1
|
Sang Y, Du J, Zulikala D, Sang Z. Mechanistic analysis of Tanshinone IIA's regulation of the ATM/GADD45/ORC signaling pathway to reduce myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1510380. [PMID: 39776578 PMCID: PMC11703710 DOI: 10.3389/fphar.2024.1510380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background By far, one of the best treatments for myocardial ischemia is reperfusion therapy. The primary liposoluble component of Danshen, a traditional Chinese herbal remedy, Tanshinone ⅡA, has been shown to have cardiac healing properties. The purpose of this work is to investigate the processes by which Tanshinone ⅡA influences myocardial ischemia-reperfusion injury (MIRI) in the H9C2 cardiac myoblast cell line, as well as the association between Tanshinone ⅡA and MIRI. Methods and results The cardiac cells were divided into a normal group, a model group and Tanshinone ⅡA treatment groups. After 4 h of culture with the deprivation of oxygen and glucose, the cells were incubated normally for 2 h. The success of the model and the capacity of Tanshinone ⅡA to heal cardiac damage were validated by the outcomes of cell viability, morphology, and proliferation. The efficacy of Tanshinone ⅡA in treating MIRI was further confirmed by the scratch assay and biomarker measurement. The differentially expressed genes were examined using transcriptome sequencing. The Ataxia-Telangiectasia Mutated (ATM)/Growth Arrest and DNA Damage (GADD45)/Origin Recognition Complex (ORC) signaling pathway was identified as being crucial to this process by KEGG pathway analysis and GO enrichment. Molecular docking and RT-qPCR were used to confirm our results. The crucial function of the ATM/GADD45/ORC pathway was further confirmed by the addition of an ATM inhibitor, which inhibited the expression of ATM. Conclusion Tanshinone ⅡA can relieve the myocardial ischemia-reperfusion injury in cardiac cells by activating the ATM/GADD45/ORC pathway.
Collapse
Affiliation(s)
- Yiwei Sang
- Nature Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Jiangnan Du
- Nature Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Dilimulati Zulikala
- Nature Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Zhongqiang Sang
- Dermatology Department, Shanghai Zhongye Hospital, Shanghai, China
| |
Collapse
|
2
|
Toga K, Kimoto F, Fujii H, Bono H. Genome-Wide Search for Gene Mutations Likely Conferring Insecticide Resistance in the Common Bed Bug, Cimex lectularius. INSECTS 2024; 15:737. [PMID: 39452313 PMCID: PMC11508591 DOI: 10.3390/insects15100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Insecticide resistance in the bed bug Cimex lectularius is poorly understood due to the lack of genome sequences for resistant strains. In Japan, we identified a resistant strain of C. lectularius that exhibits a higher pyrethroid resistance ratio compared to many previously discovered strains. We sequenced the genomes of the pyrethroid-resistant and susceptible strains using long-read sequencing, resulting in the construction of highly contiguous genomes (N50 of the resistant strain: 2.1 Mb and N50 of the susceptible strain: 1.5 Mb). Gene prediction was performed by BRAKER3, and the functional annotation was performed by the Fanflow4insects workflow. Next, we compared their amino acid sequences to identify gene mutations, identifying 729 mutated transcripts that were specific to the resistant strain. Among them, those defined previously as resistance genes were included. Additionally, enrichment analysis implicated DNA damage response, cell cycle regulation, insulin metabolism, and lysosomes in the development of pyrethroid resistance. Genome editing of these genes can provide insights into the evolution and mechanisms of insecticide resistance. This study expanded the target genes to monitor allele distribution and frequency changes, which will likely contribute to the assessment of resistance levels. These findings highlight the potential of genome-wide approaches to understand insecticide resistance in bed bugs.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan;
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan
| | - Fumiko Kimoto
- Research & Development Division, Fumakilla Limited, 1-11-13 Umehara, Hatsukaichi City, Hiroshima 739-0494, Japan
| | - Hiroki Fujii
- Research & Development Division, Fumakilla Limited, 1-11-13 Umehara, Hatsukaichi City, Hiroshima 739-0494, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan;
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-0046, Japan
| |
Collapse
|
3
|
Atemin A, Ivanova A, Kanev PB, Uzunova S, Nedelcheva-Veleva M, Stoynov S. Dynamics of Replication-Associated Protein Levels through the Cell Cycle. Int J Mol Sci 2024; 25:8230. [PMID: 39125800 PMCID: PMC11311332 DOI: 10.3390/ijms25158230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G., Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (A.I.); (P.-B.K.); (S.U.); (M.N.-V.)
| |
Collapse
|
4
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
5
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Shekhar S, Verma S, Gupta MK, Roy SS, Kaur I, Krishnamachari A, Dhar SK. Genome-wide binding sites of Plasmodium falciparum mini chromosome maintenance protein MCM6 show new insights into parasite DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119546. [PMID: 37482133 DOI: 10.1016/j.bbamcr.2023.119546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Multiple rounds of DNA replication take place in various stages of the life cycle in the human malaria parasite Plasmodium falciparum. Previous bioinformatics analysis has shown the presence of putative Autonomously Replicating Sequence (ARS) like sequences in the Plasmodium genome. However, the actual sites and frequency of replication origins in the P. falciparum genome based on experimental data still remain elusive. Minichromosome maintenance (MCM) proteins are recruited by the Origin recognition complex (ORC) to the origins of replication in eukaryotes including P. falciparum. We used PfMCM6 for chromatin immunoprecipitation followed by sequencing (ChIP-seq) in the quest for identification of putative replication origins in the parasite. PfMCM6 DNA binding sites annotation revealed high enrichment at exon regions. This is contrary to higher eukaryotes that show an inclination of origin sites towards transcriptional start sites. ChIP-seq results were further validated by ChIP-qPCR results as well as nascent strand abundance assay at the selected PfMCM6 enriched sites that also showed preferential binding of PfORC1 suggesting potential of these sites as origin sites. Further, PfMCM6 ChIP-seq data showed a positive correlation with previously published histone H4K8Ac genome-wide binding sites but not with H3K9Ac sites suggesting epigenetic control of replication initiation sites in the parasites. Overall, our data show the genome-wide distribution of PfMCM6 binding sites with their potential as replication origins in this deadly human pathogen that not only broadens our knowledge of parasite DNA replication and its unique biology, it may help to find new avenues for intervention processes.
Collapse
Affiliation(s)
- Shashank Shekhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sunita Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohit Kumar Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sourav Singha Roy
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Inderjeet Kaur
- Department of Biotechnology, Central University of Haryana, Mahendergargh, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Sci Rep 2023; 13:12698. [PMID: 37542170 PMCID: PMC10403513 DOI: 10.1038/s41598-023-39901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
9
|
Nguyen H, Wu H, Ung A, Yamazaki Y, Fogelgren B, Ward WS. Deletion of Orc4 during oogenesis severely reduces polar body extrusion and blocks zygotic DNA replication†. Biol Reprod 2022; 106:730-740. [PMID: 34977916 PMCID: PMC9040667 DOI: 10.1093/biolre/ioab237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Origin recognition complex subunit 4 (ORC4) is a DNA-binding protein required for DNA replication. During oocyte maturation, after the last oocyte DNA replication step and before zygotic DNA replication, the oocyte undergoes two meiotic cell divisions in which half the DNA is ejected in much smaller polar bodies. We previously demonstrated that ORC4 forms a cytoplasmic cage around the DNA that is ejected in both polar body extrusion (PBE) events. Here, we used ZP3 activated Cre to delete exon 7 of Orc4 during oogenesis to test how it affected both predicted functions of ORC4: its recently discovered role in PBE and its well-known role in DNA synthesis. Orc4 deletion severely reduced PBE. Almost half of Orc4-depleted germinal vesicle (GV) oocytes cultured in vitro were arrested before anaphase I (48%), and only 25% produced normal first polar bodies. This supports the role of ORC4 in PBE and suggests that transcription of the full-length Orc4 during oogenesis is required for efficient PBE. Orc4 deletion also abolished zygotic DNA synthesis. Fewer Orc4-depleted oocytes developed to the metaphase II (MII) stage, and after activation these oocytes were arrested at the two-cell stage without undergoing DNA synthesis. This confirms that transcription of full-length Orc4 after the primary follicle stage is required for zygotic DNA replication. The data also suggest that MII oocytes do not have a replication licensing checkpoint as cytokinesis progressed without DNA synthesis. Together, the data confirm that oocyte ORC4 is important for both PBE and zygotic DNA synthesis.
Collapse
Affiliation(s)
- Hieu Nguyen
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Anna Ung
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yukiko Yamazaki
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W Steven Ward
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
10
|
Connolly C, Takahashi S, Miura H, Hiratani I, Gilbert N, Donaldson AD, Hiraga SI. SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. J Cell Sci 2022; 135:jcs258991. [PMID: 34888666 DOI: 10.1242/jcs.258991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold-attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein U (HNRNPU), contributes to the formation of open chromatin structure. Here, we demonstrate that SAF-A promotes the normal progression of DNA replication and enables resumption of replication after inhibition. We report that cells depleted of SAF-A show reduced origin licensing in G1 phase and, consequently, reduced origin activation frequency in S phase. Replication forks also progress less consistently in cells depleted of SAF-A, contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed two distinct effects of SAF-A depletion: first, the boundaries between early- and late-replicating domains become more blurred; and second, SAF-A depletion causes replication timing changes that tend to bring regions of discordant domain compartmentalisation and replication timing into concordance. Associated with these defects, SAF-A-depleted cells show elevated formation of phosphorylated histone H2AX (γ-H2AX) and tend to enter quiescence. Overall, we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.
Collapse
Affiliation(s)
- Caitlin Connolly
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Saori Takahashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Miura
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Ichiro Hiratani
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Rd, Edinburgh EH4 2XU, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
11
|
Anachkova BB, Djeliova VL. Stability of proteins involved in initiation of DNA replication in UV damaged human cells. ACTA ACUST UNITED AC 2021; 77:113-123. [PMID: 34333892 DOI: 10.1515/znc-2020-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
The protein stability of the initiation factors Orc2, Orc3, Orc4, and Cdc6 was analyzed after UV light exposure in two human cell lines. In the cell line with higher repair capacity, HEK 293, no changes in the cell cycle distribution or in the protein levels of the investigated factors were detected. In HeLa cells that are characterized by lower repair capacity, UV irradiation caused a reduction of the levels of Cdc6, Orc2 and Orc3, but not of Orc4 or triggered apoptosis. The appearance of the truncated 49 kDa form of Cdc6 suggested the involvement of the caspase pathway in the degradation of the proteins. Reduced protein levels of Cdc6 were detected in UV damaged HeLa cells in which the apoptotic process was blocked with the caspase inhibitor Z-VAD-fmk, indicating that the degradation of Cdc6 is mediated by the proteasome pathway instead. In the presence of caffeine, an inhibitor of the cell cycle checkpoint kinases, Cdc6 was stabilized, demonstrating that its degradation is controlled by the DNA damage cell cycle checkpoint. We conclude that in response to DNA damage, the activation of origins of replication can be prevented by the degradation of Cdc6, most likely through the proteasome pathway.
Collapse
Affiliation(s)
- Boyka Borisova Anachkova
- Department of the Molecular Biology of the Cell Cycle, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia1113, Bulgaria
| | - Vera Lyubchova Djeliova
- Department of the Molecular Biology of the Cell Cycle, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl. 21, Sofia1113, Bulgaria
| |
Collapse
|
12
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
13
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
14
|
Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication. Mol Cell 2021; 81:1951-1969.e6. [PMID: 33761311 DOI: 10.1016/j.molcel.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA+ ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA+ domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis. Then, during late G1, this domain facilitates ORC1 destruction by a SKP2-cyclin A-CDK2-dependent mechanism. During G1, the CDC6 Cy motif cooperates with cyclin E-CDK2 to promote ORC1-CDC6 interactions. The CDC6 IDR regulates self-interaction by ORC1, thereby controlling ORC1 protein levels. Protein phosphatase 1 binds directly to a SLiM in the ORC1 IDR, causing ORC1 de-phosphorylation upon mitotic exit, increasing ORC1 protein, and promoting pre-RC assembly.
Collapse
|
15
|
Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 2021; 10:62161. [PMID: 33683199 PMCID: PMC7993996 DOI: 10.7554/elife.62161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.
Collapse
Affiliation(s)
- Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Xia Wu
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Elisabeth Kremmer
- Institute for Molecular Immunology, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Bonn, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Laurent Lacroix
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
16
|
Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. eLife 2021; 10:61797. [PMID: 33522487 PMCID: PMC7877914 DOI: 10.7554/elife.61797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/30/2021] [Indexed: 12/23/2022] Open
Abstract
The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.
Collapse
Affiliation(s)
- Hsiang-Chen Chou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, United States
| | - Kuhulika Bhalla
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Sergey Aganezov
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Michael C Schatz
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
| | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
17
|
Cheng J, Li N, Wang X, Hu J, Zhai Y, Gao N. Structural insight into the assembly and conformational activation of human origin recognition complex. Cell Discov 2020; 6:88. [PMID: 33298899 PMCID: PMC7684300 DOI: 10.1038/s41421-020-00232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
The function of the origin recognition complex (ORC) in DNA replication is highly conserved in recognizing and marking the initiation sites. The detailed molecular mechanisms by which human ORC is reconfigured into a state competent for origin association remain largely unknown. Here, we present structural characterizations of human ORC1–5 and ORC2–5 assemblies. ORC2–5 exhibits a tightly autoinhibited conformation with the winged-helix domain of ORC2 completely blocking the central DNA-binding channel. The binding of ORC1 partially relieves the autoinhibitory effect of ORC2–5 through remodeling ORC2-WHD, which makes ORC2-WHD away from the central channel creating a still autoinhibited but more dynamic structure. In particular, the AAA+ domain of ORC1 is highly flexible to sample a variety of conformations from inactive to potentially active states. These results provide insights into the detailed mechanisms regulating the autoinhibition of human ORC and its subsequent activation for DNA binding.
Collapse
Affiliation(s)
- Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Xiaohan Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuanliang Zhai
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
H2A.Z facilitates licensing and activation of early replication origins. Nature 2019; 577:576-581. [PMID: 31875854 DOI: 10.1038/s41586-019-1877-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
DNA replication is a tightly regulated process that ensures the precise duplication of the genome during the cell cycle1. In eukaryotes, the licensing and activation of replication origins are regulated by both DNA sequence and chromatin features2. However, the chromatin-based regulatory mechanisms remain largely uncharacterized. Here we show that, in HeLa cells, nucleosomes containing the histone variant H2A.Z are enriched with histone H4 that is dimethylated on its lysine 20 residue (H4K20me2) and with bound origin-recognition complex (ORC). In vitro studies show that H2A.Z-containing nucleosomes bind directly to the histone lysine methyltransferase enzyme SUV420H1, promoting H4K20me2 deposition, which is in turn required for ORC1 binding. Genome-wide studies show that signals from H4K20me2, ORC1 and nascent DNA strands co-localize with H2A.Z, and that depletion of H2A.Z results in decreased H4K20me2, ORC1 and nascent-strand signals throughout the genome. H2A.Z-regulated replication origins have a higher firing efficiency and early replication timing compared with other origins. Our results suggest that the histone variant H2A.Z epigenetically regulates the licensing and activation of early replication origins and maintains replication timing through the SUV420H1-H4K20me2-ORC1 axis.
Collapse
|
19
|
Roumeliotis TI, Williams SP, Gonçalves E, Alsinet C, Del Castillo Velasco-Herrera M, Aben N, Ghavidel FZ, Michaut M, Schubert M, Price S, Wright JC, Yu L, Yang M, Dienstmann R, Guinney J, Beltrao P, Brazma A, Pardo M, Stegle O, Adams DJ, Wessels L, Saez-Rodriguez J, McDermott U, Choudhary JS. Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells. Cell Rep 2018; 20:2201-2214. [PMID: 28854368 PMCID: PMC5583477 DOI: 10.1016/j.celrep.2017.08.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022] Open
Abstract
Assessing the impact of genomic alterations on protein networks is fundamental in identifying the mechanisms that shape cancer heterogeneity. We have used isobaric labeling to characterize the proteomic landscapes of 50 colorectal cancer cell lines and to decipher the functional consequences of somatic genomic variants. The robust quantification of over 9,000 proteins and 11,000 phosphopeptides on average enabled the de novo construction of a functional protein correlation network, which ultimately exposed the collateral effects of mutations on protein complexes. CRISPR-cas9 deletion of key chromatin modifiers confirmed that the consequences of genomic alterations can propagate through protein interactions in a transcript-independent manner. Lastly, we leveraged the quantified proteome to perform unsupervised classification of the cell lines and to build predictive models of drug response in colorectal cancer. Overall, we provide a deep integrative view of the functional network and the molecular structure underlying the heterogeneity of colorectal cancer cells.
Collapse
Affiliation(s)
| | - Steven P Williams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Emanuel Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Clara Alsinet
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Nanne Aben
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands
| | - Fatemeh Zamanzad Ghavidel
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Magali Michaut
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands
| | - Michael Schubert
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Stacey Price
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - James C Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Mi Yang
- Faculty of Medicine, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52057, Germany
| | - Rodrigo Dienstmann
- Computational Oncology, Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; Oncology Data Science Group, Vall d'Hebron Institute of Oncology, Barcelona 08035, Spain
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Mercedes Pardo
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Computational Cancer Biology, the Netherlands Cancer Institute, Amsterdam 1066, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft 2628, the Netherlands
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Faculty of Medicine, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen 52057, Germany
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jyoti S Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
20
|
Brasil JN, Costa CNM, Cabral LM, Ferreira PCG, Hemerly AS. The plant cell cycle: Pre-Replication complex formation and controls. Genet Mol Biol 2017; 40:276-291. [PMID: 28304073 PMCID: PMC5452130 DOI: 10.1590/1678-4685-gmb-2016-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.
Collapse
Affiliation(s)
- Juliana Nogueira Brasil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Universitário Christus, Fortaleza, CE, Brazil
| | - Carinne N Monteiro Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luiz Mors Cabral
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Hiraga SI, Ly T, Garzón J, Hořejší Z, Ohkubo YN, Endo A, Obuse C, Boulton SJ, Lamond AI, Donaldson AD. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep 2017; 18:403-419. [PMID: 28077461 PMCID: PMC5331243 DOI: 10.15252/embr.201641983] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
Abstract
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Tony Ly
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Javier Garzón
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zuzana Hořejší
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Yoshi-Nobu Ohkubo
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Akinori Endo
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Simon J Boulton
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
22
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
23
|
Kylie K, Romero J, Lindamulage IK, Knockleby J, Lee H. Dynamic regulation of histone H3K9 is linked to the switch between replication and transcription at the Dbf4 origin-promoter locus. Cell Cycle 2016; 15:2321-35. [PMID: 27341472 PMCID: PMC5004705 DOI: 10.1080/15384101.2016.1201254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The co-regulation of DNA replication and gene transcription is still poorly understood. To gain a better understanding of this important control mechanism, we examined the DNA replication and transcription using the Dbf4 origin-promoter and Dbf4 pseudogene models. We found that origin firing and Dbf4 transcription activity were inversely regulated in a cell cycle-dependent manner. We also found that proteins critical for the regulation of replication (ORC, MCM), transcription (SP1, TFIIB), and cohesin (Smc1, Smc3) and Mediator functions (Med1, Med12) interact with specific sites within and the surrounding regions of the Dbf4 locus in a cell cycle-dependent manner. As expected, replication initiation occurred within a nucleosome-depleted region, and nucleosomes flanked the 2 replication initiation zones. Further, the histone H3 in this region was distinctly acetylated or trimethylated on lysine 9 in a cell cycle-dependent fluctuation pattern: H3K9ac was most prevalent when the Dbf4 transcription level was highest whereas the H3K9me3 level was greatest during and just after replication. The KDM4A histone demethylase, which is responsible for the H3K9me3 modification, was enriched at the Dbf4 origin in a manner coinciding with H3K9me3. Finally, HP1γ, a protein known to interact with H3K9me3 in the heterochromatin was also found enriched at the origin during DNA replication, indicating that H3K9me3 may be required for the regulation of replication at both heterochromatin and euchromatin regions. Taken together, our data show that mammalian cells employ an extremely sophisticated and multilayered co-regulation mechanism for replication and transcription in a highly coordinated manner.
Collapse
Affiliation(s)
- Kathleen Kylie
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Julia Romero
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | | | - James Knockleby
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Hossain M, Stillman B. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. eLife 2016; 5. [PMID: 27458800 PMCID: PMC4987141 DOI: 10.7554/elife.12785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment. DOI:http://dx.doi.org/10.7554/eLife.12785.001 Living cells must replicate their DNA before they divide so that the newly formed cells can each receive an identical copy of the genetic material. Before DNA replication can begin, a number of proteins must come together to form so-called pre-replicative complexes at many locations along the DNA molecules. These protein complexes then serve as landing pads for many other DNA replication proteins. One component of the pre-replicative complex, a protein called ORC1, helps to recruit another protein called CDC6 that in turn acts with Cyclin E to promote the replication of the DNA. Cyclin E is a protein that is only expressed when cells commit to divide. Previous research has shown that a lack of ORC1 causes the levels of Cyclin E to rise in human cells, but it was not understood how cells regulate the levels of Cyclin E. Now, Hossain and Stillman show that the ORC1 protein switches off the gene that encodes Cyclin E early on in newly born cells, and therefore prevents the Cyclin E protein from being produced. The experiments show that ORC1 does this by binding near one end of the gene for Cyclin E and interacting with two other proteins to inactivate the gene. Thus, ORC1 establishes a period when Cyclin E is absent from a newly formed cell. This essentially gives the cell time to ‘decide’ (based on external cues and its own signaling) whether it will divide again or enter into a non-dividing state. When a cell does decide to divide, the levels of CDC6 rise. CDC6 is another component of the pre-replicative complex and Hossain and Stillman find that CDC6 works to counteract the effects of ORC1 and reactivate the gene for Cyclin E. This activity leads to a dramatic increase in the production of Cyclin E, which in turn allows the cells to commit to another round of DNA replication and division. The opposing effects of ORC1 and CDC6 control the levels of Cyclin E and provide a link between DNA replication and a cell’s decision to divide. Further work is now needed to see whether ORC1 inactivates other genes in addition to the one that encodes Cyclin E. DOI:http://dx.doi.org/10.7554/eLife.12785.002
Collapse
Affiliation(s)
- Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
25
|
Moreno SP, Gambus A. Regulation of Unperturbed DNA Replication by Ubiquitylation. Genes (Basel) 2015; 6:451-68. [PMID: 26121093 PMCID: PMC4584310 DOI: 10.3390/genes6030451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.
Collapse
Affiliation(s)
- Sara Priego Moreno
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Vincent Drive, B15 2TT, Birmingham, UK.
| |
Collapse
|
26
|
Zhang W, Sankaran S, Gozani O, Song J. A Meier-Gorlin syndrome mutation impairs the ORC1-nucleosome association. ACS Chem Biol 2015; 10:1176-80. [PMID: 25689043 DOI: 10.1021/cb5009684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have identified several genetic mutations within the BAH domain of human Origin Recognition Complex subunit 1 (hORC1BAH), including the R105Q mutation, implicated in Meier-Gorlin Syndrome (MGS). However, the pathological role of the hORC1 R105Q mutation remains unclear. In this study, we have investigated the interactions of the hORC1BAH domain with histone H4K20me2, DNA, and the nucleosome core particle labeled with H4Kc20me2, a chemical analog of H4K20me2. Our study revealed a nucleosomal DNA binding site for hORC1BAH. The R105Q mutation reduces the hORC1BAH-DNA binding affinity, leading to impaired hORC1BAH-nucleosome interaction, which likely influences DNA replication initiation and MGS pathogenesis. This study provides an etiologic link between the hORC1 R105Q mutation and MGS.
Collapse
Affiliation(s)
- Wei Zhang
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Saumya Sankaran
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Or Gozani
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Jikui Song
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Kara N, Hossain M, Prasanth SG, Stillman B. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. J Biol Chem 2015; 290:12355-69. [PMID: 25784553 DOI: 10.1074/jbc.m114.625012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022] Open
Abstract
Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.
Collapse
Affiliation(s)
- Nihan Kara
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11779, and
| | - Manzar Hossain
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Supriya G Prasanth
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801
| | - Bruce Stillman
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
28
|
Dellino GI, Pelicci PG. Next-generation sequencing and DNA replication in human cells: the future has arrived. Future Oncol 2015; 10:683-93. [PMID: 24754597 DOI: 10.2217/fon.13.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accurate regulation of DNA replication ensures faithful transmission of eukaryotic genomes and maintenance of genomic stability and chromatin organization. However, by itself the replication process is a threat for both DNA and chromatin integrity. This becomes particularly relevant in cancer cells, where activated oncogenes induce replication-stress, including unscheduled initiation, fork stalling and collapse and, ultimately, genomic instability. Studies addressing the relationship between (epi)genome integrity and disease have been hampered by our poor knowledge of the mechanisms regulating where and when eukaryotic replication initiates. Recently developed genome-scale methods for the analysis of DNA replication in mammals will contribute to the identification of missing links between replication, chromatin regulation and genome stability in normal and cancer cells.
Collapse
Affiliation(s)
- Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | |
Collapse
|
29
|
Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct 2013; 8:22. [PMID: 24034780 PMCID: PMC3868326 DOI: 10.1186/1745-6150-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/06/2013] [Indexed: 12/17/2022] Open
Abstract
LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are
capable of synthesizing DNA on their own RNA templates by harnessing reverse
transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their
RT are found to globally influence gene expression profiles, differentiation state,
and proliferation capacity of early embryos and many types of cancer, albeit by yet
unknown mechanisms. They are essential for the progression of early development and
the establishment of a cancer-related undifferentiated state. This raises important
questions regarding the functional significance of L1 RT in these cell systems.
Massive nuclear L1-linked reverse transcription has been shown to occur in mouse
zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication
independent. This review argues against this claim with the goal of understanding the
nature of this phenomenon and the role of L1 RT in early embryos and cancers.
Available L1 data are revisited and integrated with relevant findings accumulated in
the fields of replication timing, chromatin organization, and epigenetics, bringing
together evidence that strongly supports two new concepts. First, noncanonical
replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse
transcription is proposed to co-exist with DNA polymerase-dependent replication of
the rest of the genome during the same round of DNA replication in embryonic and
cancer cell systems. Second, the role of this mechanism is thought to be epigenetic;
it might promote transcriptional competence of neighboring genes linked to
undifferentiated states through the prevention of tethering of involved L1s to the
nuclear periphery. From the standpoint of these concepts, several hitherto
inexplicable phenomena can be explained. Testing methods for the model are
proposed.
Collapse
Affiliation(s)
- Ekaterina Belan
- Genetics Laboratory, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
30
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
31
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
32
|
Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 2012; 287:23977-94. [PMID: 22589552 DOI: 10.1074/jbc.m112.368456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed.
Collapse
Affiliation(s)
- Kenji Moriyama
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
33
|
Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS. Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem 2012; 287:11891-8. [PMID: 22334659 DOI: 10.1074/jbc.m111.338467] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the late M to the G(1) phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2-5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2-5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
35
|
Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010; 107:15093-8. [PMID: 20689044 DOI: 10.1073/pnas.1009945107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) alpha- and HP1beta-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1alpha, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1alpha; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1alpha association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1alpha distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1alpha from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1alpha-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.
Collapse
|
36
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
37
|
Kawakami H, Katayama T. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 2010; 88:49-62. [PMID: 20130679 DOI: 10.1139/o09-154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To initiate chromosomal DNA replication, specific proteins bind to the replication origin region and form multimeric and dynamic complexes. Bacterial DnaA, the eukaryotic origin recognition complex (ORC), and Cdc6 proteins, most of which include an AAA+(-like) motif, play crucial roles in replication initiation. The importance of ATP binding and hydrolysis in these proteins has recently become recognized. ATP binding of Escherichia coli DnaA is required for the formation of the activated form of a DnaA multimer on the replication origin. The ATP-DnaA multimer can unwind duplex DNA in an origin-dependent manner, which is supported by various specific functions of several AAA+ motifs. DnaA-ATP hydrolysis is stimulated after initiation, repressing extra initiations, and sustaining once-per-cell cycle replication. ATP binding of ORC and Cdc6 in Saccharomyces cerevisiae is required for heteromultimeric complex formation and specific DNA binding. ATP hydrolysis of these proteins is important for the efficient loading of the minichromosome maintenance protein complex, a component of the putative replicative helicase. In this review, we discuss the roles of DnaA, ORC, and Cdc6 in replication initiation and its regulation. We also summarize the functional features of the AAA+ domains of these proteins, and the functional divergence of ORC in chromosomal dynamics.
Collapse
Affiliation(s)
- Hironori Kawakami
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
38
|
Sánchez-Quiles V, Santamaría E, Segura V, Sesma L, Prieto J, Corrales FJ. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics 2010; 10:1609-1620. [PMID: 20186755 DOI: 10.1002/pmic.200900757] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Prohibitin is a multifunctional protein participating in a plethora of essential cellular functions, such as cell signaling, apoptosis, survival and proliferation. In the liver, deficient prohibitin activity participates in the progression of non-alcoholic steatohepatitis and obesity, according to mechanisms that still must be elucidated. In this study, we have used a combination of transcriptomics and proteomics technologies to investigate the response of human hepatoma PLC/PRF/5 cells to prohibitin silencing to define in detail the biological function of hepatic Phb1 and to elucidate potential prohibitin-dependent mechanisms participating in the maintenance of the transformed phenotype. Abrogation of prohibitin reduced proliferation and induced apoptosis in human hepatoma cells in a mechanism dependent on NF kappaB signaling. Moreover, down-regulation of ERp29 together with down-regulation of Erlin 2 suggests ER stress. In agreement, increased C/EBP homologous protein levels, poly-ADP ribose polymerase cleavage and activation of caspase 12 and downstream caspase 7 evidenced ER stress-induced apoptosis. Down-regulation of proteasome activator complex subunit 2 and stathmin as well as accumulation of ubiquitinated proteins suggest interplay between ER stress and proteasome malfunction. Taken together, our results provide evidences for prohibitin having a central role in the maintenance of the transformed and invasive phenotype of human hepatoma cells and may further support previous studies suggesting prohibitin as a potential clinical target.
Collapse
Affiliation(s)
- Virginia Sánchez-Quiles
- Division of Hepatology and Gene Therapy, Proteomics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Shultz RW, Lee TJ, Allen GC, Thompson WF, Hanley-Bowdoin L. Dynamic localization of the DNA replication proteins MCM5 and MCM7 in plants. PLANT PHYSIOLOGY 2009; 150:658-69. [PMID: 19357199 PMCID: PMC2689970 DOI: 10.1104/pp.109.136614] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/02/2009] [Indexed: 05/21/2023]
Abstract
Genome integrity in eukaryotes depends on licensing mechanisms that prevent loading of the minichromosome maintenance complex (MCM2-7) onto replicated DNA during S phase. Although the principle of licensing appears to be conserved across all eukaryotes, the mechanisms that control it vary, and it is not clear how licensing is regulated in plants. In this work, we demonstrate that subunits of the MCM2-7 complex are coordinately expressed during Arabidopsis (Arabidopsis thaliana) development and are abundant in proliferating and endocycling tissues, indicative of a role in DNA replication. We show that endogenous MCM5 and MCM7 proteins are localized in the nucleus during G1, S, and G2 phases of the cell cycle and are released into the cytoplasmic compartment during mitosis. We also show that MCM5 and MCM7 are topologically constrained on DNA and that the MCM complex is stable under high-salt conditions. Our results are consistent with a conserved replicative helicase function for the MCM complex in plants but not with the idea that plants resemble budding yeast by actively exporting the MCM complex from the nucleus to prevent unauthorized origin licensing and rereplication during S phase. Instead, our data show that, like other higher eukaryotes, the MCM complex in plants remains in the nucleus throughout most of the cell cycle and is only dispersed in mitotic cells.
Collapse
Affiliation(s)
- Randall W Shultz
- Department of Molecular and Structural Biochemistry , North Carolina State University, Raleigh, North Carolina 27695-7651, USA.
| | | | | | | | | |
Collapse
|
40
|
Cohen SM, Chastain PD, Cordeiro-Stone M, Kaufman DG. DNA replication and the GINS complex: localization on extended chromatin fibers. Epigenetics Chromatin 2009; 2:6. [PMID: 19442263 PMCID: PMC2686697 DOI: 10.1186/1756-8935-2-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 05/14/2009] [Indexed: 12/15/2022] Open
Abstract
Background The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins. Results Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication. Conclusion In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
41
|
Ohsaki E, Suzuki T, Karayama M, Ueda K. Accumulation of LANA at nuclear matrix fraction is important for Kaposi's sarcoma-associated herpesvirus replication in latency. Virus Res 2008; 139:74-84. [PMID: 19027806 DOI: 10.1016/j.virusres.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 01/03/2023]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome replicates once per cell cycle, and the number of viral genome is maintained in the latency. The host cell-cycle-dependent replication of the viral genome is a fundamental process to critically keep the number of the genome. Here we show that the cellular pre-replication complex (pre-RC), the viral replication origin (ori-P) in a unit of the terminal repeat of the KSHV genome, and a viral replication factor, latency-associated nuclear antigen (LANA) accumulate at the nuclear matrix fraction in the G1 phase. We found not only that LANA itself was localized mainly to the nuclear matrix fraction but also that TR region of the KSHV genome existed together in the G1 phase. The localization of LANA at the nuclear matrix could be determined by structural consequence of the full length of LANA. Furthermore, transient replication assay revealed that the LANA's nuclear matrix localization was a pre-requisite for the efficient viral genome replication in the latency. Since LANA has been shown to bind the LANA binding sites (LBS) of the ori-P, these results suggest that LANA should recruit the ori-P to the nuclear matrix, where the complete pre-RC then forms on the ori-P, during the G1 phase. Thus, the nuclear matrix accumulation of cellular and viral replication factors is likely to be a key process for the initiation of replication of KSHV in the latency.
Collapse
Affiliation(s)
- Eriko Ohsaki
- Department of Infectious Diseases, University of Hamamatsu School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | |
Collapse
|
42
|
Binding of Drosophila ORC proteins to anaphase chromosomes requires cessation of mitotic cyclin-dependent kinase activity. Mol Cell Biol 2008; 29:140-9. [PMID: 18955499 DOI: 10.1128/mcb.00981-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial step in the acquisition of replication competence by eukaryotic chromosomes is the binding of the multisubunit origin recognition complex, ORC. We describe a transgenic Drosophila model which enables dynamic imaging of a green fluorescent protein (GFP)-tagged Drosophila melanogaster ORC subunit, DmOrc2-GFP. It is functional in genetic complementation, expressed at physiological levels, and participates quantitatively in complex formation. This fusion protein is therefore able to depict both the holocomplex DmOrc1-6 and the core complex DmOrc2-6 formed by the Drosophila initiator proteins. Its localization can be monitored in vivo along the cell cycle and development. DmOrc2-GFP is not detected on metaphase chromosomes but binds rapidly to anaphase chromatin in Drosophila embryos. Expression of either stable cyclin A, B, or B3 prevents this reassociation, suggesting that cessation of mitotic cyclin-dependent kinase activity is essential for binding of the DmOrc proteins to chromosomes.
Collapse
|
43
|
Tatsumi Y, Ezura K, Yoshida K, Yugawa T, Narisawa-Saito M, Kiyono T, Ohta S, Obuse C, Fujita M. Involvement of human ORC and TRF2 in pre-replication complex assembly at telomeres. Genes Cells 2008; 13:1045-59. [PMID: 18761675 DOI: 10.1111/j.1365-2443.2008.01224.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The origin recognition complex (ORC) binds to replication origins to regulate the cell cycle-dependent assembly of pre-replication complexes (pre-RCs). We have found a novel link between pre-RC assembly regulation and telomere homeostasis in human cells. Biochemical analyses showed that human ORC binds to TRF2, a telomere sequence-binding protein that protects telomeres and functions in telomere length homeostasis, via the ORC1 subunit. Immunostaining further revealed that ORC and TRF2 partially co-localize in nuclei, whereas chromatin immunoprecipitation analyses confirmed that pre-RCs are assembled at telomeres in a cell cycle-dependent manner. Over-expression of TRF2 stimulated ORC and MCM binding to chromatin and RNAi-directed TRF2 silencing resulted in reduced ORC binding and pre-RC assembly at telomeres. As expected from previous reports, TRF2 silencing induced telomere elongation. Interestingly, ORC1 silencing by RNAi weakened the TRF2 binding as well as the pre-RC assembly at telomeres, suggesting that ORC and TRF2 interact with each other to achieve stable binding. Furthermore, ORC1 silencing also resulted in modest telomere elongation. These data suggest that ORC might be involved in telomere homeostasis in human cells.
Collapse
Affiliation(s)
- Yasutoshi Tatsumi
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although the principles governing chromosomal architecture are largely unresolved, there is evidence that higher-order chromatin folding is mediated by the anchoring of specific DNA sequences to the nuclear matrix. These genome anchors are also crucial regulators of gene expression and DNA replication, and play a role in pathogenesis.
Collapse
Affiliation(s)
- Diego Ottaviani
- Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | |
Collapse
|
45
|
Abstract
The origin recognition complex (ORC) was initially discovered in budding yeast extracts as a protein complex that binds with high affinity to autonomously replicating sequences in an ATP-dependent manner. We have cloned and expressed the human homologs of the ORC subunits as recombinant proteins. In contrast to other eukaryotic initiators examined thus far, assembly of human ORC in vitro is dependent on ATP binding. Mutations in the ATP-binding sites of Orc4 or Orc5 impair complex assembly, whereas Orc1 ATP binding is not required. Immunofluorescence staining of human cells with anti-Orc3 antibodies demonstrate cell cycle-dependent association with a nuclear structure. Immunoprecipitation experiments show that ORC disassembles as cells progress through S phase. The Orc6 protein binds directly to the Orc3 subunit and interacts as part of ORC in vivo. These data suggest that the assembly and disassembly of ORC in human cells is uniquely regulated and may contribute to restricting DNA replication to once in every cell division cycle.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
46
|
Murakami Y, Chen LF, Sanechika N, Kohzaki H, Ito Y. Transcription factor Runx1 recruits the polyomavirus replication origin to replication factories. J Cell Biochem 2007; 100:1313-23. [PMID: 17063494 DOI: 10.1002/jcb.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eukaryotic DNA replication takes place in the replication factories, where replication proteins are properly assembled to form replication forks. Thus, recruitment of DNA replication origins to the replication factories must be the key step for the regulation of DNA replication. The transcription factor Runx1 associates with the nuclear matrix, the putative substructure of DNA replication factories. An earlier report from our laboratory showed that Runx1 activates polyomavirus DNA replication, and that this requires its nuclear matrix-binding activity. Here, we show that Runx1 activates polyomavirus DNA replication by stimulating the binding of the viral-encoded replication initiator/helicase, large T antigen, to its replication origin. We found that newly replicated polyomavirus DNA is associated with the nuclear matrix and that large T antigen is targeted to replication factories, suggesting that polyomavirus is replicated in replication factories on the nuclear matrix. Although Runx1 did not co-localize with large T antigen-containing foci by itself, it co-localized with large T antigen-containing replication factories during Runx1-dependent polyomavirus DNA replication. These observations together suggest that Runx1 recruits the polyomavirus replication origin to the replication factory on the nuclear matrix, and that this requires the nuclear matrix-binding activity of Runx1.
Collapse
Affiliation(s)
- Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|
47
|
Noguchi K, Vassilev A, Ghosh S, Yates JL, DePamphilis ML. The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J 2006; 25:5372-82. [PMID: 17066079 PMCID: PMC1636626 DOI: 10.1038/sj.emboj.7601396] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022] Open
Abstract
Selection of initiation sites for DNA replication in eukaryotes is determined by the interaction between the origin recognition complex (ORC) and genomic DNA. In mammalian cells, this interaction appears to be regulated by Orc1, the only ORC subunit that contains a bromo-adjacent homology (BAH) domain. Since BAH domains mediate protein-protein interactions, the human Orc1 BAH domain was mutated, and the mutant proteins expressed in human cells to determine their affects on ORC function. The BAH domain was not required for nuclear localization of Orc1, association of Orc1 with other ORC subunits, or selective degradation of Orc1 during S-phase. It did, however, facilitate reassociation of Orc1 with chromosomes during the M to G1-phase transition, and it was required for binding Orc1 to the Epstein-Barr virus oriP and stimulating oriP-dependent plasmid DNA replication. Moreover, the BAH domain affected Orc1's ability to promote binding of Orc2 to chromatin as cells exit mitosis. Thus, the BAH domain in human Orc1 facilitates its ability to activate replication origins in vivo by promoting association of ORC with chromatin.
Collapse
Affiliation(s)
- Kohji Noguchi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Soma Ghosh
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - John L Yates
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA. Tel.: +1 301 402 8234; Fax: +1 301 480 9354; E-mail:
| |
Collapse
|
48
|
Ghosh M, Kemp M, Liu G, Ritzi M, Schepers A, Leffak M. Differential binding of replication proteins across the human c-myc replicator. Mol Cell Biol 2006; 26:5270-83. [PMID: 16809765 PMCID: PMC1592723 DOI: 10.1128/mcb.02137-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G(1)-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G(1)-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G(1)-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.
Collapse
Affiliation(s)
- Maloy Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
49
|
Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther 2006; 14:613-26. [PMID: 16784894 DOI: 10.1016/j.ymthe.2006.03.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 01/20/2023] Open
Abstract
Although the genetic therapy of human diseases has been conceptually possible for many years we still lack a vector system that allows safe and reproducible genetic modification of eukaryotic cells and ensures faithful long-term expression of transgenes. There is increasing agreement that vectors that are based exclusively on chromosomal elements, which replicate autonomously in human cells, could fulfill these criteria. The rational construction of such vectors is still hindered by our limited knowledge of the factors that regulate chromatin function in eukaryotic cells. This review sets out to summarize how our current knowledge of nuclear organization can be applied to the design of extrachromosomal gene expression vectors that can be used for human gene therapy. Within the past years a number of episomal nonviral constructs have been designed and their replication strategies, expression of transgenes, mitotic stability, and delivery strategies and the mechanisms required for their stable establishment will be discussed. To date, these nonviral vectors have not been used in clinical trials. Even so, many compelling arguments can be developed to support the view that nonviral vector systems will play a major role in future gene therapy protocols.
Collapse
Affiliation(s)
- Dean A Jackson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | | | | |
Collapse
|
50
|
Radichev I, Kwon SW, Zhao Y, DePamphilis ML, Vassilev A. Genetic analysis of human Orc2 reveals specific domains that are required in vivo for assembly and nuclear localization of the origin recognition complex. J Biol Chem 2006; 281:23264-73. [PMID: 16762929 DOI: 10.1074/jbc.m603873200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA replication begins with the binding of a six subunit origin recognition complex (ORC) to DNA. To study the assembly and function of mammalian ORC proteins in their native environment, HeLa cells were constructed that constitutively expressed an epitope-tagged, recombinant human Orc2 subunit that had been genetically altered. Analysis of these cell lines revealed that Orc2 contains a single ORC assembly domain that is required in vivo for interaction with all other ORC subunits, as well as two nuclear localization signals (NLSs) that are required for ORC accumulation in the nucleus. The recombinant Orc2 existed in the nucleus either as an ORC-(2-5) or ORC-(1-5) complex; no other combinations of ORC subunits were detected. Moreover, only ORC-(1-5) was bound to the chromatin fraction, suggesting that Orc1 is required in vivo to load ORC-(2-5) onto chromatin. Surprisingly, recombinant Orc2 suppressed expression of endogenous Orc2, revealing that mammalian cells limit the intracellular level of Orc2, and thereby limit the amount of ORC-(2-5) in the nucleus. Because this suppression required only the ORC assembly and NLS domains, these domains appear to constitute the functional domain of Orc2.
Collapse
Affiliation(s)
- Ilian Radichev
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|