1
|
Popa LG, Giurcaneanu C, Zaharia F, Grigoras A, Oprea AD, Beiu C. Dupilumab, a Potential Novel Treatment for Hailey-Hailey Disease. Clin Pract 2025; 15:48. [PMID: 40136584 PMCID: PMC11941320 DOI: 10.3390/clinpract15030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Hailey-Hailey disease (HHD) is an uncommon genodermatosis with autosomal dominant inheritance caused by loss-of-function mutations in the ATP2C1 gene, which lead to disruption in keratinocyte adhesion and intraepidermal acantholysis. The chronic nature of the disease, its frequent recurrences and the lack of specific treatment pose real challenges in the long-term management of these patients. Recent studies have evaluated the effect of dupilumab, a human monoclonal antibody that blocks interleukin-4 and -13 receptor in refractory HHD, with very promising results. The aim of this study was to review the published data on the use of dupilumab for the treatment of HHD, to present our own experience in the field, and to discuss the mechanisms underlying dupilumab's beneficial effects in HHD and the future treatment perspectives. Methods: A search of the medical literature on the use of dupilumab in the treatment of HHD was conducted. The terms "Hailey-Hailey disease", "benign familial pemphigus", "benign chronic pemphigus", and "dupilumab" were searched across multiple databases (Medline, Chrocane Library, EMBASE) from inception until 30 September 2024. Results: To date, six manuscripts describing 11 refractory HHD cases treated with dupilumab have been published. All the patients experienced significant clinical improvement. The authors reported sustained disease quiescence in seven patients (64%), monitored for 5 to 24 months. None of the patients experienced adverse effects related to dupilumab. To the existing evidence, we add a new case of recalcitrant HHD successfully treated with dupilumab. Conclusions: Mounting evidence indicates dupilumab as a safe and efficient therapeutic alternative in patients with severe, refractory HHD. However, the long-term efficacy of dupilumab and the optimal therapeutic regimen for HHD are yet to be determined.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Calin Giurcaneanu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Florentina Zaharia
- Dermatology Department, CF 2 Clinical Hospital, 63 Marasti Bd., District 1, 011464 Bucharest, Romania
| | - Andreea Grigoras
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Alexandra Denisa Oprea
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
| | - Cristina Beiu
- Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania (A.D.O.)
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| |
Collapse
|
2
|
Thanasupawat T, Mejia YP, Anandhan SS, Guo Y, Tiwana J, Fernando A, Glogowska A, Shafai T, daSilva S, Kaur N, Begum F, Zahedi R, Hombach-Klonisch S, Klonisch T. Proteomic and cytokine profiling of a CTRP8-RXFP1 glioma mouse model. Biochem Pharmacol 2025; 232:116722. [PMID: 39709036 DOI: 10.1016/j.bcp.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1. Our results demonstrate that this in-vivo U251-CTRP8/RXFP1 glioma model promoted the formation of aggressive, highly proliferative glioma that resulted in significantly shorter survival times of xenografted mice. CTRP8/RXFP1 xenografts showed strongly elevated mitotic activity, increased expression of cathepsin B at the migrating front and promoted a pro-inflammatory tumor microenvironment characterized by a strong upregulation of cytokines, among them eotaxin-2 and-3, interleukin (IL)-6, IL-18 and others. Proteomic analysis of xenografted mouse brain identified both human and mouse proteome signatures unique to CTRP8/RXFP1 xenografts compared to U251 xenografts. In conclusion, our results suggest that co-expression of CTRP8 and RXFP1 promotes signaling pathways that generate unique tissue proteomic and inflammatory cytokine signatures which promote glioma aggressiveness. The CTRP-RXFP1 signaling pathway may represent an effective therapeutic target for the treatment of fast-progressing and currently untreatable GB.
Collapse
Affiliation(s)
| | | | | | - Yaxiong Guo
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathophysiology, Basic Medical College, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jasneet Tiwana
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Adline Fernando
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | | | - Talia Shafai
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Simone daSilva
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Nimrat Kaur
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Rene Zahedi
- Manitoba Centre for Proteomics and Systems Biology (MCPSB), Winnipeg, MB, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; CancerCare Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Denver P, Tortorelli L, Hov K, Berg JP, Giil LM, Nazmi A, Lopez-Rodriguez A, Healy D, Murray C, Barry R, Watne LO, Cunningham C. Chemokine associations with blood cerebrospinal fluid (CSF) barrier permeability and delirium. Brain Behav Immun Health 2025; 43:100920. [PMID: 39839987 PMCID: PMC11750293 DOI: 10.1016/j.bbih.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 01/23/2025] Open
Abstract
Delirium is a highly prevalent neuropsychiatric syndrome characterised by acute and fluctuating impairments in attention and cognition. Mechanisms driving delirium are poorly understood but it has been suggested that blood cytokines and chemokines cross the blood brain barrier during delirium, directly impairing brain function. It is not known whether these molecules reach higher brain levels when the blood cerebrospinal fluid barrier (BCSFB) is impaired. Here, in human hip-fracture patients, we tested the influence of BCSFB integrity on CSF levels of chemokines and assessed their association with delirium. CSF levels of IP-10, eotaxin, eotaxin 3 and TARC showed weak to moderate correlations with BCSFB permeability, as measured by the Qalbumin ratio, while MCP1, IL-8, MIP1α and MIP1β showed no significant correlation. Chemokines were not associated with delirium in univariate analysis or when stratified on dementia status, but exploratory analyses showed that elevated Eotaxin (CCL11) and MIP1α (CCL3) were associated with prevalent delirium. Modelling acute systemic inflammation, we used bacterial LPS (250 μg/kg) or sterile laparotomy surgery in mice to demonstrate de novo synthesis of chemokines at the choroid plexus (CP) and microvasculature. Gene expression data showed CP-enriched expression of Il1b, Tnfa, Cxcl1 and Ccl3 in both models and immunohistochemistry showed cytokine and chemokine synthesis in CP stromal (IL-1β, CCL2/MCP1) or epithelial cells (CXCL10/IP-10) cells and at the microvasculature. Larger studies are required to confirm these human findings on chemokine associations with BCSFB permeability and prevalent delirium. Preclinical studies are warranted to determine whether chemokines might play a role in the pathophysiology of delirium.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Karen Hov
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Lasse M. Giil
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
| | - Arshed Nazmi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Ana Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Daire Healy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Robyn Barry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
4
|
Liu W, Xue X, Li S. Treatment of Hailey-Hailey disease with biologics and small-molecule inhibitors: a systematic review. Clin Exp Dermatol 2024; 50:38-45. [PMID: 39097527 DOI: 10.1093/ced/llae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/13/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Hailey-Hailey disease (HHD) is a rare genetic dermatosis characterized by recurrent flaccid vesicles and blisters on erythematous skin in friction areas. The disease follows a chronic relapsing course and has a significant psychological and social impact. Currently, there is no standardized therapeutic regimen for HHD, posing a challenge for dermatologists in managing the condition. We performed this systematic review to investigate the therapeutic role of biologics and small-molecule inhibitors in the treatment of HHD. A systematic search was conducted of the PubMed, Embase, Web of Science, Scopus and Cochrane databases from inception to 1 January 2024. In total, 31 patients with HHD from 18 articles were included in the analysis. Biologics and small-molecule inhibitors were evaluated, including dupilumab, apremilast, upadacitinib, abrocitinib, adalimumab and etanercept. Most reported cases demonstrated clinical improvement after treatment initiation, with few major adverse events. However, some patients experienced recurrences. In conclusion, biologics and small-molecule inhibitors may offer a treatment alternative for patients with refractory HHD, but further confirmation is necessary through large-scale randomized controlled clinical trials.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiao Xue
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
6
|
Liu S, Zahorchak AF, Dobrowolski SF, Metes DM, Thomson AW, Abdelsamed HA. Epigenetic signature of human vitamin D3 and IL-10 conditioned regulatory DCs. Sci Rep 2024; 14:28748. [PMID: 39567586 PMCID: PMC11579388 DOI: 10.1038/s41598-024-79299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
During differentiation of precursor cells into their destination cell type, cell fate decisions are enforced by a broad array of epigenetic modifications, including DNA methylation, which is reflected by the transcriptome. Thus, regulatory dendritic cells (DCregs) acquire specific epigenetic programs and immunomodulatory functions during their differentiation from monocytes. To define the epigenetic signature of human DCregs generated in vitamin D3 (vitD3) and IL-10 compared to immune stimulatory DCs (sDCs), we measured levels of DNA methylation by whole genome bisulfite sequencing (WGBS). Distinct DNA methylation patterns were acquired by DCregs compared to sDCs. These patterns were located mainly in transcriptional regulatory regions. Associated genes were enriched in STAT3-signaling and valine catabolism in DCregs; conversely, pro-inflammatory pathways, e.g. pattern recognition receptor signaling, were enriched in sDCs. Further, DCreg differentially-methylated regions (DMRs) were enriched in binding motifs specific to the immunomodulatory transcription factor Krueppel-like factor 11 (KLF11), while activator protein-1 (AP-1) (Fos:Jun) transcription factor-binding motifs were enriched in sDC DMRs. Using publicly-available data-sets, we defined a common epigenetic signature shared between DCregs generated in vitD3 and IL-10, or dexamethasone or vitD3 alone. These insights may help pave the way for design of epigenetic-based approaches to enhance the production of DCregs as effective therapeutic agents.
Collapse
Affiliation(s)
- Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Alan F Zahorchak
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | | | - Diana M Metes
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angus W Thomson
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Immunology Center of Georgia, Augusta University, Augusta, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA.
| |
Collapse
|
7
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
8
|
Li S, Huff RD, Rider CF, Yuen ACY, Carlsten C. Controlled human exposures to diesel exhaust or particle-depleted diesel exhaust with allergen modulates transcriptomic responses in the lung. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173688. [PMID: 38851342 DOI: 10.1016/j.scitotenv.2024.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The evidence associating traffic-related air pollution (TRAP) with allergic asthma is growing, but the underlying mechanisms for this association remain unclear. The airway epithelium is the primary tissue exposed to TRAP, hence understanding its interactions with TRAP and allergen is important. Diesel exhaust (DE), a paradigm of TRAP, consists of particulate matter (PM) and gases. Modern diesel engines often have catalytic diesel particulate filters to reduce PM output, but these may increase gaseous concentrations, and their benefits on human health cannot be assumed. We conducted a randomized, double-blinded, crossover study using our unique in vivo human exposure system to investigate the effects of DE and allergen co-exposure, with or without particle depletion as a proxy for catalytic diesel particulate filters, on the airway epithelial transcriptome. Participants were exposed for 2 h before an allergen inhalation challenge, with each receiving filtered air and saline (FA-S), filtered air and allergen (FA-A), DE and allergen (DE-A), or particle-depleted DE and allergen (PDDE-A), over four different occasions, each separated by a 4-week washout period. Endobronchial brushings were collected 48 h after each exposure, and total RNA was sequenced. Differentially expressed genes (DEGs) were identified using DESeq2, followed by GO enrichment and pathway analysis. FA-A, DE-A, and PDDE-A exposures significantly modulated genes relative to FA-S, with 462 unique DEGs identified. FA-A uniquely modulated the highest number (↑178, ↓155), followed by DE-A (↑44, ↓23), and then PDDE-A exposure (↑15, ↓2); 6 DEGs (↑4, ↓2) were modulated by all three conditions. Exposure to PDDE-A resulted in modulation of 285 DEGs compared to DE-A exposure, further revealing 26 biological process GO terms, including "cellular response to chemokine" and "inflammatory response". The transcriptional epithelial response to diesel exhaust and allergen co-exposure is enriched in inflammatory mediators, the pattern of which is altered upon particle depletion.
Collapse
Affiliation(s)
- Shijia Li
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Lea S, Higham A, Beech A, Singh D. How inhaled corticosteroids target inflammation in COPD. Eur Respir Rev 2023; 32:230084. [PMID: 37852657 PMCID: PMC10582931 DOI: 10.1183/16000617.0084-2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 10/20/2023] Open
Abstract
Inhaled corticosteroids (ICS) are the most commonly used anti-inflammatory drugs for the treatment of COPD. COPD has been previously described as a "corticosteroid-resistant" condition, but current clinical trial evidence shows that selected COPD patients, namely those with increased exacerbation risk plus higher blood eosinophil count (BEC), can benefit from ICS treatment. This review describes the components of inflammation modulated by ICS in COPD and the reasons for the variation in response to ICS between individuals. There are corticosteroid-insensitive inflammatory pathways in COPD, such as bacteria-induced macrophage interleukin-8 production and resultant neutrophil recruitment, but also corticosteroid-sensitive pathways including the reduction of type 2 markers and mast cell numbers. The review also describes the mechanisms whereby ICS can skew the lung microbiome, with reduced diversity and increased relative abundance, towards an excess of proteobacteria. BEC is a biomarker used to enable the selective use of ICS in COPD, but the clinical outcome in an individual is decided by a complex interacting network involving the microbiome and airway inflammation.
Collapse
Affiliation(s)
- Simon Lea
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Khang J, Yardman-Frank JM, Chen LC, Chung HJ. Recalcitrant Hailey-Hailey disease successfully treated with topical ruxolitinib cream and dupilumab. JAAD Case Rep 2023; 42:56-58. [PMID: 38058412 PMCID: PMC10696304 DOI: 10.1016/j.jdcr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Affiliation(s)
- Juna Khang
- Harvard Medical School, Boston, Massachusetts
| | | | - Li-Chi Chen
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Hye Jin Chung
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Cecchinato V, Martini V, Pirani E, Ghovehoud E, Uguccioni M. The chemokine landscape: one system multiple shades. Front Immunol 2023; 14:1176619. [PMID: 37251376 PMCID: PMC10213763 DOI: 10.3389/fimmu.2023.1176619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Leukocyte trafficking is mainly governed by chemokines, chemotactic cytokines, which can be concomitantly produced in tissues during homeostatic conditions or inflammation. After the discovery and characterization of the individual chemokines, we and others have shown that they present additional properties. The first discoveries demonstrated that some chemokines act as natural antagonists on chemokine receptors, and prevent infiltration of leukocyte subsets in tissues. Later on it was shown that they can exert a repulsive effect on selective cell types, or synergize with other chemokines and inflammatory mediators to enhance chemokine receptors activities. The relevance of the fine-tuning modulation has been demonstrated in vivo in a multitude of processes, spanning from chronic inflammation to tissue regeneration, while its role in the tumor microenvironment needs further investigation. Moreover, naturally occurring autoantibodies targeting chemokines were found in tumors and autoimmune diseases. More recently in SARS-CoV-2 infection, the presence of several autoantibodies neutralizing chemokine activities distinguished disease severity, and they were shown to be beneficial, protecting from long-term sequelae. Here, we review the additional properties of chemokines that influence cell recruitment and activities. We believe these features need to be taken into account when designing novel therapeutic strategies targeting immunological disorders.
Collapse
|
12
|
Urbiola-Salvador V, Lima de Souza S, Grešner P, Qureshi T, Chen Z. Plasma Proteomics Unveil Novel Immune Signatures and Biomarkers upon SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24076276. [PMID: 37047248 PMCID: PMC10093853 DOI: 10.3390/ijms24076276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Several elements have an impact on COVID-19, including comorbidities, age and sex. To determine the protein profile changes in peripheral blood caused by a SARS-CoV-2 infection, a proximity extension assay was used to quantify 1387 proteins in plasma samples among 28 Finnish patients with COVID-19 with and without comorbidities and their controls. Key immune signatures, including CD4 and CD28, were changed in patients with comorbidities. Importantly, several unreported elevated proteins in patients with COVID-19, such as RBP2 and BST2, which show anti-microbial activity, along with proteins involved in extracellular matrix remodeling, including MATN2 and COL6A3, were identified. RNF41 was downregulated in patients compared to healthy controls. Our study demonstrates that SARS-CoV-2 infection causes distinct plasma protein changes in the presence of comorbidities despite the interpatient heterogeneity, and several novel potential biomarkers associated with a SARS-CoV-2 infection alone and in the presence of comorbidities were identified. Protein changes linked to the generation of SARS-CoV-2-specific antibodies, long-term effects and potential association with post-COVID-19 condition were revealed. Further study to characterize the identified plasma protein changes from larger cohorts with more diverse ethnicities of patients with COVID-19 combined with functional studies will facilitate the identification of novel diagnostic, prognostic biomarkers and potential therapeutic targets for patients with COVID-19.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, 80-307 Gdańsk, Pomerania, Poland
| | - Suiane Lima de Souza
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Peter Grešner
- Department of Translational Oncology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Pomerania, Poland
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, North Ostrobothnia, Finland
- Correspondence:
| |
Collapse
|
13
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
14
|
Elemam NM, Talaat IM, Maghazachi AA. CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022; 14:2445. [PMID: 36366543 PMCID: PMC9696077 DOI: 10.3390/v14112445] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Mamdouh Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
15
|
Alamon-Reig F, Serra-García L, Bosch-Amate X, Riquelme-Mc Loughlin C, Mascaró JM. Dupilumab in Hailey-Hailey disease: A case series. J Eur Acad Dermatol Venereol 2022; 36:e776-e779. [PMID: 35734956 DOI: 10.1111/jdv.18350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesc Alamon-Reig
- Department of Dermatology1, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Laura Serra-García
- Department of Dermatology1, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Xavier Bosch-Amate
- Department of Dermatology1, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - José M Mascaró
- Department of Dermatology1, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Schmitz J, Brauns N, Hüsing AM, Flechsig M, Glomb T, Bräsen JH, Haller H, von Vietinghoff S. Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. Eur J Immunol 2022; 52:1258-1272. [DOI: 10.1002/eji.202149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica Schmitz
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Nicolas Brauns
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Anne M. Hüsing
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Martina Flechsig
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Thorsten Glomb
- Core Facility Transcriptomics Hannover Medical School Hannover Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Hermann Haller
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
- Nephrology Section First Medical Clinic University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| |
Collapse
|
17
|
Kumar R, Bhatia M, Pai K. Role of Chemokines in the Pathogenesis of Visceral Leishmaniasis. Curr Med Chem 2022; 29:5441-5461. [PMID: 35579167 DOI: 10.2174/0929867329666220509171244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Visceral leishmaniasis (VL; also known as kala-azar), caused by the protozoan parasite Leishmania donovani, is characterized by the inability of the host to generate an effective immune response. The manifestations of the disease depend on the involvement of various immune components such as activation of macrophages, cell mediated immunity, secretion of cytokines and chemokines, etc. Macrophages are the final host cells for Leishmania parasites to multiply, and they are the key to a controlled or aggravated response that leads to clinical symptoms. The two most common macrophage phenotypes are M1 and M2. The pro-inflammatory microenvironment (mainly by IL-1β, IL-6, IL-12, IL-23, and TNF-α cytokines) and tissue injury driven by classically activated macrophages (M1-like) and wound healing driven by alternatively activated macrophages (M2-like) in an anti-inflammatory environment (mainly by IL-10, TGF-β, chemokine ligand (CCL)1, CCL2, CCL17, CCL18, and CCL22). Moreover, on polarized Th cells, chemokine receptors are expressed differently. Typically, CXCR3 and CCR5 are preferentially expressed on polarized Th1 cells, whereas CCR3, CCR4, and CCR8 have been associated with the Th2 phenotype. Further, the ability of the host to produce a cell-mediated immune response capable of regulating and/or eliminating the parasite is critical in the fight against the disease. Here, we review the interactions between parasites and chemokines and chemokine receptors in the pathogenesis of VL.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi (UP), India
| | - Madhav Bhatia
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
18
|
Alzahrani N, Grossman-Kranseler J, Swali R, Fiumara K, Zancanaro P, Tyring S, Rosmarin D. Hailey-Hailey disease treated with dupilumab: a case series. Br J Dermatol 2021; 185:680-682. [PMID: 33971025 DOI: 10.1111/bjd.20475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Affiliation(s)
- N Alzahrani
- King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - R Swali
- Center for Clinical Studies, Houston, TX, USA
| | - K Fiumara
- Clinical Pharmacy, Tufts Medical Center, Boston, MA, USA
| | - P Zancanaro
- Department of Dermatology, Tufts Medical Center, Boston, MA, USA
| | - S Tyring
- McGovern Medical School at University of Texas Health Science Center, Houston, TX, USA
| | - D Rosmarin
- Department of Dermatology, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8 + T cells. Nat Commun 2020; 11:6357. [PMID: 33311473 PMCID: PMC7733515 DOI: 10.1038/s41467-020-19002-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The prevailing ‘division of labor’ concept in cellular immunity is that CD8+ T cells primarily utilize cytotoxic functions to kill target cells, while CD4+ T cells exert helper/inducer functions. Multiple subsets of CD4+ memory T cells have been characterized by distinct chemokine receptor expression. Here, we demonstrate that analogous CD8+ memory T-cell subsets exist, characterized by identical chemokine receptor expression signatures and controlled by similar generic programs. Among them, Tc2, Tc17 and Tc22 cells, in contrast to Tc1 and Tc17 + 1 cells, express IL-6R but not SLAMF7, completely lack cytotoxicity and instead display helper functions including CD40L expression. CD8+ helper T cells exhibit a unique TCR repertoire, express genes related to skin resident memory T cells (TRM) and are altered in the inflammatory skin disease psoriasis. Our findings reveal that the conventional view of CD4+ and CD8+ T cell capabilities and functions in human health and disease needs to be revised. We classically consider the T cell compartment divided into cytotoxic CD8+ T cells and multiple, different helper CD4+ T cell subsets. Here the authors demonstrate that distinct memory CD8+ T cell subsets phenotypically inhabit CD4+ T cell like populations including some with helper-like characteristics.
Collapse
|
20
|
CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci 2020; 21:ijms21218412. [PMID: 33182504 PMCID: PMC7665155 DOI: 10.3390/ijms21218412] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Collapse
|
21
|
Wei Y, Asbell PA. sPLA 2-IIa participates in ocular surface inflammation in humans with dry eye disease. Exp Eye Res 2020; 201:108209. [PMID: 33011237 DOI: 10.1016/j.exer.2020.108209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the roles of secretory phospholipase A2-IIa (sPLA2-IIa) in the inflammatory responses of the compromised ocular surface. METHODS Conjunctival impression cytology (IC) samples and tears were collected from patients with mild to severe non-Sjogren's dry eye disease (DED) and normal controls. The IC samples were analyzed for transcription of sPLA2-IIa and inflammatory cytokine/chemokine genes using quantitative real-time RT-PCR (qRT2-PCR) and pathway-focus PCR-array. The tear samples were analyzed for 13 inflammatory cytokines and chemokines with Millipore 13-Plex kit. Finally, sPLA2-IIa-treated human conjunctival epithelial cell (HCjE) cultures were analyzed with a pathway-focused PCR array. RESULTS Transcription of sPLA2-IIa was significantly increased in severe DED patients as compared to those of mild DED patients and normal controls. The transcription of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-17, TNF-α, IFN-γ), chemokines (IL-8, CXCL10, CXCL11, CXCL-14, CCR6, LTB) and matrix metalloproteinase 9 (MMP9) were simultaneously increased in the same IC samples of DED. Concentrations of IL-6 and IL-8 in tears were significantly higher in DED patients than those of the controls and positively correlated to DED severity scores. On the other hand, IL-2, IL-4, IL-10, IL-12 and IFN-γ were significantly lower in DED patients than those in the controls and inversely correlated to DEWS scores. Single treatment of sPLA2-IIa, IL-1β or TNF-α of HCjE cells induced minimal to no PGE2 production. When sPLA2-IIa was added to HCjE cells that were pre-treated with pro-inflammatory cytokines (TNF-α or IL-1β), significant stimulation of PGE2 production was observed, concurrent with the extensive transcriptional changes of many inflammatory cytokines/chemokines and their receptors. CONCLUSION sPLA2-IIa activity was elevated and not only associated with inflammatory changes in DED patient samples, but was also found to cooperate with TNF- α and IL-1β to induce inflammatory response in human conjunctival epithelial cells. Understanding the roles of sPLA2-IIa in ocular surface inflammation may lead to better strategies for the treatment of chronic inflammation associated with DED and other ocular inflammatory conditions.
Collapse
Affiliation(s)
- Y Wei
- Department Ophthalmology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee, Memphis, TN, 38163, USA.
| | - P A Asbell
- Department Ophthalmology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee, Memphis, TN, 38163, USA
| |
Collapse
|
22
|
CX3CL1 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:1-12. [PMID: 32060841 DOI: 10.1007/978-3-030-36667-4_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CX3CL1 (Fractalkine) is a multifunctional inflammatory chemokine with a single receptor CX3CR1. The biological effects elicited by CX3CL1 on surrounding cells vary depending on a number of factors including its structure, the expression pattern of CX3CR1, and the cell type. For instance, the transmembrane form of CX3CL1 primarily serves as an adhesion molecule, but when cleaved to a soluble form, CX3CL1 predominantly functions as a chemotactic cytokine (Fig. 1.1). However, the biological functions of CX3CL1 also extend to immune cell survival and retention. The pro-inflammatory nature of CX3CR1-expressing immune cells place the CX3CL1:CX3CR1 axis as a central player in multiple inflammatory disorders and position this chemokine pathway as a potential therapeutic target. However, the emerging role of this chemokine pathway in the maintenance of effector memory cytotoxic T cell populations implicates it as a key chemokine in anti-viral and anti-tumor immunity, and therefore an unsuitable therapeutic target in inflammation. The reported role of CX3CL1 as a key regulator of cytotoxic T cell-mediated immunity is supported by several studies that demonstrate CX3CL1 as an important TIL-recruiting chemokine and a positive prognostic factor in colorectal, breast, and lung cancer. Such reports are conflicting with an overwhelming number of studies demonstrating a pro-tumorigenic and pro-metastatic role of CX3CL1 across multiple blood and solid malignancies.This chapter will review the unique structure, function, and biology of CX3CL1 and address the diversity of its biological effects in the immune system and the tumor microenvironment. Overall, this chapter highlights how we have just scratched the surface of CX3CL1's capabilities and suggests that further in-depth and mechanistic studies incorporating all CX3CL1 interactions must be performed to fully appreciate its role in cancer and its potential as a therapeutic target.
Collapse
|
23
|
Marlin R, Nugeyre MT, Tchitchek N, Parenti M, Lefebvre C, Hocini H, Benjelloun F, Cannou C, Nozza S, Dereuddre-Bosquet N, Levy Y, Barré-Sinoussi F, Scarlatti G, Le Grand R, Menu E. Seminal Plasma Exposures Strengthen Vaccine Responses in the Female Reproductive Tract Mucosae. Front Immunol 2019; 10:430. [PMID: 30915079 PMCID: PMC6423065 DOI: 10.3389/fimmu.2019.00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/18/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized the impact of HIV-1+ SP intravaginal exposure on the local immune responses of non-human primates. Multiple HIV-1+ SP exposures did not impact the anti-MVA antibody responses. However, SP exposures revealed an anti-MVA responses mediated by CD4+ T cells, which was not observed in the control group. Furthermore, the frequency and the quality of specific anti-MVA CD8+ T cell responses increased in the FRT exposed to SP. Multi-parameter approaches clearly identified the cervix as the most impacted compartment in the FRT. SP exposures induced a local cell recruitment of antigen presenting cells, especially CD11c+ cells, and CD8+ T cell recruitment in the FRT draining lymph nodes. CD11c+ cell recruitment was associated with upregulation of inflammation-related gene expression after SP exposures in the cervix. We thus highlight the fact that physiological conditions, such as SP exposures, should be taken into consideration to test and to improve vaccine efficacy against HIV-1 and other sexually transmitted infections.
Collapse
Affiliation(s)
- Romain Marlin
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Marie-Thérèse Nugeyre
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Nicolas Tchitchek
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Matteo Parenti
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France
| | - Fahd Benjelloun
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Claude Cannou
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Silvia Nozza
- Infectious Diseases Department, San Raffaele Scientific Institute, Milan, Italy
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France
| | - Yves Levy
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Équipe 16 Physiopathologie et Immunothérapies dans l'Infection VIH, Institut Mondor de Recherche Biomédicale - INSERM U955, Créteil, France.,Groupe Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
| | - Françoise Barré-Sinoussi
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,International Division, Institut Pasteur, Paris, France
| | - Gabriella Scarlatti
- Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France.,Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roger Le Grand
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| | - Elisabeth Menu
- IDMIT Department, U1184 ≪ Immunology of Viral Infections and Autoimmune Diseases ≫ (IMVA), CEA, IBFJ, Université Paris-Sud, Inserm, Fontenay-Aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France.,Vaccine Research Institute - VRI, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
24
|
Hayen SM, den Hartog Jager CF, Knulst AC, Knol EF, Garssen J, Willemsen LEM, Otten HG. Non-Digestible Oligosaccharides Can Suppress Basophil Degranulation in Whole Blood of Peanut-Allergic Patients. Front Immunol 2018; 9:1265. [PMID: 29942305 PMCID: PMC6004414 DOI: 10.3389/fimmu.2018.01265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022] Open
Abstract
Background Dietary non-digestible oligosaccharides (NDOs) have a protective effect against allergic manifestations in children at risk. Dietary intervention with NDOs promotes the colonization of beneficial bacteria in the gut and enhances serum galectin-9 levels in mice and atopic children. Next to this, NDOs also directly affect immune cells and low amounts may reach the blood. We investigated whether pre-incubation of whole blood from peanut-allergic patients with NDOs or galectin-9 can affect basophil degranulation. Methods Heparinized blood samples from 15 peanut-allergic adult patients were pre-incubated with a mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS), scFOS/lcFOS, or galectin-9 (1 or 5 µg/mL) at 37°C in the presence of IL-3 (0.75 ng/mL). After 2, 6, or 24 h, a basophil activation test was performed. Expression of FcεRI on basophils, plasma cytokine, and chemokine concentrations before degranulation were determined after 24 h. Results Pre-incubation with scGOS/lcFOS, scFOS/lcFOS, or galectin-9 reduced anti-IgE-mediated basophil degranulation. scFOS/lcFOS or 5 µg/mL galectin-9 also decreased peanut-specific basophil degranulation by approximately 20%, mainly in whole blood from female patients. Inhibitory effects were not related to diminished FcεRI expression on basophils. Galectin-9 was increased in plasma after pre-incubation with scGOS/lcFOS, and both NDOs and 5 µg/mL galectin-9 increased MCP-1 production. Conclusion and clinical relevance The prebiotic mixture scFOS/lcFOS and galectin-9 can contribute to decreased degranulation of basophils in vitro in peanut-allergic patients. The exact mechanism needs to be elucidated, but these NDOs might be useful in reducing allergic symptoms.
Collapse
Affiliation(s)
- Simone M Hayen
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Constance F den Hartog Jager
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - André C Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Edward F Knol
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Immunology, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
25
|
Wu YC, Shen YC, Chang JWC, Hsieh JJ, Chu Y, Wang CH. Autocrine CCL5 promotes tumor progression in esophageal squamous cell carcinoma in vitro. Cytokine 2018; 110:94-103. [PMID: 29705397 DOI: 10.1016/j.cyto.2018.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
The pro-tumoral effects of CCL5 have been identified in numerous cancer types. We successfully cultivated 4 esophageal squamous cell carcinoma (ESCC) cell lines, including TWES-1, TWES-3 and a pair of cell lines derived from primary lesion (TWES-4PT) and metastatic lymph node (TWES-4LN) of the same patient. Whole genome screening showed that TWES-4LN expressed higher levels of CCL5 compared to that of TWES-4PT; quantification of protein secretion displayed comparable results, suggesting that CCL5 could be associated with lymph node metastasis in ESCC. CCL5 knockdown by siRNA significantly reduced basal growth rate, tumor migration and invasiveness in the paired cell lines; whereas this treatment induced cell apoptosis in TWES-1 and TWES-3. CCR5 antagonist maraviroc significantly inhibited tumor migration and invasion in the paired cell lines without affecting tumor growth. Collectively, these results suggest that CCL5 autocrine loop may promote ESCC progression; targeting the CCL5/CCR5 axis could be a potential therapeutic strategy for this deadly disease.
Collapse
Affiliation(s)
- Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yung-Chi Shen
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Jia-Juan Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan
| | - Yen Chu
- Department of Medical Research and Development, Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan.
| | - Cheng-Hsu Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Keelung 204, Taiwan.
| |
Collapse
|
26
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 867] [Impact Index Per Article: 123.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
27
|
Cecchinato V, Uguccioni M. Insight on the regulation of chemokine activities. J Leukoc Biol 2018; 104:295-300. [PMID: 29668065 DOI: 10.1002/jlb.3mr0118-014r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 01/06/2023] Open
Abstract
The activity of chemokines is regulated by several mechanisms that control the final cellular response. The present review discusses the complexity of the regulation of the chemokine system, and the novel findings describing how in persistent infections, the expression of chemokine receptors on the surface of T cells does not correlate with their homing potential. Thanks to the latest advances in our comprehension of the chemokine system, novel approaches targeting chemokines, chemokine receptors, or protein of their signaling pathway should be considered in order to achieve a personalized therapy.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of "Chemokines in Immunity", Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
28
|
Polis B, Polis L, Zeman K, Paśnik J, Nowosławska E. Unexpected eosinophilia in children affected by hydrocephalus accompanied with shunt infection. Childs Nerv Syst 2018; 34:2399-2405. [PMID: 30032408 PMCID: PMC6224006 DOI: 10.1007/s00381-018-3908-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of the article is to describe an immunological reaction to shunt infection in children with hydrocephalus. The main cause of shunt infection involves methicillin resistant Staphylococcus epidermidis (Bhatia et al. Indian J Med Microbiol 35:120-123, 2017; Hayhurst et al. Childs Nerv Syst 24:557-562, 2008; Martínez-Lage et al. Childs Nerv Syst 26: 1795-1798, 2010; Simon et al. PLoS One, 2014; Snowden et al. PLoS One 8:e84089, 2013; Turgut et al. Pediatr Neurosurg 41:131-136, 2005), a bacterial strain which is responsible for the formation of biofilm on contaminated catheters (Snowden et al. PLoS One 8:e84089, 2013; Stevens et al. Br J of Neurosurg 26: 792-797, 2012). METHODS The study group involved 30 children with congenital hydrocephalus after shunt system implantation, whose procedures were complicated by S. epidermidis implant infection. Thirty children with congenital hydrocephalus awaiting their first-time shunt implantation formed the control group. The level of eosinophils in peripheral blood was assessed in both groups. Cerebrospinal fluid (CSF) was examined for protein level, pleocytosis, interleukins, CCL26/Eotaxin-3, IL-5, IL-6, CCL11/Eotaxin-1, CCL3/MIP-1a, and MBP. Three measurements were performed in the study group. The first measurement was obtained at the time of shunt infection diagnosis, the second one at the time of the first sterile shunt, and the third one at the time of shunt reimplantation. In the control group, blood and CSF samples were taken once, at the time of shunt implantation. RESULTS In the clinical material, the highest values of eosinophils in peripheral blood and CSF pleocytosis were observed in the second measurement. It was accompanied by an increase in the majority of analyzed CSF interleukins. CONCLUSION CSF pleocytosis observed in the study group shortly after CSF sterilization is presumably related to an allergic reaction to Staphylococcus epidermidis, the causative agent of ventriculoperitoneal shunt infection.
Collapse
Affiliation(s)
- Bartosz Polis
- Department of Neurosurgery, Polish Mother’s Memorial Hospital Research Institute, Rzgowska st 281/289, 93-338 Łódź, Poland
| | - Lech Polis
- Department of Neurosurgery, Polish Mother’s Memorial Hospital Research Institute, Rzgowska st 281/289, 93-338 Łódź, Poland
| | - Krzysztof Zeman
- Department of Pediatrics and Immunology with Nephrology Unit, Polish Mother’s Memorial Hospital Research Institute, Rzgowska st 281/289, 93-338 Łódź, Poland
| | - Jarosław Paśnik
- Department of Pediatrics and Immunology with Nephrology Unit, Polish Mother’s Memorial Hospital Research Institute, Rzgowska st 281/289, 93-338 Łódź, Poland
| | - Emilia Nowosławska
- Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Rzgowska st 281/289, 93-338, Łódź, Poland.
| |
Collapse
|
29
|
Chamessian A, Van de Ven T, Buchheit T, Hsia HL, McDuffie M, Gamazon ER, Walsh C, Bruehl S, Buckenmaier C'T, Shaw A. Differential expression of systemic inflammatory mediators in amputees with chronic residual limb pain. Pain 2017; 158:68-74. [PMID: 27682210 DOI: 10.1097/j.pain.0000000000000728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic postsurgical pain impacts most amputees, with more than half experiencing neuralgic residual limb pain. The transition from normal acute postamputation pain to chronic residual limb pain likely involves both peripheral and central inflammatory mechanisms. As part of the Veterans Integrated Pain Evaluation Research study, we investigated links between systemic inflammatory mediator levels and chronic residual limb pain. Subjects included 36 recent active duty military traumatic amputees with chronic residual limb pain and 40 without clinically significant pain. Blood samples were obtained and plasma concentrations of an array of inflammatory mediators were analyzed. Residual limb pain intensity and pain catastrophizing were assessed to examine associations with inflammatory mediators. Pro-inflammatory mediators including tumor necrosis factor (TNF)-α, TNF-β, interleukin (IL)-8, ICAM-1, Tie2, CRP, and SAA were elevated in patients with chronic residual limb pain. Across all patients, residual limb pain intensity was associated positively with levels of several proinflammatory mediators (IL-8, TNF-α, IL-12, TNF-β, PIGF, Tie2, SAA, and ICAM-1), and inversely with concentrations of the anti-inflammatory mediator IL-13, as well as IL-2 and Eotaxin-3. Pain catastrophizing correlated positively with IL-8, IL-12, TNF-β, PIGF, and ICAM-1, and inversely with IL-13. Significant associations between catastrophizing and residual limb pain intensity were partially mediated by TNF-α, TNF- β, SAA, and ICAM-1 levels. Results suggest that chronic postamputation residual limb pain is associated with excessive inflammatory response to injury or to inadequate resolution of the postinjury inflammatory state. Impact of pain catastrophizing on residual limb pain may be because of part to common underlying inflammatory mechanisms.
Collapse
Affiliation(s)
| | - Thomas Van de Ven
- Anesthesiology, Duke University Medical Center, Durham, NC.,Division of Anesthesiology, Durham Veterans Affairs Medical Center, Durham, NC
| | - Thomas Buchheit
- Anesthesiology, Duke University Medical Center, Durham, NC.,Division of Anesthesiology, Durham Veterans Affairs Medical Center, Durham, NC
| | - Hung-Lun Hsia
- Anesthesiology, Duke University Medical Center, Durham, NC.,Division of Anesthesiology, Durham Veterans Affairs Medical Center, Durham, NC
| | - Mary McDuffie
- Defense and Veterans Center for Integrative Pain Management, Rockville, MD
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Colin Walsh
- Departments of Biomedical Informatics.,Medicine, and
| | - Stephen Bruehl
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Chester 'Trip' Buckenmaier
- Defense and Veterans Center for Integrative Pain Management, Rockville, MD.,Department of Military Emergency Medicine, Uniformed Services University, Bethesda, MD
| | - Andrew Shaw
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
30
|
The Inflammatory Milieu of Eosinophilic Esophagitis: A Contemporary Review With Emphasis in Putative Immunohistochemistry and Serologic Markers. Appl Immunohistochem Mol Morphol 2016; 26:435-444. [PMID: 27801733 DOI: 10.1097/pai.0000000000000450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eosinophilic esophagitis is a chronic disease characterized by esophageal dysfunction, frequent clinical history of atopy, and eosinophilic inflammation of the esophagus. Within the esophageal mucosa, there is a wide variety of immune mediators, chemotactic factors, mediators of transcription, and markers of epithelial differentiation and integrity that are overexpressed or underexpressed in eosinophilic esophagitis, offering many candidates for biomarkers with diagnostic or prognostic potential. In this review, we summarize the results from studies performed so far to evaluate the detection of these markers by immunohistochemistry on esophageal biopsies. In addition, we briefly describe some attempts to identify markers that could be detected in serum to be used to diagnose or monitor the disease without the need of a biopsy.
Collapse
|
31
|
Huber AK, Giles DA, Segal BM, Irani DN. An emerging role for eotaxins in neurodegenerative disease. Clin Immunol 2016; 189:29-33. [PMID: 27664933 DOI: 10.1016/j.clim.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
Eotaxins are C-C motif chemokines first identified as potent eosinophil chemoattractants. They facilitate eosinophil recruitment to sites of inflammation in response to parasitic infections as well as allergic and autoimmune diseases such as asthma, atopic dermatitis, and inflammatory bowel disease. The eotaxin family currently includes three members: eotaxin-1 (CCL11), eotaxin-2 (CCL24), and eotaxin-3 (CCL26). Despite having only ~30% sequence homology to one another, each was identified based on its ability to bind the chemokine receptor, CCR3. Beyond their role in innate immunity, recent studies have shown that CCL11 and related molecules may directly contribute to degenerative processes in the central nervous system (CNS). CCL11 levels increase in the plasma and cerebrospinal fluid of both mice and humans as part of normal aging. In mice, these increases are associated with declining neurogenesis and impaired cognition and memory. In humans, elevated plasma levels of CCL11 have been observed in Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and secondary progressive multiple sclerosis when compared to age-matched, healthy controls. Since CCL11 is capable of crossing the blood-brain barrier of normal mice, it is plausible that eotaxins generated in the periphery may exert physiological and pathological actions in the CNS. Here, we briefly review known functions of eotaxin family members during innate immunity, and then focus on whether and how these molecules might participate in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David A Giles
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Proudfoot AEI, Uguccioni M. Modulation of Chemokine Responses: Synergy and Cooperativity. Front Immunol 2016; 7:183. [PMID: 27242790 PMCID: PMC4871875 DOI: 10.3389/fimmu.2016.00183] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
Chemokine biology is mediated by more complex interactions than simple monomolecular ligand–receptor interactions, as chemokines can form higher order quaternary structures, which can also be formed after binding to glycosaminoglycans (GAGs) on endothelial cells, and their receptors are found as dimers and/or oligomers at the cell surface. Due to the complexity of the chemokine binding and signaling system, several mechanisms have been proposed to provide an explanation for the synergy observed between chemokines in leukocyte migration. Pioneering studies on interactions between different chemokines have revealed that they can act as antagonists, or synergize with other chemokines. The synergism can occur at different levels, involving either two chemokine receptors triggered simultaneously or sequentially exposed to their agonists, or the activation of one type of chemokine receptor triggered by chemokine heterocomplexes. In addition to the several chemokines that, by forming a heterocomplex with chemokine receptor agonists, act as enhancers of molecules of the same family, we have recently identified HMGB1, an endogenous damage-associated molecular patterns (DAMPs) molecule, as an enhancer of the activity of CXCL12. It is now evident that synergism between chemokines is crucial at the very early stage of inflammation. In addition, the low-affinity interaction with GAGs has recently been shown to induce cooperativity allowing synergy or inhibition of activity by displacement of other ligands.
Collapse
Affiliation(s)
| | - Mariagrazia Uguccioni
- Laboratory of Chemokines in Immunity, Institute for Research in Biomedicine, Università della Svizzera italiana , Bellinzona , Switzerland
| |
Collapse
|
33
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
34
|
Cecchinato V, D'Agostino G, Raeli L, Uguccioni M. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking. J Leukoc Biol 2015; 99:851-5. [PMID: 26715684 PMCID: PMC5039040 DOI: 10.1189/jlb.1mr1015-457r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023] Open
Abstract
Review on synergistic activities induced by heterocomplexes formed with chemokines. Directed migration and arrest of leukocytes during homeostasis, inflammation, and tumor development is mediated by the chemokine system, which governs leukocyte migration and activities. Although we understand well the effects of different chemokines one by one, much less was known about the potential consequences of the concomitant expression of multiple chemokines or of their interaction with inflammatory molecules on leukocyte migration and functions. In the past 10 yr, several studies revealed the existence of additional features of chemokines: they can antagonize chemokine receptors or synergize with other chemokines, also by forming heterocomplexes. Moreover, recent data show that not only chemokines but also the alarmin high-mobility group box 1 can for a complex with CXCL12, enhancing its potency on CXCR4. The molecular mechanism underlying the effect of the heterocomplex has been partially elucidated, whereas its structure is a matter of current investigations. The present review discusses the current knowledge and relevance of the functions of heterocomplexes formed between chemokines or between the chemokine CXCL12 and the alarmin high-mobility group box 1. These studies highlight the importance of taking into account, when approaching innovative therapies targeting the chemokine system, also the fact that some chemokines and molecules released in inflammation, can considerably affect the activity of chemokine receptor agonists.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Lorenzo Raeli
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Laboratory of "Chemokines in Immunity," Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
35
|
Steen A, Larsen O, Thiele S, Rosenkilde MM. Biased and g protein-independent signaling of chemokine receptors. Front Immunol 2014; 5:277. [PMID: 25002861 PMCID: PMC4066200 DOI: 10.3389/fimmu.2014.00277] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor), different receptors (with the same ligand), or different tissues or cells (for the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of “classic” redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor-, or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the solution.
Collapse
Affiliation(s)
- Anne Steen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Stefanie Thiele
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
36
|
Baumann R, Rabaszowski M, Stenin I, Tilgner L, Scheckenbach K, Wiltfang J, Schipper J, Chaker A, Wagenmann M. Comparison of the nasal release of IL-4, IL-10, IL-17, CCL13/MCP-4, and CCL26/eotaxin-3 in allergic rhinitis during season and after allergen challenge. Am J Rhinol Allergy 2013; 27:266-72. [PMID: 23883806 DOI: 10.2500/ajra.2013.27.3913] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Allergic rhinitis is an inflammatory disease characterized by local overproduction of type 2 cytokines and tissue eosinophilia. Recent research suggests the involvement of additional cytokines such as IL-17, chemokine (C-C motif) ligand (CCL) 26/eotaxin-3, and CCL13/monocyte chemoattractant protein-4 (MCP-4) in its pathophysiology. Furthermore, bronchial epithelial cells treated with IL-17 and type 2 cytokines distinctively up-regulated eotaxin-3 gene expression. In this study we investigated the kinetics of IL-4, IL-10, IL-17, eotaxin-3, and MCP-4 in seasonal allergic rhinitis volunteers after nasal allergen challenge (NAC) and their release during natural pollen exposure. METHODS The nasal lavages of 15 symptomatic allergic and 14 nonallergic subjects were collected during the pollination season. Additionally, six allergic subjects underwent a single unilateral nasal allergen and control challenge out of season, and nasal secretions were collected. Levels of IL-4, IL-10, IL-17, eotaxin-3, and MCP-4 in nasal lavages and secretions were measured using an electrochemiluminescent assay. RESULTS After NAC, allergic subjects had a significant immediate response of nasal symptoms as well as a significant increase at 5 hours of IL-4, IL-10, and IL-17 and at 2, 5, and 24 hours significantly raising levels of eotaxin-3. IL-17 and eotaxin-3 concentrations at 5 hours were correlated (r = 0.94; p = 0.005). During natural pollen exposure, barely detectable levels of IL-17 in allergic subjects were also correlated with eotaxin-3 (r = 0.62; p = 0.01). Eotaxin-3 and MCP-4 levels were significantly elevated 9- or 3.7-fold, respectively, and IL-10 and, unexpectedly, IL-4 were significantly lower in allergic subjects compared with nonallergic subjects. CONCLUSION Nasal IL-17, MCP-4, and, possibly, eotaxin-3 may aggravate and IL-10 may alleviate nasal mucosal allergy.
Collapse
Affiliation(s)
- Ralf Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Heinrich Heine University of Duesseldorf, Moorenstrasse 5, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Landi A, Weismuller TJ, Lankisch TO, Santer DM, Tyrrell DLJ, Manns MP, Houghton M. Differential serum levels of eosinophilic eotaxins in primary sclerosing cholangitis, primary biliary cirrhosis, and autoimmune hepatitis. J Interferon Cytokine Res 2013; 34:204-14. [PMID: 24168449 DOI: 10.1089/jir.2013.0075] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To investigate pathogenic mechanisms of primary sclerosing cholangitis (PSC), primary biliary cirrhosis (PBC), and autoimmune hepatitis (AIH), serum levels of 26 chemokines and cytokines were determined and compared with patients with chronic hepatitis C or in healthy controls. The chemokine eotaxin-3 (E3; CCL26), which recruits eosinophils to sites of inflammation, was found to be highly elevated in all PSC, PBC, and AIH patients compared with HCV patients and healthy controls. Eotaxin-1 (E1; CCL11), another eosinophil-specific chemokine, was elevated in PSC but reduced in PBC and AIH, while the macrophage-derived chemokine (MDC; CCL22) was lower in all PSC, PBC, and AIH patients compared with HCV patients and controls. By incorporating levels of the interleukin (IL)-15 into a diagnostic algorithm, PSC, PBC, and AIH patients could each be differentiated with good sensitivity and specificity. These findings represent the first study to compare the level of serum cytokine/chemokine levels among these related autoimmune-like liver diseases. Furthermore, our data indicate that the measurement of serum E3, E1, CCL22, and IL-15 levels can aid in the diagnosis of these clinically challenging diseases and shed light on the potential pathogenic mechanisms underlying these diseases. By suggesting a potential role for an allergic phenomenon involving eosinophils, which may define them as liver-specific allergic diseases, this may open up potential new therapeutic avenues by abrogating the action of these disease-associated immune modulators.
Collapse
Affiliation(s)
- Abdolamir Landi
- 1 Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Provost V, Larose MC, Langlois A, Rola-Pleszczynski M, Flamand N, Laviolette M. CCL26/eotaxin-3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin-1 and CCL24/eotaxin-2. J Leukoc Biol 2013; 94:213-22. [PMID: 23532518 DOI: 10.1189/jlb.0212074] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CCL11, CCL24, and CCL26 are chemokines involved in the recruitment of eosinophils into tissues and mainly activate CCR3. Whereas the genomic or pharmacological inhibition of CCR3 prevents the development of experimental asthma in rodents, it only impairs the recruitment of eosinophils by ∼40% in humans. As humans, but not rodents, express CCL26, we investigated the impact of CCL11, CCL24, and CCL26 on human eosinophils recruitment and evaluated the involvement of CCR3. The migration of eosinophils of healthy volunteers was similar for the three eotaxins. Eosinophils of mild asthmatics had a greater response to CCL11 and a much greater response to CCL26. Whereas all eotaxins induced the migration of eosinophil of asthmatics from 0 to 6 h, CCL26 triggered a second phase of migration between 12 and 18 h. Given that the CCR3 antagonists SB 328437 and SB 297006 inhibited the 5-oxo-eicosatetraenoate-induced migration of eosinophils and that the CCR3 antagonist UCB 35625 was not specific for CCR3, CCR3 blockade was performed with the CCR3 mAb. This antibody completely blocked the effect of all eotaxins on eosinophils of healthy subjects and the effect of CCL24 on the eosinophils of asthmatics. Interestingly, CCR3 blockade did not affect the second migration phase induced by CCL26 on eosinophils of asthmatics. In conclusion, CCL26 is a more effective chemoattractant than CCL11 and CCL24 for eosinophils of asthmatics. The mechanism of this greater efficiency is not yet defined. However, these results suggest that CCL26 may play a unique and important role in the recruitment of eosinophils in persistent asthma.
Collapse
|
39
|
Sharma NK, Prabhakar S, Gupta A, Singh R, Gupta PK, Gupta PK, Anand A. New biomarker for neovascular age-related macular degeneration: eotaxin-2. DNA Cell Biol 2012; 31:1618-27. [PMID: 23025269 DOI: 10.1089/dna.2012.1786] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently, eotaxin-CCR3 was reported to play an important role in choroidal neovascularization (CNV) development and was documented to be superior than vascular endothelial growth factor-A treatment when tested in CNV animals. As eotaxin studies are lacking in the human age-related macular degeneration (AMD) patients, we sought to determine whether eotaxin-2 (CCL24) has any association with inflammatory processes that occur in CNV. CCL24 levels were determined by enzyme linked immunosorbant assay (ELISA) after normalization to total serum protein and levels of ELISA were correlated to various risk factors in about 133 AMD patients and 80 healthy controls. The CCL24 levels were significantly higher in wet AMD patients as compared with dry AMD and normal controls. There was a significant difference when compared among wet AMD patients (i.e., minimally classic, predominantly classic, and occult). We also report significant difference in the CCL24 levels of Avastin-treated and untreated AMD patients. This study shows that CCL24 levels were found to be significantly increased in AMD patients despite Avastin treatment as compared with normal controls and those without Avastin, indicating that CCL24 may have an association with CNV and may be an important target to validate future therapeutic approaches in AMD in tandem with Avastin treatment.
Collapse
Affiliation(s)
- Neel Kamal Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
40
|
Expression of eotaxins in the material from nasal brushing in asthma, allergic rhinitis and COPD patients. Cytokine 2012; 60:393-9. [PMID: 22846146 DOI: 10.1016/j.cyto.2012.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/23/2012] [Accepted: 07/02/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Asthma and COPD are non-infectious inflammatory diseases of the respiratory tract. Allergic rhinitis can be assumed as an intermediate condition between healthy and asthmatic state. Eotaxins are important indicators of allergic reaction. They are strong chemoattractants mainly for eosinophils but also for other cells. OBJECTIVE We measured the level of eotaxin expression and inflammatory cell count in the material from nasal brushing in healthy controls and in patients with allergic rhinitis, asthma, and COPD. We studied the correlation between the eotaxin gene expression level in the material from nasal brushing and respiratory tests in asthma and COPD patients. METHODS Expression of eotaxins was measured using quantitative RT-PCR. Number of eotaxin transcript copies was evaluated using real time PCR standard curve method. RESULTS Of all eotaxins CCL24 had the highest expression in the material from nasal brushing, and its level was increased in allergic asthma. CCL11 was significantly increased in the material from nasal brushing of COPD patients. Increased levels of all three eotaxins were observed in the material from nasal brushing of patients with allergic rhinitis in season. The levels of CCL26 expression and FEV1/FVC factor were correlated negatively in the asthma group and positively in the COPD group. CONCLUSIONS Eotaxins are crucial factors of allergic, asthmatic and also COPD inflammatory reactions. Our results suggest a dual role of CCL26 - it can act as a negative regulator for neutrophils in COPD, while in asthma it may act as a chemoatractant of eosinophils and other cells into the lung.
Collapse
|
41
|
Menezes-Souza D, Guerra-Sá R, Carneiro CM, Vitoriano-Souza J, Giunchetti RC, Teixeira-Carvalho A, Silveira-Lemos D, Oliveira GC, Corrêa-Oliveira R, Reis AB. Higher expression of CCL2, CCL4, CCL5, CCL21, and CXCL8 chemokines in the skin associated with parasite density in canine visceral leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1566. [PMID: 22506080 PMCID: PMC3323520 DOI: 10.1371/journal.pntd.0001566] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/29/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The immune response in the skin of dogs infected with Leishmania infantum is poorly understood, and limited studies have described the immunopathological profile with regard to distinct levels of tissue parasitism and the clinical progression of canine visceral leishmaniasis (CVL). METHODOLOGY/PRINCIPAL FINDINGS A detailed analysis of inflammatory cells (neutrophils, eosinophils, mast cells, lymphocytes, and macrophages) as well as the expression of chemokines (CCL2, CCL4, CCL5, CCL13, CCL17, CCL21, CCL24, and CXCL8) was carried out in dermis skin samples from 35 dogs that were naturally infected with L. infantum. The analysis was based on real-time polymerase chain reaction (PCR) in the context of skin parasitism and the clinical status of CVL. We demonstrated increased inflammatory infiltrate composed mainly of mononuclear cells in the skin of animals with severe forms of CVL and high parasite density. Analysis of the inflammatory cell profile of the skin revealed an increase in the number of macrophages and reductions in lymphocytes, eosinophils, and mast cells that correlated with clinical progression of the disease. Additionally, enhanced parasite density was correlated with an increase in macrophages and decreases in eosinophils and mast cells. The chemokine mRNA expression demonstrated that enhanced parasite density was positively correlated with the expression of CCL2, CCL4, CCL5, CCL21, and CXCL8. In contrast, there was a negative correlation between parasite density and CCL24 expression. CONCLUSIONS/SIGNIFICANCE These findings represent an advance in the knowledge about skin inflammatory infiltrates in CVL and the systemic consequences. Additionally, the findings may contribute to the design of new and more efficient prophylactic tools and immunological therapies against CVL.
Collapse
Affiliation(s)
- Daniel Menezes-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Renata Guerra-Sá
- Laboratório de Bioquímica e Biologia Molecular, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Andréa Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Denise Silveira-Lemos
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Guilherme Corrêa Oliveira
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Rodrigo Corrêa-Oliveira
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- * E-mail:
| |
Collapse
|
42
|
Günther C, Wozel G, Meurer M, Pfeiffer C. Up-regulation of CCL11 and CCL26 is associated with activated eosinophils in bullous pemphigoid. Clin Exp Immunol 2011; 166:145-53. [PMID: 21985360 DOI: 10.1111/j.1365-2249.2011.04464.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils contribute to the pathogenesis of bullous pemphigoid (BP) by secretion of proinflammatory cytokines and proteases. Trafficking of eosinophils into tissue in animal models and asthma depends on interleukin-5 and a family of chemokines named eotaxins, comprising CCL11, CCL24 and CCL26. Up-regulation of CCL11 has been described in BP, but the expression of the other two members of the eotaxin-family, CCL24 and CCL26, has not been investigated. In addition to these chemokines, expression of adhesion molecules associated with eosinophil migration to the skin should be analysed. We demonstrate that similar to CCL11, the concentration of CCL26 was up-regulated in serum and blister fluid of BP patients. In contrast, the concentration of CCL24 was not elevated in sera and blister fluid of the same BP patients. In lesional skin, CCL11 and CCL26 were detected in epidermis and dermis by immunohistochemistry. In contrast to CCL11, CCL26 was expressed strongly by endothelial cells. In line with these findings, eosinophils represented the dominating cell population in BP lesional skin outnumbering other leucocytes. The percentage of eosinophils expressing very late antigen (VLA): VLA-4 (CD49d) and CD11c correlated with their quantity in tissue. Macrophage antigen (MAC)-1 (CD11b/CD18) was expressed constitutively by tissue eosinophils. In conclusion, these data link the up-regulation of the eosinophil chemotactic factor CCL26 in BP to the lesional accumulation of activated eosinophils in the skin. Thereby they broaden the understanding of BP pathogenesis and might indicate new options for therapeutic intervention.
Collapse
Affiliation(s)
- C Günther
- University Hospital for Dermatology, Technical University Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
43
|
Roth N, Städler S, Lemann M, Hösli S, Simon HU, Simon D. Distinct eosinophil cytokine expression patterns in skin diseases - the possible existence of functionally different eosinophil subpopulations. Allergy 2011; 66:1477-86. [PMID: 21884530 DOI: 10.1111/j.1398-9995.2011.02694.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The function of eosinophils has been attributed to host defense, immunomodulation, and fibrosis. Although eosinophils are found among infiltrating cells in a broad spectrum of skin diseases, their pathogenic role remains uncertain. This study aimed to analyze the cytokine expression by eosinophils in different skin diseases. METHODS Skin specimens from different skin diseases [allergic/reactive, infectious, autoimmune, and tumors/lymphomas (LY)] were stained by antibodies directed to eosinophil cationic protein, cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10, IL-11, IL-13, IL-17, IL-25, IL-33, interferon-γ, transforming growth factor (TGF)-β, and thymic stromal lymphopoietin], eotaxins (CCL11, CCL24, and CCL26), metalloproteinase (MMP)-9 as well as extracellular matrix proteins (tenascin-C and procollagen-3) and then analyzed by laser scanning microscopy. RESULTS The number of eosinophils varied considerably in and between disease groups and did not correlate with the numbers of accompanying inflammatory cells. The expression of IL-5, IL-6, IL-11, TGF-β, CCL24, and MMP-9 by eosinophils significantly differed between disease groups. Eosinophils in tumors/LY predominantly expressed IL-6, TGF-β, and CCL24, but not IL-11. On the other hand, in autoimmune diseases, eosinophils largely contributed to MMP-9 production. IL-5-generating eosinophils were particularly obvious in allergic and infectious diseases. CONCLUSION In skin diseases, eosinophil expresses a broad spectrum of cytokines. The different cytokine expression patterns suggest distinct functional roles of eosinophils in these diseases that might be related to host defense, immunomodulation, fibrosis, and/or tumor development.
Collapse
Affiliation(s)
- N Roth
- Department of Dermatology, Inselspital, Bern University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Silveira-Lemos D, Teixeira-Carvalho A, Martins-Filho OA, Souza-Soares AL, Castro-Silva P, Costa-Silva MF, Guimarães PHG, Ferraz HB, Oliveira-Fraga LA, Teixeira MM, Corrêa-Oliveira R. Seric chemokines and chemokine receptors in eosinophils during acute human schistosomiasis mansoni. Mem Inst Oswaldo Cruz 2011; 105:380-6. [PMID: 20721479 DOI: 10.1590/s0074-02762010000400006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 10/16/2009] [Indexed: 12/20/2022] Open
Abstract
The recruitment of circulating eosinophils by chemokines and chemokine receptors plays an important role in the inflammation process in acute human schistosomiasis. Our main focus has been on the plasma chemokines (CXCL8/CCL2/CCL3/CCL24) and chemokine receptors (CCR2/CCR3/CCR5/CXCR1/CXCR2/CXCR3/CXCR4) expressed by circulating eosinophils from acute Schistosoma mansoni infected patients (ACT). Our studies compared ACT patients and healthy individuals as a control group. Our major findings demonstrated a plethora of chemokine secretion with significantly increased secretion of all chemokines analysed in the ACT group. Although no differences were detected for beta-chemokine receptors (CCR2, CCR3 and CCR5) or alpha-chemokine receptors (CXCR3 and CXCR4), a significantly lower frequency of CXCR1+ and CXCR2+ eosinophils in the ACT group was observed. The association between chemokines and their chemokine receptors revealed that acutely infected schistosome patients displaying decreased plasma levels of CCL24 are the same patients who presented enhanced secretion of CCL3, as well as increased expression of both the CCR5 and CXCR3 chemokine receptors. These findings suggest that CCL24 may influence the kinetics of chemokines and their receptors and eosinophils recruitment during human acute schistosomiasis mansoni.
Collapse
Affiliation(s)
- Denise Silveira-Lemos
- Laboratório de Imunologia Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakayama T, Watanabe Y, Oiso N, Higuchi T, Shigeta A, Mizuguchi N, Katou F, Hashimoto K, Kawada A, Yoshie O. Eotaxin-3/CC chemokine ligand 26 is a functional ligand for CX3CR1. THE JOURNAL OF IMMUNOLOGY 2010; 185:6472-9. [PMID: 20974991 DOI: 10.4049/jimmunol.0904126] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.
Collapse
Affiliation(s)
- Takashi Nakayama
- Department of Microbiology, Faculty of Medicine and xLife Science Research Institute, Kinki University, Osaka-Sayama, Osaka, Japna
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Expression of chemokine decoy receptors and their ligands at the porcine maternal-fetal interface. Immunol Cell Biol 2010; 89:304-13. [PMID: 20680026 DOI: 10.1038/icb.2010.95] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful pregnancy requires coordinated maternal-fetal cross-talk to establish vascular connections that support conceptus growth. In pigs, two waves of spontaneous fetal loss occur and 30-40% of conceptuses are lost before parturition. Previous studies associated these losses with decreased angiogenic and increased inflammatory cytokines. Chemokines, a sub-category of cytokines, and decoy receptors control leukocyte trafficking, angiogenesis and development. The availability of chemokines is regulated by three non-signalling decoy receptors: chemokine decoy receptor (D6), Duffy antigen receptor for chemokines (DARC) and Chemocentryx decoy receptor (CCX CKR). We hypothesized that the expression of these receptors and their chemokine ligands regulate the porcine pregnancy success or failure. Here, we describe for the first time the transcription and translation of all three decoy receptors and several chemokine ligands in endometrium and trophoblast associated with healthy and arresting conceptuses at gestation day (gd) 20 and gd50. Among decoy receptors, transcripts for DARC were significantly reduced in endometrium, whereas that for CCX CKR were significantly increased in endometrium and trophoblast at gd50 arresting compared with healthy sites. However, western blot analysis revealed no differences in decoy receptor expression between healthy and arresting tissues. Transcripts for decoy receptor ligands CCL2, CCL3, CCL4, CCL5, CCL11, CCL19, CCL21, CXCL2 and CXCL8 were stable between healthy and arresting littermates. Quantification by SearchLight chemiluminescent protein array confirmed ligand expression at the protein level. These data indicate that decoy receptors and ligands are expressed at the porcine maternal-fetal interface and dysregulation of decoy receptor (DARC and CCX CKR) transcripts occurs at sites of fetal arrest.
Collapse
|
47
|
Stubbs VEL, Power C, Patel KD. Regulation of eotaxin-3/CCL26 expression in human monocytic cells. Immunology 2010; 130:74-82. [PMID: 20059579 DOI: 10.1111/j.1365-2567.2009.03214.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Eotaxin-3/CCL26 is an agonist for chemokine receptor 3 (CCR3) and a natural antagonist for CCR1, CCR2 and CCR5. CCL26 expression by non-haematopoietic cells has been well documented; however, no studies to date have demonstrated CCL26 expression by leucocytes. In this study, we investigated the ability of human monocytic cells to produce CCL26 in response to cytokines. We found that interleukin-4 (IL-4) increased the expression of CCL26 messenger RNA (mRNA) and protein in U937 cells, in human monocytes and in human monocyte-derived macrophages. Tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) alone did not induce CCL26 expression, yet these pro-inflammatory cytokines synergized with IL-4 to increase CCL26 protein expression. Signal transducer and activator of transcription 6 (STAT6) was not affected by costimulation with TNF-alpha, suggesting that the synergy between IL-4 and TNF-alpha occurs at a step downstream of STAT6 activation. Co-incubation of interferon-gamma (IFN-gamma) with IL-4 had no effect on CCL26 protein release. By contrast, pretreatment with IFN-gamma decreased total STAT6 protein, blocked IL-4-mediated STAT6 phosphorylation and decreased IL-4-mediated CCL26 mRNA expression and protein release. These data show that IL-4 and pro-inflammatory cytokines such as TNF-alpha, IL-1beta and IFN-gamma regulate CCL26 synthesis in human monocytic cells, which may be important in regulating monocyte inflammatory responses.
Collapse
|
48
|
|
49
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 PMCID: PMC11506275 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
50
|
Farges JC, Keller JF, Carrouel F, Durand SH, Romeas A, Bleicher F, Lebecque S, Staquet MJ. Odontoblasts in the dental pulp immune response. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:425-36. [DOI: 10.1002/jez.b.21259] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|