1
|
Mojica N, Kersten F, Montserrat-Canals M, Huhn III GR, Tislevoll AM, Cordara G, Teter K, Krengel U. Using Vibrio natriegens for High-Yield Production of Challenging Expression Targets and for Protein Perdeuteration. Biochemistry 2024; 63:587-598. [PMID: 38359344 PMCID: PMC10919088 DOI: 10.1021/acs.biochem.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Production of soluble proteins is essential for structure/function studies; however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens emerged as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine-binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA, and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein perdeuteration using deuterated minimal media with deuterium oxide as solvent and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news, since isotopic labeling is expensive and often ineffective but represents a necessary prerequisite for some structural biology techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein perdeuteration in amounts suitable for structural biology studies.
Collapse
Affiliation(s)
- Natalia Mojica
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| | - Flore Kersten
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
- Centre
for Molecular Medicine Norway, University
of Oslo, NO-0318 Blindern, Oslo, Norway
| | - Mateu Montserrat-Canals
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
- Centre
for Molecular Medicine Norway, University
of Oslo, NO-0318 Blindern, Oslo, Norway
| | - G. Robb Huhn III
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Gabriele Cordara
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| | - Ken Teter
- Burnett
School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Ute Krengel
- Department
of Chemistry, University of Oslo, NO-0315 Blindern, Oslo, Norway
| |
Collapse
|
2
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 PMCID: PMC11623402 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Mojica N, Kersten F, Montserrat-Canals M, Huhn GR, Tislevoll AM, Cordara G, Teter K, Krengel U. Using Vibrio natriegens for high-yield production of challenging expression targets and for protein deuteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565449. [PMID: 37961550 PMCID: PMC10635113 DOI: 10.1101/2023.11.03.565449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Production of soluble proteins is essential for structure/function studies, however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens appeared as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax™ X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted, and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein deuteration using deuterated minimal media with deuterium oxide as solvent, and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news since isotopic labeling is expensive and often ineffective, but represents a necessary prerequisite for some structural techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein deuteration in amounts suitable for structural biology studies.
Collapse
Affiliation(s)
- Natalia Mojica
- Department of Chemistry, University of Oslo, Blindern, Norway
| | - Flore Kersten
- Department of Chemistry, University of Oslo, Blindern, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Blindern, Norway
| | - Mateu Montserrat-Canals
- Department of Chemistry, University of Oslo, Blindern, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Blindern, Norway
| | - G. Robb Huhn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, U.S.A
| | | | | | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, U.S.A
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, Norway
| |
Collapse
|
4
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
7
|
Zhang X, Yu S, Cheng D, Feng Y, Yang Y, Sun H, Ding J, Wang F. An Attenuated Escherichia coli K88ac LT(S63K)Δ STb Efficiently Provides Protection Against Enterotoxigenic Escherichia coli in the Mouse Model. Front Vet Sci 2021; 7:620255. [PMID: 33644141 PMCID: PMC7907446 DOI: 10.3389/fvets.2020.620255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
To develop an attenuated vaccine candidate against K88ac enterotoxigenic Escherichia coli (ETEC), a novel Escherichia coli (E. coli) K88ac LT(S63K)ΔSTb with LT(S63K) mutation and ST1 deletion was generated using site mutagenesis and λ-Red homologous recombination based on wild paternal ETEC strain C83902. E. coli K88ac LT(S63K)ΔSTb showed very similar fimbriae expression and growth kinetics to the wild strain C83902, but it was significantly attenuated according to the results of a rabbit ligated ileal loop assay and mouse infection study. Oral inoculation with E. coli K88ac LT(S63K)ΔSTb stimulated the mucosa immune response and induced the secretion of IgA to K88ac in the intestines in mice. A challenge experiment revealed that the attenuated strain provided efficient protection against C83902 in the following 7 days and at the 24th day post-inoculation, suggesting that the attenuated isolate could act as an ecological protectant and vaccine in preventing K88ac ETEC.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shupei Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Darong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu Feng
- Department of Biologics Detection Technology, China Institute of Veterinary Drugs Control, Beijing, China
| | - Yuefei Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiabo Ding
- Department of Biologics Detection Technology, China Institute of Veterinary Drugs Control, Beijing, China
| | - Fang Wang
- Department of Biologics Detection Technology, China Institute of Veterinary Drugs Control, Beijing, China
| |
Collapse
|
8
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Outer Membrane Interaction Kinetics of New Polymyxin B Analogs in Gram-Negative Bacilli. Antimicrob Agents Chemother 2019; 63:AAC.00935-19. [PMID: 31332075 DOI: 10.1128/aac.00935-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022] Open
Abstract
Infections caused by drug-resistant Gram-negative bacilli are a severe global health threat, limiting effective drug choices for treatment. In this study, polymyxin analogs designed to have reduced nephrotoxicity, direct activity, and potentiating activity were assessed for inhibition and outer membrane interaction kinetics against wild-type (WT) and polymyxin or multidrug-resistant (MDR) Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae In MIC assays, two polymyxin B (PMB) analogs (SPR1205 and SPR206) and a polymyxin E analog (SPR946), with shortened peptide side chains and branched aminobutyryl N termini, exhibited promising activity compared with PMB and previously tested control polymyxin analogs SPR741 and polymyxin B nonapeptide (PMBN). Using dansyl-polymyxin (DPX) binding to assess the affinity of interaction with lipopolysaccharide (LPS), purified or in the context of intact cells, SPR206 exhibited similar affinities to PMB but higher affinities than the other SPR analogs. Outer membrane permeabilization measured by the 1-N-phenyl-napthylamine (NPN) assay did not differ significantly between the polymyxin analogs. Moreover, Hill numbers were greater than 1 for most of the compounds tested on E. coli and P. aeruginosa strains which indicates that the disruption of the outer membrane by one molecule of compound cooperatively enhances the subsequent interactions of other molecules against WT and MDR strains. The high activity demonstrated by SPR206 as well as its ability to displace LPS and permeabilize the outer membrane of multiple strains of Gram-negative bacilli while showing cooperative potential with other membrane disrupting compounds supports further research with this polymyxin analog.
Collapse
|
10
|
Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of Newly Identified Functions Associated With the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front Cell Infect Microbiol 2019; 9:292. [PMID: 31456954 PMCID: PMC6700299 DOI: 10.3389/fcimb.2019.00292] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Heat-labile toxin (LT) is a well-characterized powerful enterotoxin produced by enterotoxigenic Escherichia coli (ETEC). This toxin is known to contribute to diarrhea in young children in developing countries, international travelers, as well as many different species of young animals. Interestingly, it has also been revealed that LT is involved in other activities in addition to its role in enterotoxicity. Recent studies have indicated that LT toxin enhances enteric pathogen adherence and subsequent intestinal colonization. LT has also been shown to act as a powerful adjuvant capable of upregulating vaccine antigenicity; it also serves as a protein or antigenic peptide display platform for new vaccine development, and can be used as a naturally derived cell targeting and protein delivery tool. This review summarizes the epidemiology, secretion, delivery, and mechanisms of action of LT, while also highlighting new functions revealed by recent studies.
Collapse
Affiliation(s)
- Qiangde Duan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rahul Nandre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Guoqiang Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
11
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
12
|
Roig FJ, González-Candelas F, Sanjuán E, Fouz B, Feil EJ, Llorens C, Baker-Austin C, Oliver JD, Danin-Poleg Y, Gibas CJ, Kashi Y, Gulig PA, Morrison SS, Amaro C. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Front Microbiol 2018; 8:2613. [PMID: 29358930 PMCID: PMC5765525 DOI: 10.3389/fmicb.2017.02613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."
Collapse
Affiliation(s)
- Francisco J Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit on Infection and Public Health FISABIO-Salud Pública and Universitat de Valencia-I2SysBio, Valencia, Spain.,CIBEResp, National Network Center for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Valencia, Spain
| | - Eva Sanjuán
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Belén Fouz
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.,Duke University Marine Lab, Beaufort, NC, United States
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Shatavia S Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
13
|
Sun Y, Kim SW. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2017; 3:322-330. [PMID: 29767133 PMCID: PMC5941267 DOI: 10.1016/j.aninu.2017.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Gut health of nursery pigs immediately after weaning is tightly associated with their growth performance and economic values. Postweaning diarrhea (PWD) is one of the major concerns related to gut health of nursery pigs which often is caused by infections of enterotoxigenic Escherichia coli (ETEC), mainly including F4 (K88)+ and F18+E. coli. The main virulence factors of ETEC are adhesins (fimbriae or pili) and enterotoxins. The common types of fimbriae on ETEC from PWD pigs are F18+ and F4+. Typically, PWD in pigs is associated with both F18+ and F4+ ETEC infections whereas pre-weaning diarrhea in pigs is associated with F4+ ETEC infection. Enterotoxins including heat-labile enterotoxins (LT) and heat-stable peptide toxins (ST) are associated with causing diarrhea in pigs. At least 109 to 1010 ETEC are required to induce diarrhea in nursery pigs typically lasting 1 to 5 days after ETEC infection. Antibiotics used to be the most effective way to prevent PWD, however, with the increased bacterial resistance to antibiotics, alternatives to the use of antibiotics are urgently needed to prevent PWD. Immunopropylaxis and nutritional intervention of antimicrobial minerals (such as zinc oxide and copper sulfate), organic acids, functional feedstuffs (such as blood plasma and egg yolk antibodies), direct fed microbials, phytobiotics, and bacteriophage can potentially prevent PWD associated with ETEC. Some other feed additives such as nucleotides, feed enzymes, prebiotic oligosaccharides, and clay minerals can enhance intestinal health and thus indirectly help with preventing PWD. Numerous papers show that nutritional intervention using selected feed additives can effectively prevent PWD.
Collapse
Affiliation(s)
- Yawang Sun
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Hatlem D, Heggelund JE, Burschowsky D, Krengel U, Kristiansen PE. 1H, 13C, 15N backbone assignment of the human heat-labile enterotoxin B-pentamer and chemical shift mapping of neolactotetraose binding. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:99-104. [PMID: 28243889 DOI: 10.1007/s12104-017-9728-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
The major virulence factor of enterotoxigenic Escherichia coli is the heat-labile enterotoxin (LT), an AB5 toxin closely related to the cholera toxin. LT consists of six subunits, the catalytically active A-subunit and five B-subunits arranged as a pentameric ring (LTB), which enable the toxin to bind to the epithelial cells in the intestinal lumen. LTB has two recognized binding sites; the primary binding site is responsible for anchoring the toxin to its main receptor, the GM1-ganglioside, while the secondary binding site recognizes blood group antigens. Herein, we report the 1H, 13C, 15N main chain assignment of LTB from human isolates (hLTB; 103 a.a. per subunit, with a total molecular mass of 58.5 kDa). The secondary structure was predicted based on 13C', 13Cα, 13Cβ, 1HN and 15N chemical shifts and compared to a published crystal structure of LTB. Neolactotetraose (NEO) was titrated to hLTB and chemical shift perturbations were measured. The chemical shift perturbations were mapped onto the crystal structure, confirming that NEO binds to the primary binding site of hLTB and competes with GM1-binding. Our new data further lend support to the hypothesis that binding at the primary binding site is transmitted to the secondary binding site of the toxin, where it may influence the binding to blood group antigens.
Collapse
Affiliation(s)
- Daniel Hatlem
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Julie E Heggelund
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Daniel Burschowsky
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway.
| | - Per E Kristiansen
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| |
Collapse
|
15
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
17
|
Sturbelle RT, Avila LFDCD, Roos TB, Borchardt JL, de Cássia dos Santos da Conceição R, Dellagostin OA, Leite FPL. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet Microbiol 2015; 180:245-52. [DOI: 10.1016/j.vetmic.2015.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
|
18
|
Abstract
Heat-labile enterotoxins (LTs) of Escherichia coli are closely related to cholera toxin (CT), which was originally discovered in 1959 in culture filtrates of the gram-negative bacterium Vibrio cholerae. Several other gram-negative bacteria also produce enterotoxins related to CT and LTs, and together these toxins form the V. cholerae-E. coli family of LTs. Strains of E. coli causing a cholera-like disease were designated enterotoxigenic E. coli (ETEC) strains. The majority of LTI genes (elt) are located on large, self-transmissible or mobilizable plasmids, although there are instances of LTI genes being located on chromosomes or carried by a lysogenic phage. The stoichiometry of A and B subunits in holotoxin requires the production of five B monomers for every A subunit. One proposed mechanism is a more efficient ribosome binding site for the B gene than for the A gene, increasing the rate of initiation of translation of the B gene independently from A gene translation. The three-dimensional crystal structures of representative members of the LT family (CT, LTpI, and LTIIb) have all been determined by X-ray crystallography and found to be highly similar. Site-directed mutagenesis has identified many residues in the CT and LT A subunits, including His44, Val53, Ser63, Val97, Glu110, and Glu112, that are critical for the structures and enzymatic activities of these enterotoxins. For the enzymatically active A1 fragment to reach its substrate, receptor-bound holotoxin must gain access to the cytosol of target cells.
Collapse
|
19
|
Yu RK, Usuki S, Itokazu Y, Wu HC. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro. Glycobiology 2015; 26:63-73. [PMID: 26405107 DOI: 10.1093/glycob/cwv080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023] Open
Abstract
Cholera is an acute diarrheal disease caused by infection in the gastrointestinal tract by the gram-negative bacterium, Vibrio cholerae, and is a serious public health threat worldwide. There has not been any effective treatment for this infectious disease. Cholera toxin (CT), which is secreted by V. cholerae, can enter host cells by binding to GM1, a monosialoganglioside widely distributed on the plasma membrane surface of various animal epithelial cells. The present study was undertaken to generate peptides that are conformationally similar to the carbohydrate epitope of GM1 for use in the treatment of cholera and related bacterial infection. For this purpose, we used cholera toxin B (CTB) subunit to select CTB-binding peptides that structurally mimic GM1 from a dodecamer phage-display library. Six GM1-replica peptides were selected by biopanning based on CTB recognition. Five of the six peptides showed inhibitory activity for GM1 binding to CTB. To test the potential of employing the peptide mimics for intervening with the bacterial infection, those peptides were examined for their binding capacity, functional inhibitory activity and in vitro effects using a human intestinal epithelial cell line, Caco-2 cells. One of the peptides, P3 (IPQVWRDWFKLP), was most effective in inhibiting cellular uptake of CTB and suppressing CT-stimulated cyclic adenosine monophosphate production in the cells. Our results thus provide convincing evidence that GM1-replica peptides could serve as novel agents to block CTB binding on epithelial cells and prevent the ensuing physiological effects of CT.
Collapse
Affiliation(s)
- Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Seigo Usuki
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
20
|
Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1612-9. [PMID: 24370777 PMCID: PMC4317292 DOI: 10.1016/j.bbamcr.2013.12.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022]
Abstract
Outer membrane vesicles (OMVs) are constitutively produced by all Gram-negative bacteria. OMVs form when buds from the outer membrane (OM) of cells encapsulate periplasmic material and pinch off from the OM to form spheroid particles approximately 10 to 300nm in diameter. OMVs accomplish a diversity of functional roles yet the OMV's utility is ultimately determined by its unique composition. Inclusion into OMVs may impart a variety of benefits to the protein cargo, including: protection from proteolytic degradation, enhancement of long-distance delivery, specificity in host-cell targeting, modulation of the immune response, coordinated secretion with other bacterial effectors, and/or exposure to a unique function-promoting environment. Many enriched OMV-associated components are virulence factors, aiding in host cell destruction, immune system evasion, host cell invasion, or antibiotic resistance. Although the mechanistic details of how proteins become enriched as OMV cargo remain elusive, recent data on OM biogenesis and relationships between LPS structure and OMV-cargo inclusion rates shed light on potential models for OM organization and consequent OMV budding. In this review, mechanisms based on pre-existing OM microdomains are proposed to explain how cargo may experience differing levels of enrichment in OMVs and degrees of association with OMVs during extracellular export. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- K E Bonnington
- Department of Biochemistry, Duke University Medical Center, USA
| | - M J Kuehn
- Department of Biochemistry, Duke University Medical Center, USA.
| |
Collapse
|
21
|
Thaipisuttikul I, Hittle LE, Chandra R, Zangari D, Dixon CL, Garrett TA, Rasko DA, Dasgupta N, Moskowitz SM, Malmström L, Goodlett DR, Miller SI, Bishop RE, Ernst RK. A divergent Pseudomonas aeruginosa palmitoyltransferase essential for cystic fibrosis-specific lipid A. Mol Microbiol 2013; 91:158-74. [PMID: 24283944 DOI: 10.1111/mmi.12451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2013] [Indexed: 12/25/2022]
Abstract
Strains of Pseudomonas aeruginosa (PA) isolated from the airways of cystic fibrosis patients constitutively add palmitate to lipid A, the membrane anchor of lipopolysaccharide. The PhoPQ regulated enzyme PagP is responsible for the transfer of palmitate from outer membrane phospholipids to lipid A. This enzyme had previously been identified in many pathogenic Gram-negative bacteria, but in PA had remained elusive, despite abundant evidence that its lipid A contains palmitate. Using a combined genetic and biochemical approach, we identified PA1343 as the PA gene encoding PagP. Although PA1343 lacks obvious primary structural similarity with known PagP enzymes, the β-barrel tertiary structure with an interior hydrocarbon ruler appears to be conserved. PA PagP transfers palmitate to the 3' position of lipid A, in contrast to the 2 position seen with the enterobacterial PagP. Palmitoylated PA lipid A alters host innate immune responses, including increased resistance to some antimicrobial peptides and an elevated pro-inflammatory response, consistent with the synthesis of a hexa-acylated structure preferentially recognized by the TLR4/MD2 complex. Palmitoylation commonly confers resistance to cationic antimicrobial peptides, however, increased cytokine production resulting in inflammation is not seen with other palmitoylated lipid A, indicating a unique role for this modification in PA pathogenesis.
Collapse
Affiliation(s)
- Iyarit Thaipisuttikul
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, University of Maryland, Baltimore, MD, 21201, USA; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lodowska J, Wolny D, Węglarz L. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) as a characteristic component of bacterial endotoxin — a review of its biosynthesis, function, and placement in the lipopolysaccharide core. Can J Microbiol 2013; 59:645-55. [DOI: 10.1139/cjm-2013-0490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a characteristic component of bacterial lipopolysaccharide (LPS, endotoxin). It connects the carbohydrate part of LPS with C6 of glucosamine or 2,3-diaminoglucose of lipid A by acid-labile α-ketosidic linkage. The number of Kdo units present in LPS, the way they are connected, and the occurrence of other substituents (P, PEtn, PPEtn, Gal, or β-l-Ara4N) account for structural diversity of the inner core region of endotoxin. In a majority of cases, Kdo is crucial to the viability and growth of bacterial cells. In this paper, the biosynthesis of Kdo and the mechanism of its incorporation into the LPS structure, as well as the location of this unique component in the endotoxin core structures, have been described.
Collapse
Affiliation(s)
- Jolanta Lodowska
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| | - Daniel Wolny
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 St., 41-200 Sosnowiec, Poland
| | - Ludmiła Węglarz
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
23
|
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467-81. [PMID: 23748343 PMCID: PMC6913092 DOI: 10.1038/nrmicro3047] [Citation(s) in RCA: 426] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
Collapse
Affiliation(s)
- Brittany D Needham
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
24
|
Rondelet A, Condemine G. Type II secretion: the substrates that won't go away. Res Microbiol 2013; 164:556-61. [PMID: 23538405 DOI: 10.1016/j.resmic.2013.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
Type II secretion systems (T2SSs) generally release their substrates into the culture medium. A few T2SS substrates remain anchored to or bound at the surface of the bacteria after secretion. Since they handle already folded proteins, T2SSs are the best way for bacteria to target, at their surface, proteins containing a cofactor, proteins that have to be folded in the cytoplasm or in the periplasm, or multimeric proteins. However, how a T2SS deals with membrane-anchored proteins is not yet understood. While this type of protein has until now been overlooked, new proteomic approaches will facilitate its identification.
Collapse
Affiliation(s)
- Arnaud Rondelet
- Université de Lyon, F69003, Université Lyon 1, F69622, INSA-Lyon, F69621, CNRS UMR5240, Microbiologie Adaptation et Pathogénie, 10 rue Dubois, Bât. Lwoff, 69622 Villeurbanne, France
| | | |
Collapse
|
25
|
Fekete PZ, Mateo KS, Zhang W, Moxley RA, Kaushik RS, Francis DH. Both enzymatic and non-enzymatic properties of heat-labile enterotoxin are responsible for LT-enhanced adherence of enterotoxigenic Escherichia coli to porcine IPEC-J2 cells. Vet Microbiol 2013; 164:330-5. [PMID: 23517763 DOI: 10.1016/j.vetmic.2013.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Previous studies in piglets indicate that heat labile enterotoxin (LT) expression enhances intestinal colonization by K88 adhesin-producing enterotoxigenic Escherichia coli (ETEC) as wild-type ETEC adhered to intestinal epithelium in substantially greater numbers than did non-toxigenic constructs. Enzymatic activity of the toxin was also shown to contribute to the adhesion of ETEC and non-ETEC bacteria to epithelial cells in culture. To further characterize the contribution of LT to host cell adhesion, a nontoxigenic, K88-producing E. coli was transformed with either the gene encoding for LT holotoxin, a catalytically-attenuated form of the toxin [LT(R192G)], or LTB subunits, and resultant changes in bacterial adherence to IPEC-J2 porcine intestinal epithelial cells were measured. Strains expressing LT holotoxin or mutants were able to adhere in significantly higher numbers to IPEC-J2 cells than was an isogenic, toxin-negative construct. LT+ strains were also able to significantly block binding of a wild-type LT+ ETEC strain to IPEC-J2 cells. Adherence of isogenic strains to IPEC-J2 cells was unaltered by cycloheximide treatment, suggesting that LT enhances ETEC adherence to IPEC-J2 cells independent of host cell protein synthesis. However, pretreating IPEC-J2 cells with LT promoted adherence of negatively charged latex beads (a surrogate for bacteria which carry a negative change), which adherence was inhibited by cycloheximide, suggesting LT may induce a change in epithelial cell membrane potential. Overall, these data suggest that LT may enhance ETEC adherence by promoting an association between LTB and epithelial cells, and by altering the surface charge of the host plasma membrane to promote non-specific adherence.
Collapse
Affiliation(s)
- Peter Z Fekete
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
26
|
Offense and defense: microbial membrane vesicles play both ways. Res Microbiol 2012; 163:607-18. [PMID: 23123555 DOI: 10.1016/j.resmic.2012.10.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Microbes have evolved over millennia to become adapted and specialized to the environments that they occupy. These environments may include water or soil, extreme environments such as hydrothermal vents, and can even include a host organism. To become adapted to these locations, microbes have evolved specific tools to mediate interactions with the environment. One such tool that prokaryotes have evolved includes the production of membrane vesicles (MVs). MVs are 10-300 nm spherical blebs derived from the outermost membrane and have known functions in protein secretion, immune activation and suppression, stress response, attachment, internalization and virulence. In this review, we consider the highly conserved role of membrane vesicles derived from Gram-negative, Gram-positive and archaeal species as a mechanism to facilitate intermicrobial and microbe-host interaction. We examine both the offensive and defensive capabilities of MVs in regard to the interaction of MVs with both host and microbial cells in their environment.
Collapse
|
27
|
Abstract
Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection.
Collapse
Affiliation(s)
- Abigail Clements
- Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | | | | | | |
Collapse
|
28
|
Camacho AI, de Souza J, Sánchez-Gómez S, Pardo-Ros M, Irache JM, Gamazo C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 2011; 29:8222-9. [PMID: 21911022 DOI: 10.1016/j.vaccine.2011.08.121] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/24/2022]
Abstract
Vaccination appears to be the only rational prophylactic approach to control shigellosis. Unfortunately, there is still no safe and efficacious vaccine available. We investigated the protection conferred by a new vaccine containing outer membrane vesicles (OMVs) from Shigella flexneri with an adjuvant based on nanoparticles in an experimental model of shigellosis in mice. OMVs were encapsulated in poly(anhydride) nanoparticles prepared by a solvent displacement method with the copolymer PMV/MA. OMVs loaded into NPs (NP-OMVs) were homogeneous and spherical in shape, with a size of 197nm (PdI=0.06). BALB/c mice (females, 9-week-old, 20±1g) were immunized by intradermal, nasal, ocular (20μg) or oral route (100μg) with free or encapsulated OMV. Thirty-five days after administration, mice were infected intranasally with a lethal dose of S. flexneri (1×10(7)CFU). The new vaccine was able to protect fully against infection when it was administered via mucosa. By intradermal route the NP-OMVs formulation increased the protection from 20%, obtained with free extract, to 100%. Interestingly, both OMVs and OMV-NP induced full protection when administered by the nasal and conjuntival route. A strong association between the ratio of IL-12p40/IL-10 and protection was found. Moreover, low levels of IFN-γ correlate with protection. Under the experimental conditions used, the adjuvant did not induce any adverse effects. These results place OMVs among promising candidates to be used for vaccination against Shigellosis.
Collapse
Affiliation(s)
- A I Camacho
- Department of Microbiology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Parker H, Keenan JI. Composition and function of Helicobacter pylori outer membrane vesicles. Microbes Infect 2011; 14:9-16. [PMID: 21911076 DOI: 10.1016/j.micinf.2011.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 01/26/2023]
Abstract
The gastric pathogen Helicobacter pylori sheds outer membrane vesicles (OMV) that possess many of the surface elements of the bacterium. Here we review current knowledge on the composition of H. pylori OMV and discuss evidence for their potential roles in bacterial survival and pathogenesis.
Collapse
Affiliation(s)
- Heather Parker
- Department of Pathology, University of Otago, PO Box 4345, Christchurch, New Zealand
| | | |
Collapse
|
30
|
Kim SH, Ryu SH, Lee SH, Lee YH, Lee SR, Huh JW, Kim SU, Kim E, Kim S, Jon S, Bishop RE, Chang KT. Instability of toxin A subunit of AB(5) toxins in the bacterial periplasm caused by deficiency of their cognate B subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2359-65. [PMID: 21762677 DOI: 10.1016/j.bbamem.2011.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Shiga toxin (STx) belongs to the AB(5) toxin family and is transiently localized in the periplasm before secretion into the extracellular milieu. While producing outer membrane vesicles (OMVs) containing only A subunit of the toxin (STxA), we created specific STx1B- and STx2B-deficient mutants of E. coli O157:H7. Surprisingly, STxA subunit was absent in the OMVs and periplasm of the STxB-deficient mutants. In parallel, the A subunit of heat-labile toxin (LT) of enterotoxigenic E. coli (ETEC) was absent in the periplasm of the LT-B-deficient mutant, suggesting that instability of toxin A subunit in the absence of the B subunit is a common phenomenon in the AB(5) bacterial toxins. Moreover, STx2A was barely detectable in the periplasm of E. coli JM109 when stx2A was overexpressed alone, while it was stably present when stxB was co-expressed. Compared with STx2 holotoxin, purified STx2A was degraded rapidly by periplasmic proteases when assessed for in vitro proteolytic susceptibility, suggesting that the B subunit contributes to stability of the toxin A subunit in the periplasm. We propose a novel role for toxin B subunits of AB(5) toxins in protection of the A subunit from proteolysis during holotoxin assembly in the periplasm.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Holmner A, Mackenzie A, Okvist M, Jansson L, Lebens M, Teneberg S, Krengel U. Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin. J Mol Biol 2010; 406:387-402. [PMID: 21168418 DOI: 10.1016/j.jmb.2010.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 11/28/2022]
Abstract
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally and functionally related and share the same primary receptor, the GM1 ganglioside. Despite their extensive similarities, these two toxins exhibit distinct ligand specificities, with LT being more promiscuous than CT. Here, we have attempted to rationalize the broader binding specificity of LT and the subtle differences between the binding characteristics of LTs from human and porcine origins (mediated by their B subunit pentamers, hLTB and pLTB, respectively). The analysis is based on two crystal structures of pLTB in complexes with the pentasaccharide of its primary ligand, GM1, and with neolactotetraose, the carbohydrate determinant of a typical secondary ligand of LTs, respectively. Important molecular determinants underlying the different binding specificities of LTB and CTB are found to be contributed by Ser95, Tyr18 and Thr4 (or Ser4 of hLTB), which together prestabilize the binding site by positioning Lys91, Glu51 and the adjacent loop region (50-61) containing Ile58 for ligand binding. Glu7 and Ala1 may also play an important role. Many of these residues are closely connected with a recently identified second binding site, and there appears to be cross-talk between the two sites. Binding to N-acetyllactosamine-terminated receptors is further augmented by Arg13 (present in pLT and some hLT variants), as previously predicted.
Collapse
Affiliation(s)
- Asa Holmner
- Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
32
|
Parker H, Chitcholtan K, Hampton MB, Keenan JI. Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun 2010; 78:5054-61. [PMID: 20876296 PMCID: PMC2981328 DOI: 10.1128/iai.00299-10] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/20/2010] [Accepted: 09/03/2010] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori bacteria colonize the human stomach where they stimulate a persistent inflammatory response. H. pylori is considered noninvasive; however, lipopolysaccharide (LPS)-enriched outer membrane vesicles (OMV), continuously shed from the surface of this bacterium, are observed within gastric epithelial cells. The mechanism of vesicle uptake is poorly understood, and this study was undertaken to examine the roles of bacterial VacA cytotoxin and LPS in OMV binding and cholesterol and clathrin-mediated endocytosis in vesicle uptake by gastric epithelial cells. OMV association was examined using a fluorescent membrane dye to label OMV, and a comparison was made between the associations of vesicles from a VacA(+) strain and OMV from a VacA(-) isogenic mutant strain. Within 20 min, essentially all associated OMV were intracellular, and vesicle binding appeared to be facilitated by the presence of VacA cytotoxin. Uptake of vesicles from the VacA(+) strain was inhibited by H. pylori LPS (58% inhibition with 50 μg/ml LPS), while uptake of OMV from the VacA(-) mutant strain was less affected (25% inhibition with 50 μg/ml LPS). Vesicle uptake did not require cholesterol. However, uptake of OMV from the VacA(-) mutant strain was inhibited by a reduction in clathrin-mediated endocytosis (42% with 15 μg/ml chlorpromazine), while uptake of OMV from the VacA(+) strain was less affected (25% inhibition with 15 μg/ml chlorpromazine). We conclude that VacA toxin enhances the association of H. pylori OMV with cells and that the presence of the toxin may allow vesicles to exploit more than one pathway of internalization.
Collapse
Affiliation(s)
- Heather Parker
- Departments of Surgery, Pathology, University of Otago, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Departments of Surgery, Pathology, University of Otago, Christchurch, New Zealand
| | - Mark B. Hampton
- Departments of Surgery, Pathology, University of Otago, Christchurch, New Zealand
| | - Jacqueline I. Keenan
- Departments of Surgery, Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
33
|
Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. BIOCHEMISTRY (MOSCOW) 2010; 75:383-404. [PMID: 20618127 DOI: 10.1134/s0006297910040012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review covers data on composition and structure of lipid A, core, and O-polysaccharide of the known lipopolysaccharides from Gram-negative bacteria. The relationship between the structure and biological activity of lipid A is discussed. The data on roles of core and O-polysaccharide in biological activities of lipopolysaccharides are presented. The structural homology of some oligosaccharide sequences of lipopolysaccharides to gangliosides of human cell membranes is considered.
Collapse
Affiliation(s)
- D S Kabanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
34
|
Abstract
The type II secretion system (T2SS) is used by Escherichia coli and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most E. coli appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known E. coli T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.
Collapse
|
35
|
Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel) 2010; 2:1445-70. [PMID: 22069646 PMCID: PMC3153253 DOI: 10.3390/toxins2061445] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/22/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions.
Collapse
Affiliation(s)
- Benjamin Mudrak
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-684-2545; Fax: +1-919-684-8885
| |
Collapse
|
36
|
Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74:81-94. [PMID: 20197500 DOI: 10.1128/mmbr.00031-09] [Citation(s) in RCA: 696] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.
Collapse
|
37
|
Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin. J Bacteriol 2010; 192:1902-11. [PMID: 20097854 DOI: 10.1128/jb.01542-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin's secretion. Here, we report two mutations in LT's B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC's T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.
Collapse
|
38
|
No direct binding of the heat-labile enterotoxin of Escherichia coli to E. coli lipopolysaccharides. Glycoconj J 2009; 27:171-9. [PMID: 19844789 DOI: 10.1007/s10719-009-9264-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/28/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
A novel carbohydrate binding site recognizing blood group A and B determinants in a hybrid of cholera toxin and Escherichia coli heat-labile enterotoxin B-subunits (termed LCTBK) has previously been described, and also the native heat-labile enterotoxin bind to some extent to blood group A/B terminated glycoconjugates. The blood group antigen binding site is located at the interface of the B-subunits. Interestingly, the same area of the B-subunits has been proposed to be involved in binding of the heat-labile enterotoxin to lipopolysaccharides on the bacterial cell surface. Binding of the toxin to lipopolysaccharides does not affect the GM1 binding capacity. The present study aimed at characterizing the relationship between the blood group A/B antigen binding site and the lipopolysaccharide binding site. However, no binding of the B-subunits to E. coli lipopolysaccharides in microtiter wells or on thin-layer chromatograms was obtained. Incubation with lipopolysaccharides did not affect the binding of the B-subunits of heat-labile enterotoxin of human isolates to blood group A-carrying glycosphingolipids, indicating that the blood group antigen site is not involved in LPS binding. However, the saccharide competition experiments showed that GM1 binding reduced the affinity for blood group A determinants and vice versa, suggesting that a concurrent occupancy of the two binding sites does not occur. The latter finding is related to a connection between the blood group antigen binding site and the GM1 binding site through residues interacting with both ligands.
Collapse
|
39
|
Residues of heat-labile enterotoxin involved in bacterial cell surface binding. J Bacteriol 2009; 191:2917-25. [PMID: 19270095 DOI: 10.1128/jb.01622-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of traveler's diarrhea worldwide. One major virulence factor released by this pathogen is the heat-labile enterotoxin LT, which upsets the balance of electrolytes in the intestine. After export, LT binds to lipopolysaccharide (LPS) on the bacterial surface. Although the residues responsible for LT's binding to its host receptor are known, the portion of the toxin which mediates LPS binding has not been defined previously. Here, we describe mutations in LT that impair the binding of the toxin to the external surface of E. coli without altering holotoxin assembly. One mutation in particular, T47A, nearly abrogates surface binding without adversely affecting expression or secretion in ETEC. Interestingly, T47A is able to bind mutant E. coli expressing highly truncated forms of LPS, indicating that LT binding to wild-type LPS may be due primarily to association with an outer core sugar. Consequently, we have identified a region of LT distinct from the pocket involved in eukaryotic receptor binding that is responsible for binding to the surface of E. coli.
Collapse
|
40
|
Bruno JG, Carrillo MP, Phillips T. In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes. Folia Microbiol (Praha) 2008; 53:295-302. [PMID: 18759112 DOI: 10.1007/s12223-008-0046-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/21/2008] [Indexed: 12/01/2022]
Abstract
DNA aptamers were developed against lipopolysaccharide (LPS) from E. coli O111:B4 and shown to bind both LPS and E. coli by a colorimetric enzyme-based microplate assay. The polyclonal aptamers were coupled to human C1qrs protein either directly using a bifunctional linker or indirectly using biotinylated aptamers and a streptavidin-C1qrs complex. Both systems significantly reduced colony counts when applied to E. coli O111:B4 and K12 strains across a series of 10x dilutions of the bacteria in the presence of human serum; it was diluted 1: 10(3) in order to avoid significant bacterial lysis by the competing alternate pathway of complement activation. A number of candidate DNA aptamer sequences were cloned and sequenced from the anti-LPS aptamer library for future screening of antibacterial or "antibiotic" potential and to aid in eventual development of an alternative therapy for antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- J G Bruno
- Operational Technologies Corporation, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
41
|
Ramjeet M, Cox AD, Hancock MA, Mourez M, Labrie J, Gottschalk M, Jacques M. Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1. Mol Microbiol 2008; 70:221-35. [PMID: 18713318 DOI: 10.1111/j.1365-2958.2008.06409.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipopolysaccharides (LPS) and Apx toxins are major virulence factors of Actinobacillus pleuropneumoniae, a pathogen of the respiratory tract of pigs. Here, we evaluated the effect of LPS core truncation in haemolytic and cytotoxic activities of this microorganism. We previously generated a highly attenuated galU mutant of A. pleuropneumoniae serotype 1 that has an LPS molecule lacking the GalNAc-Gal II-Gal I outer core residues. Our results demonstrate that this mutant exhibits wild-type haemolytic activity but is significantly less cytotoxic to porcine alveolar macrophages. However, no differences were found in gene expression and secretion of the haemolytic and cytotoxic toxins ApxI and ApxII, both secreted by A. pleuropneumoniae serotype 1. This suggests that the outer core truncation mediated by the galU mutation affects the toxins in their cytotoxic activities. Using both ELISA and surface plasmon resonance binding assays, we demonstrate a novel interaction between LPS and the ApxI and ApxII toxins via the core oligosaccharide. Our results indicate that the GalNAc-Gal II-Gal I trisaccharide of the outer core is fundamental to mediating LPS/Apx interactions. The present study suggests that a lack of binding between LPS and ApxI/II affects the cytotoxicity and virulence of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Mahendrasingh Ramjeet
- Groupe de recherche sur les maladies infectieuses du porc, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada J2S 7C6
| | | | | | | | | | | | | |
Collapse
|
42
|
Holmner A, Askarieh G, Okvist M, Krengel U. Blood group antigen recognition by Escherichia coli heat-labile enterotoxin. J Mol Biol 2007; 371:754-64. [PMID: 17586525 DOI: 10.1016/j.jmb.2007.05.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 11/18/2022]
Abstract
In a number of bacterial infections, such as Helicobacter pylori, Campylobacter jejuni and Vibrio cholerae infections, a correlation between the severity of disease and blood group phenotype of infected individuals has been observed. In the present investigation, we have studied the molecular basis of this effect for enterotoxigenic Escherichia coli (ETEC) infections. ETEC are non-invasive bacteria, which act through second messenger pathways to cause diarrhea. It has been suggested that the major virulence factor of ETEC from human isolates, i.e. the human heat-labile enterotoxin (hLT), recognizes certain blood group epitopes, although the molecular basis of blood group antigen recognition is unknown. The 2.5 A crystal structure of the receptor-binding B-subunit of hLT in complex with the blood group A antigen analog GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)Glcbeta provides evidence of a previously unknown binding site in the native toxin. The structure reveals the molecular interactions underlying blood group antigen recognition and suggests how this protein can discriminate between different blood group epitopes. These results support the previously debated role of hLT in the blood group dependence of ETEC infections. Similar observations regarding the closely related cholera toxin in V. cholera infections are also discussed.
Collapse
Affiliation(s)
- Asa Holmner
- Department of Chemistry and Bioscience, Chalmers University of Technology, PO box 462, SE-40530 Göteborg, Sweden
| | | | | | | |
Collapse
|
43
|
Usuki S, Pajaniappan M, Thompson SA, Yu RK. Chemical validation of molecular mimicry: interaction of cholera toxin with Campylobacter lipooligosaccharides. Glycoconj J 2007; 24:167-80. [PMID: 17226101 PMCID: PMC2771395 DOI: 10.1007/s10719-006-9025-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
It is generally believed that molecular mimicry between bacterial lipooligosaccharide (LOS) and nerve glycolipids may play an important pathogenic role in immune-mediated peripheral neuropathy. One of the putative infectious agents is Campylobacter jejuni (C. jejuni). To elucidate the structural basis for the molecular mimicry, we investigated the structure of the lipooligosaccharide (LOS) fraction of C. jejuni, strain HS19, and found that it includes at least two components, characterized as fast-and slow-moving bands (LF and LS) by thin-layer chromatography as revealed by cholera toxin B subunit (Ctxb) overlay. Structural analysis of the oligosaccharide portion of LS established that it had the following structure: Gal-GalNAc-(NeuAc)Gal-Hep-(Glc;PO(3)H)Hep-Kdo. The GM1-like epitope was validated by a terminal tetrasaccharide unit within this structure. On the other hand, analysis of LF revealed an entirely different structure: 1, 4'-bisphosphoryl glucosamine disaccharide N, N'-acylated by 3-(2-hydroxytetracosanoyloxy)octadecanoic acid at 2- and 2'-positions, which is consistent with that of lipid A. No GM1-like epitope was observed in LF. Both LS and LF interacted with Ctxb as demonstrated by TLC-overlay and sucrose density gradient centrifugation. Surprisingly, LF does not have the basic GM1 structure for interacting with Ctxb. Instead, the affinity of LF to Ctxb required that one or both of the phosphate groups be present in the glucosamine disaccharide residue because after alkaline phosphatase treatment the dephosphorylated LF was unable to bind to Ctxb. We conclude that LS is likely the component contributing to GM1-mimicry in autoimmune peripheral neuropathy and that the role of LF is not clear but may be associated with the initial activation of autoreactive T cells.
Collapse
Affiliation(s)
- Seigo Usuki
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912-2697, USA
| | - Mohanasundari Pajaniappan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Stuart A. Thompson
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Robert K. Yu
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912-2697, USA
| |
Collapse
|
44
|
Sjöling A, Qadri F, Nicklasson M, Begum YA, Wiklund G, Svennerholm AM. In vivo expression of the heat stable (estA) and heat labile (eltB) toxin genes of enterotoxigenic Escherichia coli (ETEC). Microbes Infect 2006; 8:2797-802. [PMID: 17045506 DOI: 10.1016/j.micinf.2006.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/21/2006] [Accepted: 08/24/2006] [Indexed: 01/10/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonize the intestine and adhere to the epithelium by means of different host specific colonization factors (CFs). Colonizing ETEC produce one or both of two enterotoxins; the heat stable (ST) and heat labile (LT) toxins which are both able to cause diarrhoea. The regulation of virulence genes in ETEC during infection of the human intestine is mainly unknown. In this study we analysed the level of mRNA expression of estA, coding for ST, and eltB, coding for the B subunit of LT, during human infection. The expressions of the toxins in ETEC strains expressing both ST and LT were investigated in bacteria isolated directly from patient stool without sub-culturing, (in vivo) and compared to the expression pattern of the corresponding ST/LT strains grown in liquid broth (in vitro) by quantitative competitive RT-PCR using fluorescent primers. We found that estA and eltB are expressed in the in vivo samples but no significant up-or down regulation of the expression levels of either estA or eltB could be determined in vivo as compared to in vitro.
Collapse
Affiliation(s)
- Asa Sjöling
- Institute of Biomedicine, Department of Microbiology and Immunology, Göteborg University, Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
45
|
Turner SM, Scott-Tucker A, Cooper LM, Henderson IR. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2006; 263:10-20. [PMID: 16958845 DOI: 10.1111/j.1574-6968.2006.00401.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.
Collapse
Affiliation(s)
- Susan M Turner
- Division of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
46
|
Abstract
Extracellular secretion of products is the major mechanism by which Gram-negative pathogens communicate with and intoxicate host cells. Vesicles released from the envelope of growing bacteria serve as secretory vehicles for proteins and lipids of Gram-negative bacteria. Vesicle production occurs in infected tissues and is influenced by environmental factors. Vesicles play roles in establishing a colonization niche, carrying and transmitting virulence factors into host cells, and modulating host defense and response. Vesicle-mediated toxin delivery is a potent virulence mechanism exhibited by diverse Gram-negative pathogens. The biochemical and functional properties of pathogen-derived vesicles reveal their potential to critically impact disease.
Collapse
Affiliation(s)
- Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
47
|
Abstract
Outer membrane vesicles (blebs) are produced by Escherichia coli, Salmonella, and all other gram-negative bacteria both in vitro and in vivo. Most of the research in the field has focused on the properties of vesicles derived from pathogenic bacteria and their interactions with eukaryotic cells. These data indicate that vesicles are able to contribute to pathogenesis. Thus, it appears that pathogenic gram-negative bacteria have co-opted vesicles for the dissemination of virulence determinants. However, the role of vesicle production by nonpathogenic bacteria is less obvious. This section reviews the data demonstrating the mechanistic and physiological basis of outer membrane vesicle production by bacteria. Vesiculation can be seen as a mechanism for cells to react to conditions in the surrounding environment by carrying away unnecessary components and allowing rapid modification of the outer membrane composition. In addition, vesicles can transmit biological activities distant from the originating cell. Vesicles could act to bind and deplete host immune factors at the site of infection that would otherwise attack the bacteria. Vesicles in the area surrounding the cell may also provide the cell protection inside a human or animal host. The concept of vesicles as virulence factors has received considerable attention, and they are likely to play a significant role in the pathogenesis of gram-negative bacteria. By analysis of their composition, mechanism of formation, regulation, and physiological function, progress is being made in understanding the ubiquitous nature of outer membrane vesicles produced by gram-negative bacteria.
Collapse
Affiliation(s)
- Amanda J McBroom
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, NC 27710
| | | |
Collapse
|
48
|
Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 2005; 6:17-39. [PMID: 16164007 DOI: 10.1079/ahr2005105] [Citation(s) in RCA: 620] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escherichia coli is one of the most important causes of postweaning diarrhea in pigs. This diarrhea is responsible for economic losses due to mortality, morbidity, decreased growth rate, and cost of medication. The E. coli causing postweaning diarrhea mostly carry the F4 (K88) or the F18 adhesin. Recently, an increase in incidence of outbreaks of severe E. coli-associated diarrhea has been observed worldwide. The factors contributing to the increased number of outbreaks of this more severe form of E. coli-associated diarrhea are not yet fully understood. These could include the emergence of more virulent E. coli clones, such as the 0149:LT:STa:STb:EAST1:F4ac, or recent changes in the management of pigs. Development of multiple bacterial resistance to a wide range of commonly used antibiotics and a recent increase in the prevalence and severity of the postweaning syndromes will necessitate the use of alternative measures for their control. New vaccination strategies include the oral immunization of piglets with live avirulent E. coli strains carrying the fimbrial adhesins or oral administration of purified F4 (K88) fimbriae. Other approaches to control this disease include supplementation of the feed with egg yolk antibodies from chickens immunized with F4 or F18 adhesins, breeding of F18- and F4-resistant animals, supplementation with zinc and/ or spray-dried plasma, dietary acidification, phage therapy, or the use of probiotics. To date, not a single strategy has proved to be totally effective and it is probable that the most successful approach on a particular farm will involve a combination of diet modification and other preventive measures.
Collapse
Affiliation(s)
- John M Fairbrother
- The Escherichia coli Laboratory, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, Canada J2S 2M2.
| | | | | |
Collapse
|
49
|
Söderblom T, Oxhamre C, Wai SN, Uhlén P, Aperia A, Uhlin BE, Richter-Dahlfors A. Effects of the Escherichia coli toxin cytolysin A on mucosal immunostimulation via epithelial Ca2+ signalling and Toll-like receptor 4. Cell Microbiol 2005; 7:779-88. [PMID: 15888081 DOI: 10.1111/j.1462-5822.2005.00510.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Epithelial cells are vital to sense the presence of bacteria, thereby initiating a proper innate immune response. This occurs via different mechanisms, e.g. recognition by pattern recognition receptors (TLR), or alteration of the cellular Ca2+ homeostasis. The Escherichia coli toxin cytolysin A (ClyA) is naturally delivered to target cells as active pore assemblies within outer membrane vesicles (OMVs), and we here investigate a possible role of ClyA-containing OMVs (ClyA+ (OMV)) for induction of proinflammatory responses via the above-mentioned mechanisms. We report that low, sublytic concentrations of ClyA+ (OMV) affect the Ca2+ homeostasis in epithelial cells by induction of slow, intracellular Ca2+ oscillations, while increased concentrations act cytolytically. Thus, ClyA belongs to the novel group of pore-forming toxins shown to elicit such biphasic responses. Ca2+ waves in the minute range have been shown to regulate gene transcription of, e.g. interleukin (IL)-6 and -8. While the periodicity of ClyA+ (OMV)-induced Ca2+ waves (22.9 +/- 0.9 min) fail to induce an IL-8 response, our data fit to the general concept of frequency-specific gene expression. Molecular investigations of the signal transduction pathway reveals that ClyA+ (OMV) utilize a different one as compared with those previously reported for other toxins causing Ca2+ waves. The ClyA protein per se and ClyA pore assemblies are non-immunogenic, while lipopolysaccharide present on the OMVs induces a TLR4-dependent proinflammatory response as expected. Additional membrane components of the OMV, e.g. OmpW, was also found to elicit proinflammatory responses that was independent of TLR4 and Ca2+ signalling.
Collapse
Affiliation(s)
- Tomas Söderblom
- Microbiology and Tumor Biology Centre, Karolinska Institutet, S-171 77, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
50
|
Holmner A, Lebens M, Teneberg S, Angström J, Okvist M, Krengel U. Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 A crystal structure reveals the details. Structure 2005; 12:1655-67. [PMID: 15341730 DOI: 10.1016/j.str.2004.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 06/10/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
A hybrid between the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin has been described, which exhibits a novel binding specificity to blood group A and B type 2 determinants. In the present investigation, we have determined the crystal structure of this protein hybrid, termed LCTBK, in complex with the blood group A pentasaccharide GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)GlcNAcbeta, confirming not only the novel binding specificity but also a distinct new oligosaccharide binding site. Binding studies revealed that the new specificity can be ascribed to a single mutation (S4N) introduced into the sequence of Escherichia coli heat-labile enterotoxin. At a resolution of 1.9 A, the new binding site is resolved in excellent detail. Main features include a complex network of water molecules, which is well preserved by the parent toxins, and an unexpectedly modest contribution to binding by the critical residue Asn4, which interacts with the ligand only via a single water molecule.
Collapse
Affiliation(s)
- Asa Holmner
- Department of Chemistry and Bioscience, Chalmers University of Technology, PO Box 462, SE-40530 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|