Thus, LivARKO is not protective against HFD-induced glucose metabolic dysfunction in male mice. Lastly, LivARKO-HFD female mice maintained hepatic insulin sensitivity whereas LivARKO-HFD male mice displayed hepatic insulin resistance. These findings suggest that LivARKO delayed the onset of HFD-induced dysglycemia in female mice.
Collapse
Affiliation(s)
- Adjoa Osei-Ntansah
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Trinitee Oliver
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Taylor Lofton
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Claire Falzarano
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Kiana Carr
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Ruthe Huang
- From Prison Cells To PhD, Baltimore, MD 21224, USA
| | - Andre Wilson
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Ella Damaser
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Guyton Harvey
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Md Ahasanur Rahman
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Stanley Andrisse
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
8
|
Hosoi T, Yakabe M, Hashimoto S, Akishita M, Ogawa S. The roles of sex hormones in the pathophysiology of age-related sarcopenia and frailty. Reprod Med Biol 2024; 23:e12569. [PMID: 38476959 PMCID: PMC10927916 DOI: 10.1002/rmb2.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Background Sarcopenia is an age-related condition characterized by a progressive and systemic decline in skeletal muscle mass, quality, and strength. The incidence of sarcopenia contains sex-specific aspects, indicating the contribution of sex hormones to its pathophysiology. This review focuses on changing trends in sarcopenia, discusses alterations in definitions and diagnostic criteria, and emphasizes the association between sarcopenia and sex hormones. Methods A literature search was performed on PubMed for related articles published between 1997 and December 2023 using appropriate keywords. Main Findings Results Advances in research have emphasized the significance of muscle quality and strength over muscle mass, resulting in new diagnostic criteria for sarcopenia. Androgens demonstrated anabolic effects on skeletal muscles and played a significant role in the pathophysiology of sarcopenia. In clinical settings, androgen replacement therapy has exhibited certain positive outcomes for treating sarcopenia, despite concerns about potential side effects. Conversely, estrogen is involved in skeletal muscle maintenance, but the detailed mechanisms remain unclear. Moreover, results regarding the clinical application of estrogen replacement therapy for treating sarcopenia remained inconsistent. Conclusion The elucidation of molecular mechanisms that involve sex hormones is eagerly awaited for novel therapeutic interventions for sarcopenia.
Collapse
Affiliation(s)
- Tatsuya Hosoi
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Seiji Hashimoto
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Masahiro Akishita
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Sumito Ogawa
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
9
|
Quintero JC, Díaz NF, Rodríguez-Dorantes M, Camacho-Arroyo I. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression. Int J Mol Sci 2023; 24:15085. [PMID: 37894767 PMCID: PMC10606328 DOI: 10.3390/ijms242015085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.
Collapse
Affiliation(s)
- Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
10
|
Shabbir S, Khurram E, Moorthi VS, Eissa YTH, Kamal MA, Butler AE. The interplay between androgens and the immune response in polycystic ovary syndrome. J Transl Med 2023; 21:259. [PMID: 37062827 PMCID: PMC10105935 DOI: 10.1186/s12967-023-04116-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic-reproductive-endocrine disorder that, while having a genetic component, is known to have a complex multifactorial etiology. As PCOS is a diagnosis of exclusion, standardized criteria have been developed for its diagnosis. The general consensus is that hyperandrogenism is the primary feature of PCOS and is associated with an array of physiological dysfunctions; excess androgens, for example, have been correlated with cytokine hypersecretion, adipocyte proliferation, and signaling pathway dysregulation. Another key feature of PCOS is insulin resistance, resulting in aberrant glucose and fatty acid metabolism. Additionally, the immune system plays a key role in PCOS. Hyperandrogenism stimulates some immune cells while it inhibits others, thereby disrupting the normal balance of immune cells and creating a state of chronic inflammation. This low-grade inflammation could contribute to infertility since it induces ovarian dysfunction. This dysregulated immune response in PCOS exhibits autoimmunity characteristics that require further investigation. This review paper examines the relationship between androgens and the immune response and how their malfunction contributes to PCOS.
Collapse
Affiliation(s)
- Sania Shabbir
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Emaan Khurram
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | | | | | - Mohammad Azhar Kamal
- Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
- Department of Pharmaceutics, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | |
Collapse
|
11
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
12
|
Gjorgoska M, Rizner TL. Integration of androgen hormones in endometrial cancer biology. Trends Endocrinol Metab 2022; 33:639-651. [PMID: 35879182 DOI: 10.1016/j.tem.2022.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Endometrial cancer (EC) is a gynecological pathology that affects the uterine inner lining. In recent years, genomic studies revealed continually evolving mutational landscapes of endometrial tumors that hold great potential for tailoring therapeutic strategies. This review aims to broaden our knowledge of EC biology by focusing on the role of androgen hormones. First, we discuss epidemiological evidence implicating androgens with EC pathogenesis and cover their biosynthesis and metabolism to bioactive 11-oxyandrogens. Next, we explore the endometrial tumor tissue and the altered microbiota as alternative sources of androgens and their 11-oxymetabolites in EC patients. Finally, we discuss the biological significance of androgens' genomic and nongenomic signaling as part of a medley of pathways ultimately deciding the fate of cells.
Collapse
Affiliation(s)
- Marija Gjorgoska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanisnik Rizner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Chakraborty G, Nandakumar S, Hirani R, Nguyen B, Stopsack KH, Kreitzer C, Rajanala SH, Ghale R, Mazzu YZ, Pillarsetty NVK, Mary Lee GS, Scher HI, Morris MJ, Traina T, Razavi P, Abida W, Durack JC, Solomon SB, Vander Heiden MG, Mucci LA, Wibmer AG, Schultz N, Kantoff PW. The Impact of PIK3R1 Mutations and Insulin-PI3K-Glycolytic Pathway Regulation in Prostate Cancer. Clin Cancer Res 2022; 28:3603-3617. [PMID: 35670774 PMCID: PMC9438279 DOI: 10.1158/1078-0432.ccr-21-4272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bastien Nguyen
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konrad H. Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christoph Kreitzer
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Romina Ghale
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Z. Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tiffany Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeremy C. Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen B. Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andreas G. Wibmer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Philip W. Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
14
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
15
|
Molecular Regulation of Androgen Receptors in Major Female Reproductive System Cancers. Int J Mol Sci 2022; 23:ijms23147556. [PMID: 35886904 PMCID: PMC9322163 DOI: 10.3390/ijms23147556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
There are three main types of cancer in the female reproductive system, specifically ovarian cancer (OVCA), endometrial cancer (EC), and cervical cancer (CC). They are common malignant tumors in women worldwide, with high morbidity and mortality. In recent years, androgen receptors (ARs) have been found to be closely related to the occurrence, progression, prognosis, and drug resistance of these three types of tumors. This paper summarizes current views on the role of AR in female reproductive system cancer, the associations between female reproductive system cancers and AR expression and polymorphisms. AR regulates the downstream target genes transcriptional activity and the expression via interacting with coactivators/corepressors and upstream/downstream regulators and through the gene transcription mechanism of “classical A/AR signaling” or “non-classical AR signaling”, involving a large number of regulatory factors and signaling pathways. ARs take part in the processes of cancer cell proliferation, migration/invasion, cancer cell stemness, and chemotherapeutic drug resistance. These findings suggest that the AR and related regulators could target the treatment of female reproductive system cancer.
Collapse
|
16
|
Huang G, Yao Q, Ye Z, Huang Y, Zhang C, Jiang Y, Xi X. Gender Differential Expression of AR/miR-21 Signaling Axis and Its Protective Effect on Renal Ischemia-Reperfusion Injury. Front Cell Dev Biol 2022; 10:861327. [PMID: 35573679 PMCID: PMC9095916 DOI: 10.3389/fcell.2022.861327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Objective: The aim of this study was to investigate gender differences after renal ischemia-reperfusion injury in mice and the effects of androgen receptor (AR) and microRNA-21 (miR-21) on apoptosis in renal ischemia-reperfusion injury. Methods: Renal ischemia-reperfusion injury model was induced by 45 min of bilateral renal artery ischemia and reperfusion. BALB/c mice were randomly divided into groups according to different experimental protocols. The levels of renal function were evaluated by serum creatinine and blood urea nitrogen. TUNEL staining was used to analyze the pathological changes and apoptosis levels of renal tissue, and western blotting and qPCR were used to detect the expressions of miR-21, AR, PDCD4 and caspase3. Results: After renal ischemia-reperfusion injury in mice with different genders, the levels of plasma urea nitrogen and creatinine in female and male mice increased, the histopathological score increased, and TUNEL staining in renal tissue indicated increased apoptosis. The expressions of miR-21, PDCD4, and active caspase-3 protein were up-regulated. The above trend was more pronounced in male mice, and a significant decrease in AR mRNA expression was detected. Silencing the expression of AR aggravated the decline of renal function and renal tubular injury after renal ischemia in mice. The expression of PDCD4 and active caspase-3 increased, while the level of miR-21 was correspondingly decreased. Up-regulation of miR-21 expression by pre-miR-21 could negatively regulate PDCD4, reduce the expression level of active caspase3, and yet induce AR expression accordingly. MiR-21 alleviated renal ischemia-reperfusion injury by inhibiting renal tubular epithelial cell apoptosis. The effect of antagomiR-21 was the opposite, which aggravated renal ischemia-reperfusion injury. Conclusion: There are gender differences in renal ischemia-reperfusion injury. Male mice are more susceptible to renal ischemia-reperfusion injury than female. Silencing AR expression or down-regulating the level of miR-21 can promote the expression of PDCD4 and apoptosis protein caspase3, thereby aggravating ischemia-reperfusion injury in mice. The protective effect of AR and miR-21 in renal ischemia-reperfusion injury has a certain synergy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoqing Xi
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Thiebaut C, Vlaeminck-Guillem V, Trédan O, Poulard C, Le Romancer M. Non-genomic signaling of steroid receptors in cancer. Mol Cell Endocrinol 2021; 538:111453. [PMID: 34520815 DOI: 10.1016/j.mce.2021.111453] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Steroid receptors (SRs) are members of the nuclear receptor family, which are ligand-activated transcription factors. SRs regulate many physiological functions including development and reproduction, though they can also be involved in several pathologies, especially cancer. Highly controlled cellular responses to steroids involve transcriptional regulation (genomic activity) combined with direct activation of signaling cascades (non-genomic activity). Non-genomic signaling has been extensively studied in cancer, mainly in breast cancer for ER and PR, and prostate cancer for AR. Even though most of the studies have been conducted in cells, some of them have been confirmed in vivo, highlighting the relevance of this pathway in cancer. This review provides an overview of the current and emerging knowledge on non-genomic signaling with a focus on breast and prostate cancers and its clinical relevance. A thorough understanding of ER, PR, AR and GR non-genomic pathways may open new perspectives for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Service de Biochimie Biologie Moléculaire Sud, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69495, Pierre-Bénite, France
| | - Olivier Trédan
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; Medical Oncology Department, Centre Léon Bérard, F-69000, Lyon, France
| | - Coralie Poulard
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000, Lyon, France.
| |
Collapse
|
18
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
19
|
Androgen/Androgen Receptor Signaling in Ovarian Cancer: Molecular Regulation and Therapeutic Potentials. Int J Mol Sci 2021; 22:ijms22147748. [PMID: 34299364 PMCID: PMC8304547 DOI: 10.3390/ijms22147748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OVCA) arises from three cellular origins, namely surface epithelial cells, germ cells, and stromal cells. More than 85% of OVCAs are EOCs (epithelial ovarian carcinomas), which are the most lethal gynecological malignancies. Cancer stem/progenitor cells (CSPCs) are considered to be cancer promoters due to their capacity for unlimited self-renewal and drug resistance. Androgen receptor (AR) belongs to the nuclear receptor superfamily and can be activated through binding to its ligand androgens. Studies have reported an association between AR expression and EOC carcinogenesis, and AR is suggested to be involved in proliferation, migration/invasion, and stemness. In addition, alternative AR activating signals, including both ligand-dependent and ligand-independent, are involved in OVCA progression. Although some clinical trials have previously been conducted to evaluate the effects of anti-androgens in EOC, no significant results have been reported. In contrast, experimental studies evaluating the effects of anti-androgen or anti-AR reagents in AR-expressing EOC models have demonstrated positive results for suppressing disease progression. Since AR is involved in complex signaling pathways and may be expressed at various levels in OVCA, the aim of this article was to provide an overview of current studies and perspectives regarding the relevance of androgen/AR roles in OVCA.
Collapse
|
20
|
Seidu T, McWhorter P, Myer J, Alamgir R, Eregha N, Bogle D, Lofton T, Ecelbarger C, Andrisse S. DHT causes liver steatosis via transcriptional regulation of SCAP in normal weight female mice. J Endocrinol 2021; 250:49-65. [PMID: 34060475 PMCID: PMC8240729 DOI: 10.1530/joe-21-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of non-alcoholic fatty liver disease (NALFD) in females. Administering low-dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low-dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in the liver of DHT mice compared to controls. p-ACC levels were unaltered in the liver. Other lipid metabolism pathways were examined in the liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in the liver. We show that in the presence of DHT, the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.
Collapse
Affiliation(s)
- Tina Seidu
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Patrick McWhorter
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| | - Jessie Myer
- Department of Biology, University of Missouri, Columbia, Missouri, USA
| | - Rabita Alamgir
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Nicole Eregha
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Dilip Bogle
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Taylor Lofton
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Carolyn Ecelbarger
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Stanley Andrisse
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Correspondence should be addressed to S Andrisse:
| |
Collapse
|
21
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
22
|
Vélot L, Lessard F, Bérubé-Simard FA, Tav C, Neveu B, Teyssier V, Boudaoud I, Dionne U, Lavoie N, Bilodeau S, Pouliot F, Bisson N. Proximity-dependent Mapping of the Androgen Receptor Identifies Kruppel-like Factor 4 as a Functional Partner. Mol Cell Proteomics 2021; 20:100064. [PMID: 33640491 PMCID: PMC8050775 DOI: 10.1016/j.mcpro.2021.100064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the third cause of cancer mortality. PCa initiation and growth are driven by the androgen receptor (AR). The AR is activated by androgens such as testosterone and controls prostatic cell proliferation and survival. Here, we report an AR signaling network generated using BioID proximity labeling proteomics in androgen-dependent LAPC4 cells. We identified 31 AR-associated proteins in nonstimulated cells. Strikingly, the AR signaling network increased to 182 and 200 proteins, upon 24 h or 72 h of androgenic stimulation, respectively, for a total of 267 nonredundant AR-associated candidates. Among the latter group, we identified 213 proteins that were not previously reported in databases. Many of these new AR-associated proteins are involved in DNA metabolism, RNA processing, and RNA polymerase II transcription. Moreover, we identified 44 transcription factors, including the Kru¨ppel-like factor 4 (KLF4), which were found interacting in androgen-stimulated cells. Interestingly, KLF4 repressed the well-characterized AR-dependent transcription of the KLK3 (PSA) gene; AR and KLF4 also colocalized genome-wide. Taken together, our data report an expanded high-confidence proximity network for AR, which will be instrumental to further dissect the molecular mechanisms underlying androgen signaling in PCa cells. BioID proteomics identifies 267 androgen receptor (AR)-associated candidates Krüppel-like factor 4 (KLF4) is a new AR interaction partner AR and KLF4 colocalize genome-wide on >4000 genes, including KLK3 (PSA) KLF4 acts as a repressor for the AR target gene KLK3 (PSA)
Collapse
Affiliation(s)
- Lauriane Vélot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Christophe Tav
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada
| | - Bertrand Neveu
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Imène Boudaoud
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada
| | - Ugo Dionne
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada
| | - Steve Bilodeau
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Centre de recherche en données massives de l'Université Laval, Québec, Québec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Frédéric Pouliot
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; Department of Surgery, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, Quebec, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, Quebec, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, Quebec, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculté de Médecine, Université Laval, Québec, Quebec, Canada.
| |
Collapse
|
23
|
Jonnalagadda B, Arockiasamy S, Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci 2020; 259:118208. [PMID: 32763294 DOI: 10.1016/j.lfs.2020.118208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide, with prostate cancer, the second most commonly diagnosed cancer among men. Prostate cancer develops in the peripheral zone of the prostate gland, and the initial progression largely depends on androgens, the male reproductive hormone that regulates the growth and development of the prostate gland and testis. The currently available treatments for androgen dependent prostate cancer are, however, effective for a limited period, where the patients show disease relapse, and develop androgen-independent prostate cancer (AIPC). Studies have shown various intricate cellular processes such as, deregulation in multiple biochemical and signaling pathways, intra-tumoral androgen synthesis; AR over-expression and mutations and AR activation via alternative growth pathways are involved in progression of AIPC. The currently approved treatment strategies target a single cellular protein or pathway, where the cells slowly develop resistance and adapt to proliferate via other cellular pathways over a period of time. Therefore, an increased research aims to understand the efficacy of combination therapy, which targets multiple interlinked pathways responsible for acquisition of resistance and survival. The combination therapy is also shown to enhance efficacy as well as reduce toxicity of the drugs. Thus, the present review focuses on the signaling pathways involved in the progression of AIPC, comprising a heterogeneous population of cells and the advantages of combination therapy. Several clinical and pre-clinical studies on a variety of combination treatments have shown beneficial outcomes, yet further research is needed to understand the potential of combination therapy and its diverse strategies.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Sriram Krishnamoorthy
- Department of Urology, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
24
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kumari Sunita Prajapati
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Mohd Shuaib
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Atul Kumar Singh
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Stone T, Stachenfeld NS. Pathophysiological effects of androgens on the female vascular system. Biol Sex Differ 2020; 11:45. [PMID: 32727622 PMCID: PMC7391603 DOI: 10.1186/s13293-020-00323-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Sex hormones and their respective receptors affect vascular function differently in men and women, so it is reasonable to assume they play a role in the sex differences in cardiovascular disease states. This review focuses on how the effects of testosterone on arterial vessels impact the female vasculature. In women with androgen-excess polycystic ovary syndrome, and in transgender men, testosterone exposure is associated with high blood pressure, endothelial dysfunction, and dyslipidemia. These relationships suggest that androgens may exert pathophysiological effects on the female vasculature, and these effects on the female vasculature appear to be independent from other co-morbidities of cardiovascular disease. There is evidence that the engagement of androgens with androgen receptor induces detrimental outcomes in the female cardiovascular system, thereby representing a potential causative link with sex differences and cardiovascular regulation. Gender affirming hormone therapy is the primary medical intervention sought by transgender people to reduce the characteristics of their natal sex and induce those of their desired sex. Transgender men, and women with androgen-excess polycystic ovary syndrome both represent patient groups that experience chronic hyperandrogenism and thus lifelong exposure to significant medical risk. The study of testosterone effects on the female vasculature is relatively new, and a complex picture has begun to emerge. Long-term research in this area is needed for the development of more consistent models and controlled experimental designs that will provide insights into the impact of endogenous androgen concentrations, testosterone doses for hormone therapy, and specific hormone types on function of the female cardiovascular system.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Jonnalagadda B, Arockiasamy S, Vetrivel U, P A A. In silico docking of phytocompounds to identify potent inhibitors of signaling pathways involved in prostate cancer. J Biomol Struct Dyn 2020; 39:5182-5208. [PMID: 32643549 DOI: 10.1080/07391102.2020.1785944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Androgens and androgen receptors (AR) are the master regulators in the development of prostate cancer. Majority of the patients show positive response to surgical or medical castration, while many patients show disease relapse after the treatment. Genomic profiling has proven that the deregulated PI3K, Ras/Raf, MAPK and EGFR signaling pathways confer survival and invasion advantage to the cancer cells. Thus, modulation of these interlinked growth pathways along with androgen ablation may provide attractive therapeutic benefits. The current research is focused to identify the inhibitors of these pathways with bacosides and Piperine. The quantitative estimation of bacosides enriched standard extract of Bacopa monnieri by HPTLC showed 59.38% of Bacoside A and various active compounds with anti-oxidant, anti-cancer, anti-microbial, anti-inflammatory properties were also analyzed by GC-MS analysis. The in-vitro cytotoxic study against PC3 cell lines showed dose-dependent effect of Piperine and the extract. Further, in silico docking has shown bacosides with significant molecular interactions and binding score with growth factor receptors such as EGFR, PI3K, Akt and ERK, whereas Piperine exhibited interactions with AR. Hence, a simultaneous downregulation of interlinked signaling pathways of growth factors and AR with bacosides and Piperine may produce effective cytotoxic potential against the androgen-independent prostate cancer. Further in-vitro and in-vivo experimental investigations are necessary to determine the ultimate therapeutic utility. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya Research Institute, Chennai, India
| | - Abhinand P A
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
27
|
Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071833. [PMID: 32650419 PMCID: PMC7408918 DOI: 10.3390/cancers12071833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396820; Fax: +49-3641-99396822
| |
Collapse
|
28
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
29
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
30
|
Zamagni A, Cortesi M, Zanoni M, Tesei A. Non-nuclear AR Signaling in Prostate Cancer. Front Chem 2019; 7:651. [PMID: 31616657 PMCID: PMC6775214 DOI: 10.3389/fchem.2019.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the key role played by androgen receptor (AR) in tumor cell aggressiveness and prostate cancer (PCa) progression, its function in the tumor microenvironment (TME) is still controversial. Increasing studies highlight the crucial role played by TME modulation in treatment outcome and tumor cell spreading. In this context, targeting specific constituents of the TME could be considered an alternative approach to classic treatments directed against cancer cells. Currently, androgen deprivation therapy (ADT) is a routinely adopted strategy in the management of PCa, with initial success, and consecutive fail. A possible justification to this is the fact that ADT aims to target all the transcription/translation-related activities of AR, which are typical of tumor epithelial cells. Less is still known about side effects of ADT on TME. Cancer Associated Fibroblasts (CAFs), for example, express a classic AR, mostly confined in the extra-nuclear portion of the cell. In CAFs ADT exerts a plethora of non-transcriptional effects, depending by the protein partner linked to AR, leading to cell migration, proliferation, and differentiation. In recent years, substantial progress in the structure-function relationships of AR, identification of its binding partners and function of protein complexes including AR have improved our knowledge of its signaling axis. Important AR non-genomic effects and lots of its cytoplasmatic binding partners have been described, pointing out a fine control of AR non-genomic pathways. Accordingly, new AR inhibitors have been designed and are currently under investigation. Prompt development of new approaches to target AR or block recruitment of its signaling effectors, or co-activators, is urgently needed. The present review takes an in-depth look at current literature, furnishing an exhaustive state-of-the-art overview of the non-genomic role of AR in PCa, with particular emphasis on its involvement in TME biology.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
31
|
Chen H, Liu T, Holt WV, Yang P, Zhang L, Zhang L, Han X, Bian X, Chen Q. Advances in understanding mechanisms of long-term sperm storage-the soft-shelled turtle model. Histol Histopathol 2019; 35:1-23. [PMID: 31290136 DOI: 10.14670/hh-18-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term sperm storage is a special reproductive strategy, which can extend the time window between mating and fertilization in some animal species. Spermatozoa of the soft-shelled turtle, Pelodiscus sinensis, can be stored in the epididymis and oviduct for at least six months and one year, respectively. How spermatozoa can be stored in vivo for such a prolonged period is yet to be explained. We analyze the mechanisms that contribute to long-term sperm storage in P. sinensis, and compare them with other species from three different perspectives: the spermatozoon itself, the storage microenvironment and the interaction between the spermatozoon and microenvironment. Characteristics of soft-shelled turtle spermatozoa itself, such as the huge cytoplasmic droplet with its content of several large lipid droplets (LDs) and onion-like mitochondira, facilitate long-term sperm storage. The microenvironment of reproductive tract, involving in the secretions, structural barriers, exosomes, androgen receptors, Toll-like receptors and survival factor Bcl-2, are important for the maintenance of spermatozoa long-term storage. Sperm heads are always embedded among the oviductal cilia and even intercalate into the apical hollowness of the ciliated cells, indicating that the ciliated cells support the stored spermatozoa. RNA seq is firstly used to detect the molecular mechanism of sperm storage, which shows that autophagy, apoptosis and immune take part in the long-term sperm storage in this species.
Collapse
Affiliation(s)
- Hong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Tengfei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - William V Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, United Kingdom
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Linli Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xiangkun Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xunguang Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
32
|
Sakamoto K, Kurokawa J. Involvement of sex hormonal regulation of K + channels in electrophysiological and contractile functions of muscle tissues. J Pharmacol Sci 2019; 139:259-265. [PMID: 30962088 DOI: 10.1016/j.jphs.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 11/19/2022] Open
Abstract
Sex hormones, such as testosterone, progesterone, and 17β-estradiol, control various physiological functions. This review focuses on the sex hormonal regulation of K+ channels and the effects of such regulation on electrophysiological and contractile functions of muscles. In the cardiac tissue, testosterone and progesterone shorten action potential, and estrogen lengthens QT interval, a marker of increased risk of ventricular tachyarrhythmias. We have shown that testosterone and progesterone in physiological concentration activate KCNQ1 channels via membrane-delimited sex hormone receptor/eNOS pathways to shorten the action potential duration. Mitochondrial K+ channels are also involved in the protection of cardiac muscle. Testosterone and 17β-estradiol directly activate mitochondrial inner membrane K+ channels (Ca2+ activated K+ channel (KCa channel) and ATP-sensitive K+ channel (KATP channel)) that are involved in ischemic preconditioning and cardiac protection. During pregnancy, uterine blood flow increases to support fetal growth and development. It has been reported that 17β-estradiol directly activates large-conductance Ca2+-activated K+ channel (BKCa channel) attenuating arterial contraction. Furthermore, 17β-estradiol increases expression of BKCa channel β1 subunit which enhances BKCa channel activity by DNA demethylation. These findings are useful for understanding the mechanisms of sex or generation-dependent differences in the physiological and pathological functions of muscles, and the mechanisms of drug actions.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
33
|
Steroid Receptor Signallings as Targets for Resveratrol Actions in Breast and Prostate Cancer. Int J Mol Sci 2019; 20:ijms20051087. [PMID: 30832393 PMCID: PMC6429419 DOI: 10.3390/ijms20051087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Extensive research over the past 25 years in hormone-dependent cancers, such as breast cancer and prostate cancer, has identified the molecular mechanisms driven by steroid receptors, elucidating the interplay between genomic and non-genomic steroid receptors mechanism of action. Altogether, these mechanisms create the specific gene expression programs that contribute to endocrine therapy resistance and cancer progression. These findings, on the bidirectional molecular crosstalk between steroid and growth factor receptors pathways in endocrine resistance, suggest the use of multi-target inhibitors together with endocrine therapies, for treating resistant disease. In this review we will discuss the novel understanding on the chemopreventive and anti-cancer activities of Resveratrol (3,5,4′-trihydroxy-stilbene) (RSV), a phytoalexin found in grapes acting on a plethora of targets. We will highlight Resveratrol effect on steroid receptors signalling and its potential use in the treatment of hormone-dependent cancer. Understanding the molecular mechanisms by which the bioactive compound influences cancer cell behaviour, by interfering with steroid receptors functional activity, will help to advance the design of combination strategies to increase the rate of complete and durable clinical response in patients.
Collapse
|
34
|
Vasiliou SK, Diamandis EP. Androgen receptor: A promising therapeutic target in breast cancer. Crit Rev Clin Lab Sci 2019; 56:200-223. [PMID: 30821186 DOI: 10.1080/10408363.2019.1575643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) is the second most common cancer worldwide and the most prevalent cancer in women. The majority of BCa cases are positive (+) for the estrogen receptor (ER+, 80%) and progesterone receptor (PR+, 65%). Estrogen and progesterone hormones are known to be involved in cancer progression, and thus hormonal deprivation is used as an effective treatment for ER+PR+ BCa subtypes. However, some ER+PR+ BCa patients develop resistance to such therapies. Meanwhile, chemotherapy is the only available treatment for ER-PR- BCa tumors. Another hormone receptor known as the androgen receptor (AR) has also been found to be widely expressed in human breast carcinomas. However, the mechanisms of AR and its endogenous androgen ligands is not well-understood in BCa and its biological role in this hormone-related disease remains unclear. In this review, we aim to address the importance of the AR in BCa diagnosis and prognosis, current AR-targeting approaches in BCa, and the potential for AR-downstream molecules to serve as therapeutic targets.
Collapse
Affiliation(s)
- Stella K Vasiliou
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada
| | - Eleftherios P Diamandis
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada.,c Department of Clinical Biochemistry , University Health Network , Toronto , Canada
| |
Collapse
|
35
|
Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 2018; 315:H1569-H1588. [PMID: 30216121 PMCID: PMC6734083 DOI: 10.1152/ajpheart.00396.2018] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Diseases of the cardiovascular system are the leading cause of morbidity and mortality in men and women in developed countries, and cardiovascular disease (CVD) is becoming more prevalent in developing countries. The prevalence of atherosclerotic CVD in men is greater than in women until menopause, when the prevalence of CVD increases in women until it exceeds that of men. Endothelial function is a barometer of vascular health and a predictor of atherosclerosis that may provide insights into sex differences in CVD as well as how and why the CVD risk drastically changes with menopause. Studies of sex differences in endothelial function are conflicting, with some studies showing earlier decrements in endothelial function in men compared with women, whereas others show similar age-related declines between the sexes. Because the increase in CVD risk coincides with menopause, it is generally thought that female hormones, estrogens in particular, are cardioprotective. Moreover, it is often proposed that androgens are detrimental. In truth, the relationships are more complex. This review first addresses female and male sex hormones and their receptors and how these interact with the cardiovascular system, particularly the endothelium, in healthy young women and men. Second, we address sex differences in sex steroid receptor-independent mechanisms controlling endothelial function, focusing on vascular endothelin and the renin-angiotensin systems, in healthy young women and men. Finally, we discuss sex differences in age-associated endothelial dysfunction, focusing on the role of attenuated circulating sex hormones in these effects.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Pennsylvania State University , University Park, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Obstetrics, Gynecology and Reproductive Sciences and Yale School of Public Health, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
36
|
Fuxjager MJ, Schuppe ER. Androgenic signaling systems and their role in behavioral evolution. J Steroid Biochem Mol Biol 2018; 184:47-56. [PMID: 29883693 DOI: 10.1016/j.jsbmb.2018.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroids mediate the organization and activation of masculine reproductive phenotypes in diverse vertebrate taxa. However, the effects of sex steroid action in this context vary tremendously, in that steroid action influences reproductive physiology and behavior in markedly different ways (even among closely related species). This leads to the idea that the mechanisms underlying sex steroid action similarly differ across vertebrates in a manner that supports diversification of important sexual traits. Here, we highlight the Evolutionary Potential Hypothesis as a framework for understanding how androgen-dependent reproductive behavior evolves. This idea posits that the cellular mechanisms underlying androgenic action can independently evolve within a given target tissue to adjust the hormone's functional effects. The result is a seemingly endless number of permutations in androgenic signaling pathways that can be mapped onto the incredible diversity of reproductive phenotypes. One reason this hypothesis is important is because it shifts current thinking about the evolution of steroid-dependent traits away from an emphasis on circulating steroid levels and toward a focus on molecular mechanisms of hormone action. To this end, we also provide new empirical data suggesting that certain cellular modulators of androgen action-namely, the co-factors that dynamically adjust transcritpional effects of steroid action either up or down-are also substrates on which evolution can act. We then close the review with a detailed look at a case study in the golden-collared manakin (Manacus vitellinus). Work in this tropical bird shows how androgenic signaling systems are modified in specific parts of the skeletal muscle system to enhance motor performance necessary to produce acrobatic courtship displays. Altogether, this paper seeks to develop a platform to better understand how steroid action influences the evolution of complex animal behavior.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States.
| | - Eric R Schuppe
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, United States
| |
Collapse
|
37
|
Cariello M, Ducheix S, Maqdasy S, Baron S, Moschetta A, Lobaccaro JMA. LXRs, SHP, and FXR in Prostate Cancer: Enemies or Ménage à Quatre With AR? NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801070. [PMID: 30718981 PMCID: PMC6348739 DOI: 10.1177/1550762918801070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Androgens and androgen receptor (AR, NR3C4) clearly play a crucial role in
prostate cancer progression. Besides, the link between metabolic disorders and
the risk of developing a prostate cancer has been emerging these last years.
Interestingly, “lipid” nuclear receptors such as LXRα/NR1H3 and LXRβ/NR1H2 (as
well as FXRα/NR1H4 and SHP/NR0B2) have been described to decrease the lipid
metabolism, while AR increases it. Moreover, these former orphan nuclear
receptors can regulate androgen levels and modulate AR activity. Thus, it is not
surprising to find such receptors involved in the physiology of prostate. This
review is focused on the roles of liver X receptors (LXRs), farnesoid X receptor
(FXR), and small heterodimeric partner (SHP) in prostate physiology and their
capabilities to interfere with the androgen-regulated pathways by modulating the
levels of active androgen within the prostate. By the use of prostate cancer
cell lines, mice deficient for these nuclear receptors and human tissue
libraries, several authors have pointed out the putative possibility to
pharmacologically target these receptors. These data open a new field of
research for the development of new drugs that could overcome the castration
resistance in prostate cancer, a usual phenomenon in patients.
Collapse
Affiliation(s)
| | - Simon Ducheix
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Salwan Maqdasy
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.,CHU Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Antonio Moschetta
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,IRCCS Istituto Oncologico "Giovanni Paolo II," Bari, Italy
| | - Jean-Marc A Lobaccaro
- "Aldo Moro" University of Bari, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.,Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
38
|
Yatsu T, Kusakabe T, Kato K, Inouye Y, Nemoto K, Kanno Y. Selective Androgen Receptor Modulator, YK11, Up-Regulates Osteoblastic Proliferation and Differentiation in MC3T3-E1 Cells. Biol Pharm Bull 2018; 41:394-398. [DOI: 10.1248/bpb.b17-00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University
| | | | | | | |
Collapse
|
39
|
Zeng F, Zhao H, Liao J. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy. Biol Sport 2017; 34:313-321. [PMID: 29472733 PMCID: PMC5819476 DOI: 10.5114/biolsport.2017.69818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
This study was designed to investigate the effects of exogenous androgen and resistance exercise on skeletal muscle hypertrophy and the role of the mammalian target of rapamycin (mTOR) signalling during the process. A total of 24 male Sprague-Dawley rats were randomly assigned to sham operation and dihydrotestosterone (DHT) implantation groups with subgroups subjected to sedentary conditions or resistance exercise (SHAM+SED, SHAM+EX, DHT+SED, and DHT+EX). The experimental procedure lasted for 10 days. The mRNA expression of androgen receptor (AR) and insulin-like growth factor I (IGF-I), the expression of myosin heavy chain (MHC), as well as the phosphorylation statuses of AR, mTOR, p70 ribosomal S6 kinase (p70S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) were determined in the white gastrocnemius muscle. The cross sectional area and wet mass of the muscle were also measured. The cross sectional area and MHC expression were significantly higher in SHAM+EX, DHT+SED, and DHT+EX than in SHAM+SED. There was no significant difference among groups in muscle mass. The mRNA expression of AR and IGF-I and the phosphorylation of mTOR, p70S6K, and 4EBP1 were significantly increased in DHT+SED and SHAM+EX and were significantly enhanced in DHT+EX compared with either DHT or exercise alone. These data show that DHT causes hypertrophy in skeletal muscle and that exercise has a synergistic effect on DHT-induced hypertrophy. Exercise enhances androgen-induced rapid anabolic action, which involves activation of the mTOR pathway.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100000, China
| | - Hua Zhao
- Department of Physical Education, Central China Normal University, Wuhan 430000, China
| | - Jingwen Liao
- Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510000, China
| |
Collapse
|
40
|
Chen L, Aleshin AE, Alitongbieke G, Zhou Y, Zhang X, Ye X, Hu M, Ren G, Chen Z, Ma Y, Zhang D, Liu S, Gao W, Cai L, Wu L, Zeng Z, Jiang F, Liu J, Zhou H, Cadwell G, Liddington RC, Su Y, Zhang XK. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Nat Commun 2017; 8:16066. [PMID: 28714476 PMCID: PMC5520057 DOI: 10.1038/ncomms16066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a ‘three-pronged’ combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head–tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics. The transcription factor retinoid X receptor-alpha (RXRα) can also form homotetramers. Here the authors show that the anti-cancer agent K-80003 selectively inhibits the nongenomic action of N-terminally-cleaved RXRα in tumour cells by stabilizing its tetramerization but not that of full-length RXRα.
Collapse
Affiliation(s)
- Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexander E Aleshin
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mengjie Hu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yue Ma
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Duo Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Shuai Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gregory Cadwell
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
41
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
42
|
Andrisse S, Childress S, Ma Y, Billings K, Chen Y, Xue P, Stewart A, Sonko ML, Wolfe A, Wu S. Low-Dose Dihydrotestosterone Drives Metabolic Dysfunction via Cytosolic and Nuclear Hepatic Androgen Receptor Mechanisms. Endocrinology 2017; 158:531-544. [PMID: 27967242 PMCID: PMC5460775 DOI: 10.1210/en.2016-1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Androgen excess in women is associated with metabolic dysfunction (e.g., obesity, hyperinsulinemia, insulin resistance, and increased risk of type 2 diabetes) and reproductive dysfunction (e.g., polycystic ovaries, amenorrhea, dysregulated gonadotropin release, and infertility). We sought to identify the effects of androgen excess on glucose metabolic dysfunction and the specific mechanisms of action by which androgens are inducing pathology. We developed a mouse model that displayed pathophysiological serum androgen levels with normal body mass/composition to ensure that the phenotypes were directly from androgens and not an indirect consequence of obesity. We performed reproductive tests, metabolic tests, and hormonal assays. Livers were isolated and examined via molecular, biochemical, and histological analysis. Additionally, a low-dose dihydrotestosterone (DHT) cell model using H2.35 mouse hepatocytes was developed to study androgen effects on hepatic insulin signaling. DHT mice demonstrated impaired estrous cyclicity; few corpora lutea in the ovaries; glucose, insulin, and pyruvate intolerance; and lowered hepatic insulin action. Mechanistically, DHT increased hepatic androgen-receptor binding to phosphoinositide-3-kinase (PI3K)-p85, resulting in dissociation of PI3K-p85 from PI3K-p110, leading to reduced PI3K activity and decreased p-AKT and, thus, lowered insulin action. DHT increased gluconeogenesis via direct transcriptional regulation of gluconeogenic enzymes and coactivators. The hepatocyte model recapitulated the in vivo findings. The DHT-induced hepatocyte insulin resistance was reversed by the androgen-receptor antagonist, flutamide. These findings present a phenotype (i.e., impaired glucose tolerance and disrupted glucose metabolism) in a lean hyperandrogenemia model (low-dose DHT) and data to support 2 molecular mechanisms that help drive androgen-induced impaired glucose metabolism.
Collapse
Affiliation(s)
- Stanley Andrisse
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shameka Childress
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yaping Ma
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katelyn Billings
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yi Chen
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ping Xue
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashley Stewart
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Momodou L Sonko
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheng Wu
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Huffman J, Hoffmann C, Taylor GT. Integrating insulin-like growth factor 1 and sex hormones into neuroprotection: Implications for diabetes. World J Diabetes 2017; 8:45-55. [PMID: 28265342 PMCID: PMC5320748 DOI: 10.4239/wjd.v8.i2.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/24/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023] Open
Abstract
Brain integrity and cognitive aptitude are often impaired in patients with diabetes mellitus, presumably a result of the metabolic complications inherent to the disease. However, an increasing body of evidence has demonstrated the central role of insulin-like growth factor 1 (IGF1) and its relation to sex hormones in many neuroprotective processes. Both male and female patients with diabetes display abnormal IGF1 and sex-hormone levels but the comparison of these fluctuations is seldom a topic of interest. It is interesting to note that both IGF1 and sex hormones have the ability to regulate phosphoinositide 3-kinase-Akt and mitogen-activated protein kinases-extracellular signal-related kinase signaling cascades in animal and cell culture models of neuroprotection. Additionally, there is considerable evidence demonstrating the neuroprotective coupling of IGF1 and estrogen. Androgens have also been implicated in many neuroprotective processes that operate on similar signaling cascades as the estrogen-IGF1 relation. Yet, androgens have not been directly linked to the brain IGF1 system and neuroprotection. Despite the sex-specific variations in brain integrity and hormone levels observed in diabetic patients, the IGF1-sex hormone relation in neuroprotection has yet to be fully substantiated in experimental models of diabetes. Taken together, there is a clear need for the comprehensive analysis of sex differences on brain integrity of diabetic patients and the relationship between IGF1 and sex hormones that may influence brain-health outcomes. As such, this review will briefly outline the basic relation of diabetes and IGF1 and its role in neuroprotection. We will also consider the findings on sex hormones and diabetes as a basis for separately analyzing males and females to identify possible hormone-induced brain abnormalities. Finally, we will introduce the neuroprotective interplay of IGF1 and estrogen and how androgen-derived neuroprotection operates through similar signaling cascades. Future research on both neuroprotection and diabetes should include androgens into the interplay of IGF1 and sex hormones.
Collapse
|
44
|
Leung JK, Sadar MD. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer. Front Endocrinol (Lausanne) 2017; 8:2. [PMID: 28144231 PMCID: PMC5239799 DOI: 10.3389/fendo.2017.00002] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/05/2017] [Indexed: 12/15/2022] Open
Abstract
Androgen receptor (AR) is a validated drug target for prostate cancer based on its role in proliferation, survival, and metastases of prostate cancer cells. Unfortunately, despite recent improvements to androgen deprivation therapy and the advent of better antiandrogens with a superior affinity for the AR ligand-binding domain (LBD), most patients with recurrent disease will eventually develop lethal metastatic castration-resistant prostate cancer (CRPC). Expression of constitutively active AR splice variants that lack the LBD contribute toward therapeutic resistance by bypassing androgen blockade and antiandrogens. In the canonical pathway, binding of androgen to AR LBD triggers the release of AR from molecular chaperones which enable conformational changes and protein-protein interactions to facilitate its nuclear translocation where it regulates the expression of target genes. However, preceding AR function in the nucleus, initial binding of androgen to AR LBD in the cytoplasm may already initiate signal transduction pathways to modulate cellular proliferation and migration. In this article, we review the significance of signal transduction pathways activated by rapid, non-genomic signaling of the AR during the progression to metastatic CRPC and put into perspective the implications for current and novel therapies that target different domains of AR.
Collapse
Affiliation(s)
- Jacky K. Leung
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Marianne D. Sadar
- Department of Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
- *Correspondence: Marianne D. Sadar,
| |
Collapse
|
45
|
Castoria G, Auricchio F, Migliaccio A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis. FASEB J 2016; 31:1289-1300. [PMID: 28031322 DOI: 10.1096/fj.201601047r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 01/11/2023]
Abstract
In this review, we focus on the role played by the protein partners of ligand-activated extranuclear androgen receptor (AR) in the final effects of hormone action, such as proliferation, migration, and neuritogenesis. The choice of AR partner, at least in part, depends on cell type. Androgen-activated receptor directly associates with cytoplasmic Src tyrosine kinase in epithelial cells, whereas in mesenchymal and neuronal cells, it prevalently interacts with filamin A. In the former, proliferation represents the final hormonal outcome, whereas in the latter, either migration or neuritogenesis, respectively, occurs. Furthermore, AR partner filamin A is replaced with Src when mesenchymal cells are stimulated with very low androgen concentrations. Consequently, the migratory effect is replaced by mitogenesis. Use of peptides that prevent receptor/partner assembly abolishes the effects that are dependent on their association and offers new therapeutic approaches to AR-related diseases. Perturbation of migration is often associated with metastatic spreading in cancer. In turn, cell cycle aberration causes tumors to grow faster, whereas toxic signaling triggers neurodegenerative events in the CNS. Here, we provide examples of new tools that interfere in rapid androgen effects, including migration, proliferation, and neuronal differentiation, together with their potential therapeutic applications in AR-dependent diseases-mainly prostate cancer and neurodegenerative disorders.-Castoria, G., Auricchio, F., Migliaccio, A. Extranuclear partners of androgen receptor: at the crossroads of proliferation, migration, and neuritogenesis.
Collapse
Affiliation(s)
- Gabriella Castoria
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics, and General Pathology, University of Campania "Luigi Vanvitelli," Naples, Italy
| |
Collapse
|
46
|
Lam YT, Lecce L, Tan JTM, Bursill CA, Handelsman DJ, Ng MKC. Androgen Receptor-Mediated Genomic Androgen Action Augments Ischemia-Induced Neovascularization. Endocrinology 2016; 157:4853-4864. [PMID: 27754785 DOI: 10.1210/en.2016-1301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increasing evidence indicates that androgens regulate ischemia-induced neovascularization. However, the role of genomic androgen action mediated by androgen receptor (AR), a ligand-activated nuclear transcription factor, remains poorly understood. Using an AR knockout (KO) mouse strain that contains a transcriptionally inactive AR (ARΔex3KO), we examined the role of AR genomic function in modulating androgen-mediated augmentation of ischemia-induced neovascularization. Castrated wild-type (ARWT) and ARΔex3KO mice were implanted with 5α-dihydrotestosterone (DHT) or placebo pellets after hindlimb ischemia (HLI). DHT modulation of angiogenesis and vasculogenesis, key processes for vascular repair and regeneration, was examined. Laser Doppler perfusion imaging revealed that DHT enhanced blood flow recovery in ARWT mice post-HLI. In ARWT mice, DHT enhanced angiogenesis by down-regulating prolyl hydroxylase 2 and augmenting hypoxia-inducible factor-1α (HIF-1α) levels in the ischemic tissues post-HLI. DHT also enhanced the production and mobilization of Sca1+/CXCR4+ progenitor cells in the bone marrow (BM) and circulating blood, respectively, in ARWT mice. By contrast, DHT-mediated enhancement of blood flow recovery was abrogated in ARΔex3KO mice. DHT modulation of HIF-1α expression was attenuated in ARΔex3KO mice. DHT-induced HIF-1α transcriptional activity and DHT-augmented paracrine-mediated endothelial cell tubule formation were attenuated in fibroblasts isolated from ARΔex3KO mice in vitro. Furthermore, DHT-induced augmentation of Sca1+/CXCR4+ progenitor cell production and mobilization was absent in ARΔex3KO mice post-HLI. BM transplantation revealed that ischemia-induced mobilization of circulating progenitor cells was abolished in recipients of ARΔex3KO BM. Together, these results indicate that androgen-mediated augmentation of ischemia-induced neovascularization is dependent on genomic AR transcriptional activation.
Collapse
Affiliation(s)
- Yuen Ting Lam
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Laura Lecce
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Joanne T M Tan
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Christina A Bursill
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - David J Handelsman
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| | - Martin K C Ng
- The Heart Research Institute (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), Newtown, Sydney, New South Wales 2042, Australia; Sydney Medical School (Y.T.L., L.L., J.T.M.T., C.A.B., M.K.C.N.), The University of Sydney, Sydney, New South Wales 2006, Australia; ANZAC Research Institute (D.J.H.), The University of Sydney, Concord Hospital, Sydney, New South Wales 2139, Australia; and Department of Cardiology (M.K.C.N.), Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
47
|
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, Castoria G, Migliaccio A. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 2016; 7:193-208. [PMID: 26506594 PMCID: PMC4807992 DOI: 10.18632/oncotarget.6220] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men, and androgen deprivation therapy still represents the primary treatment for prostate cancer patients. This approach, however, frequently fails and patients develop castration-resistant prostate cancer, which is almost untreatable. Cancer cells are characterized by a hierarchical organization, and stem/progenitor cells are endowed with tumor-initiating activity. Accumulating evidence indicates that prostate cancer stem cells lack the androgen receptor and are, indeed, resistant to androgen deprivation therapy. In contrast, these cells express classical (α and/or β) and novel (GPR30) estrogen receptors, which may represent new putative targets in prostate cancer treatment. In the present review, we discuss the still-debated mechanisms, both genomic and non-genomic, by which androgen and estradiol receptors (classical and novel) mediate the hormonal control of prostate cell stemness, transformation, and the continued growth of prostate cancer. Recent preclinical and clinical findings obtained using new androgen receptor antagonists, anti-estrogens, or compounds such as enhancers of androgen receptor degradation and peptides inhibiting non-genomic androgen functions are also presented. These new drugs will likely lead to significant advances in prostate cancer therapy.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Giovanni Galasso
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Pia Giovannelli
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Annalisa Di Santi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Gustavo Cernera
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Valentina Rossi
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | | | - Antonio Agostino Sinisi
- Endocrinology Section, Department of Cardio-Thoracic and Respiratory Diseases, II University of Naples, Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, Naples, Italy
| |
Collapse
|
48
|
Kurokawa J, Kodama M, Clancy CE, Furukawa T. Sex hormonal regulation of cardiac ion channels in drug-induced QT syndromes. Pharmacol Ther 2016; 168:23-28. [PMID: 27595633 DOI: 10.1016/j.pharmthera.2016.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Female sex is an independent risk factor for development of torsade de pointes (TdP) arrhythmias not only in congenital long QT syndromes but also in acquired long QT syndromes. Clinical and experimental evidences suggest that the gender differences may be due to, at least in part, gender differences in regulation of rate-corrected QT (QTC) interval between men and women. In adult women, both QTC interval and arrhythmic risks in TdP alter cyclically during menstrual cycle, suggesting a critical role of female sex hormones in cardiac repolarization process. These gender differences in fundamental cardiac electrophysiology result from variable ion channel expression and diverse sex hormonal regulation via long term genomic and acute non-genomic actions, and sex differences in drug responses and metabolisms. In particular, non-genomic actions of testosterone and progesterone on cardiac ion channels are likely to contribute to the gender differences in cardiac repolarization processes. This review summarizes current knowledge on sex hormonal regulation of cardiac ion channels which contribute to cardiac repolarization processes and its implication for gender differences in drug-induced long QT syndromes.
Collapse
Affiliation(s)
- Junko Kurokawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| | - Masami Kodama
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
49
|
Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 2016; 28:348-356. [PMID: 26829214 PMCID: PMC4788534 DOI: 10.1016/j.cellsig.2016.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) remains the major oncogenic driver of prostate cancer, as evidenced by the efficacy of androgen deprivation therapy (ADT) in naïve patients, and the continued effectiveness of second generation ADTs in castration resistant disease. However, current ADTs are limited to interfering with AR ligand binding, either through suppression of androgen production or the use of competitive antagonists. Recent studies demonstrate 1) the expression of constitutively active AR splice variants that no longer depend on androgen, and 2) the ability of AR to signal in the cytoplasm independently of its transcriptional activity (non-genomic); thus highlighting the need to consider other ways to target AR. Herein, we review canonical AR signaling, but focus on AR non-genomic signaling, some of its downstream targets and how these effectors contribute to prostate cancer cell behavior. The goals of this review are to 1) re-highlight the continued importance of AR in prostate cancer as the primary driver, 2) discuss the limitations in continuing to use ligand binding as the sole targeting mechanism, 3) discuss the implications of AR non-genomic signaling in cancer progression and therapeutic resistance, and 4) address the need to consider non-genomic AR signaling mechanisms and pathways as a viable targeting strategy in combination with current therapies.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute at The Johns Hopkins University School of Medicine Baltimore, MD 21287, United States
| | - Cindy K Miranti
- Lab of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
50
|
Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep 2016; 6:24807. [PMID: 27095121 PMCID: PMC4837411 DOI: 10.1038/srep24807] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Vascular calcification powerfully predicts mortality and morbidity from cardiovascular disease. Men have a greater risk of cardiovascular disease, compared to women of a similar age. These gender disparities suggest an influence of sex hormones. Testosterone is the primary and most well-recognised androgen in men. Therefore, we addressed the hypothesis that exogenous androgen treatment induces vascular calcification. Immunohistochemical analysis revealed expression of androgen receptor (AR) in the calcified media of human femoral artery tissue and calcified human valves. Furthermore, in vitro studies revealed increased phosphate (Pi)-induced mouse vascular smooth muscle cell (VSMC) calcification following either testosterone or dihydrotestosterone (DHT) treatment for 9 days. Testosterone and DHT treatment increased tissue non-specific alkaline phosphatase (Alpl) mRNA expression. Testosterone-induced calcification was blunted in VSMC-specific AR-ablated (SM-ARKO) VSMCs compared to WT. Consistent with these data, SM-ARKO VSMCs showed a reduction in Osterix mRNA expression. However, intriguingly, a counter-intuitive increase in Alpl was observed. These novel data demonstrate that androgens play a role in inducing vascular calcification through the AR. Androgen signalling may represent a novel potential therapeutic target for clinical intervention.
Collapse
|