1
|
McCausland JW, Kloos ZA, Irnov I, Sonnert ND, Zhou J, Putnick R, Mueller EA, Steere AC, Palm NW, Grimes CL, Jacobs-Wagner C. Bacterial and host enzymes modulate the inflammatory response produced by the peptidoglycan of the Lyme disease agent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631998. [PMID: 39829805 PMCID: PMC11741416 DOI: 10.1101/2025.01.08.631998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The spirochete Borrelia burgdorferi causes Lyme disease. In some patients, an excessive, dysregulated proinflammatory immune response can develop in joints leading to persistent arthritis. In such patients, persistence of antigenic B. burgdorferi peptidoglycan (PGBb) fragments within joint tissues may contribute to the immunopathogenesis, even after appropriate antibiotic treatment. In live B. burgdorferi cells, the outer membrane shields the polymeric PGBb sacculus from exposure to the immune system. However, unlike most diderm bacteria, B. burgdorferi releases PGBb turnover products into its environment due to the absence of recycling activity. In this study, we identified the released PGBb fragments using a mass spectrometry-based approach. By characterizing the l,d-carboxypeptidase activity of B. burgdorferi protein BB0605 (renamed DacA), we found that PGBb turnover largely occurs at sites of PGBb synthesis. In parallel, we demonstrated that the lytic transglycosylase activity associated with BB0259 (renamed MltS) releases PGBb fragments with 1,6-anhydro bond on their N-acetylmuramyl residues. Stimulation of human cell lines with various synthetic PGBb fragments revealed that 1,6-anhydromuramyl-containing PGBb fragments are poor inducers of a NOD2-dependent immune response relative to their hydrated counterparts. We also showed that the activity of the human N-acetylmuramyl-l-alanine amidase PGLYRP2, which reduces the immunogenicity of PGBb material, is low in joint (synovial) fluids relative to serum. Altogether, our findings suggest that MltS activity helps B. burgdorferi evade PG-based immune detection by NOD2 during growth despite shedding PGBb fragments and that PGBb-induced immunopathology likely results from host sensing of PGBb material from dead (lysed) spirochetes. Additionally, our results suggest the possibility that natural variation in PGLYRP2 activity may contribute to differences in susceptibility to PG-induced inflammation across tissues and individuals.
Collapse
Affiliation(s)
- Joshua W McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Zachary A Kloos
- Microbiology Program, Yale University, West Haven, Connecticut, USA
| | - Irnov Irnov
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Nicole D Sonnert
- Microbiology Program, Yale University, West Haven, Connecticut, USA
- Department of Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Rachel Putnick
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Alan C Steere
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah W Palm
- Department of Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Neward, DE
| | - Christine Jacobs-Wagner
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Gu X, Xu Y, Zhang J, Yu S, Wang L, Luo J, Wei P, Yang J, Zhang L, Yan M, Wei G. A potent antimicrobial glycolipopeptide GLIP and its promising combined antimicrobial effect. Int J Biol Macromol 2024; 281:136166. [PMID: 39448287 DOI: 10.1016/j.ijbiomac.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Here, the glycolipopeptide GLIP was obtained by coupling IL-C8 and the monosaccharide molecule D-(+)-glucosamine to the N-terminal and C-terminal of the peptide P, which was designed on the basis of the biological characteristics of the antimicrobial peptides. In vitro bioactivity and physicochemical properties assays confirmed that GLIP had excellent antimicrobial activity against Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 29213, as well as good stability in serum and trypsin, low hemolysis, and good bacterial membrane-disrupting ability. In addition, the glycolipopeptide GLIP could self-assembly in aqueous solution to form spherical nano-aggregates, which could encapsulate the small molecule antibiotic TC to form the nanomedicine GLIP@TC and release the TC continuously and slowly in a sustained-release manner, exerting the combined antimicrobial effect of both. The results of animal experiments demonstrated the excellent in vivo antimicrobial activities of GLIP and nanomedicine GLIP@TC. Finally, molecular docking experiment showed that the GLIP could effectively bind to penicillin-binding protein 5 (PBP5) of E. coli and possibly inhibit its D-Ala carboxypeptidase (CPase) activity. All these results may imply the great potential of GLIP for clinical application against bacterial drug resistance.
Collapse
Affiliation(s)
- Xiulian Gu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Yan Xu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Jintao Zhang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Shui Yu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Lei Wang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Junlin Luo
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Pengxiang Wei
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Jingyi Yang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Lu Zhang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Miaomiao Yan
- Department of Pharmacy Science, Binzhou Medical University, China.
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, China.
| |
Collapse
|
3
|
Huang LD, Gou XY, Yang MJ, Li MJ, Chen SN, Yan J, Liu XX, Sun AH. Peptidoglycan biosynthesis-associated enzymatic kinetic characteristics and β-lactam antibiotic inhibitory effects of different Streptococcus pneumoniae penicillin-binding proteins. Int J Biol Macromol 2024; 254:127784. [PMID: 37949278 DOI: 10.1016/j.ijbiomac.2023.127784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different β-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang 322000, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China; The First Hospital of Putian City, Putian, Fujian 351100, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Jie Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xiao-Xiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
4
|
Hassan SS, Nader M, Nagy M, Mohamed M, Nader M, Zakaria M, Mohamed N, Waleed R, Rashidi FB. Antimicrobial screening involving Helicobacter pylori of nano-therapeutic compounds based on the amoxicillin antibiotic drug. Helicobacter 2023; 28:e13004. [PMID: 37391943 DOI: 10.1111/hel.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
Nano-structure Cu(II) complex [Cu(AMAB)2 ]Cl2 with Schiff base (AMAB) derived from the condensation between 4-(dimethylamino)benzaldehyde and amoxicillin trihydrate was prepared. (AMAB) Schiff base and its Cu(II) complex were identified and confirmed by different physicochemical techniques. The Schiff base (AMAB) was coordinated to copper ion through carbonyl oxygen and imine nitrogen donor sites. X-ray powder diffraction shows a cubic crystal system of the Cu(II) complex. The density functional theory was used to optimize the structure geometries of the investigated compounds. The molecular docking of the active amino acids of the investigated proteins' interactions with the tested compounds was evaluated. The bactericidal or bacteriostatic effect of the compounds was screened against some bacterial strains. The activity of Cu-chelate against Gram-negative bacteria was mainly more effective than its (AMAB) ligand and vice versa in the case of Gram-positive bacteria. The biological activity of the prepared compounds with biomolecules calf thymus DNA (CT-DNA) was determined by electronic absorption spectra and DNA gel electrophoresis technique. All studies revealed that the Cu-chelate derivative exhibited better binding affinity to both CT-DNA than the AMAB and amoxicillin itself. The anti-inflammatory effect of the designed compounds was determined by testing their protein denaturation inhibitory activity spectrophotometrically. All obtained data supported that the designed nano-Cu(II) complex with Schiff base (AMAB) is a potent bactericide against H. pylori, and exhibits anti-inflammatory activity. The dual inhibition effects of the designed compound represent a modern therapeutic approach with extended spectrum of action. Therefore, it can act as good drug target in antimicrobial and anti-inflammtory therapies. Finally, H. pylori resistance to amoxicillin is absent or rare in many countries, thus amoxicillin nanoparticles may be beneficial for countries where amoxicillin resistance is reported.
Collapse
Affiliation(s)
- Safaa S Hassan
- Department of Chemistry, Inorganic Chemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| | - Madonna Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Maria Nagy
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatallah Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mennatulla Nader
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Mina Zakaria
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada Mohamed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Rawan Waleed
- Department of Biotechnology, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma B Rashidi
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Hunashal Y, Kumar GS, Choy MS, D'Andréa ÉD, Da Silva Santiago A, Schoenle MV, Desbonnet C, Arthur M, Rice LB, Page R, Peti W. Molecular basis of β-lactam antibiotic resistance of ESKAPE bacterium E. faecium Penicillin Binding Protein PBP5. Nat Commun 2023; 14:4268. [PMID: 37460557 DOI: 10.1038/s41467-023-39966-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are essential for the formation of the bacterial cell wall. They are also the targets of β-lactam antibiotics. In Enterococcus faecium, high levels of resistance to β-lactams are associated with the expression of PBP5, with higher levels of resistance associated with distinct PBP5 variants. To define the molecular mechanism of PBP5-mediated resistance we leveraged biomolecular NMR spectroscopy of PBP5 - due to its size (>70 kDa) a challenging NMR target. Our data show that resistant PBP5 variants show significantly increased dynamics either alone or upon formation of the acyl-enzyme inhibitor complex. Furthermore, these variants also exhibit increased acyl-enzyme hydrolysis. Thus, reducing sidechain bulkiness and expanding surface loops results in increased dynamics that facilitates acyl-enzyme hydrolysis and, via increased β-lactam antibiotic turnover, facilitates β-lactam resistance. Together, these data provide the molecular basis of resistance of clinical E. faecium PBP5 variants, results that are likely applicable to the PBP family.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Ganesan Senthil Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
- National Institute of Immunology, New Delhi, India
| | - Meng S Choy
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Éverton D D'Andréa
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | | | - Marta V Schoenle
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Charlene Desbonnet
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Michel Arthur
- INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
6
|
Salleh MZ, Banga Singh KK, Deris ZZ. Structural Insights into Substrate Binding and Antibiotic Inhibition of Enterobacterial Penicillin-Binding Protein 6. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071022. [PMID: 35888109 PMCID: PMC9320039 DOI: 10.3390/life12071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
Shigella sonnei remains the second most common cause of shigellosis in young children and is now increasingly dominant across developing countries. The global emergence of drug resistance has become a main burden in the treatment of S. sonnei infections and β-lactam antibiotics, such as pivmecillinam and ceftriaxone, are recommended to be used as second-line treatment. They work by inhibiting the biosynthesis of the peptidoglycan layer of bacterial cell walls, in which the final transpeptidation step is facilitated by penicillin-binding proteins (PBPs). In this study, using protein homology modelling, we modelled the structure of PBP6 from S. sonnei and comprehensively examined the molecular interactions between PBP6 and its pentapeptide substrate and two antibiotic inhibitors. The docked complex of S. sonnei PBP6 with pentapeptides showed that the substrate bound to the active site groove of the DD-carboxypeptidase domain, via hydrogen bonding interactions with the residues S79, V80, Q101, G144, D146 and R240, in close proximity to the catalytic nucleophile S36 for the nucleophilic attack. Two residues, R240 and T208, were found to be important in ligand recognition and binding, where they formed strong hydrogen bonds with the substrate and β-lactams, respectively. Our results provide valuable information on the molecular interactions essential for ligand recognition and catalysis by PBP6. Understanding these interactions will be helpful in the development of effective drugs to treat S. sonnei infections.
Collapse
|
7
|
Loch JI, Imiolczyk B, Sliwiak J, Wantuch A, Bejger M, Gilski M, Jaskolski M. Crystal structures of the elusive Rhizobium etli L-asparaginase reveal a peculiar active site. Nat Commun 2021; 12:6717. [PMID: 34795296 PMCID: PMC8602277 DOI: 10.1038/s41467-021-27105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes an essential L-asparaginase (ReAV) with no sequence homology to known enzymes with this activity. High-resolution crystal structures of ReAV show indeed a structurally distinct, dimeric enzyme, with some resemblance to glutaminases and β-lactamases. However, ReAV has no glutaminase or lactamase activity, and at pH 9 its allosteric asparaginase activity is relatively high, with Km for L-Asn at 4.2 mM and kcat of 438 s-1. The active site of ReAV, deduced from structural comparisons and confirmed by mutagenesis experiments, contains a highly specific Zn2+ binding site without a catalytic role. The extensive active site includes residues with unusual chemical properties. There are two Ser-Lys tandems, all connected through a network of H-bonds to the Zn center, and three tightly bound water molecules near Ser48, which clearly indicate the catalytic nucleophile.
Collapse
Affiliation(s)
- Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Wantuch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.
| |
Collapse
|
8
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
9
|
Verma SK, Kaur S, Tevetia A, Chatterjee S, Sharma PC. Structural characterization and functional annotation of microbial proteases mined from solid tannery waste metagenome. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00727-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Pandey SD, Jain D, Kumar N, Adhikary A, Kumar N G, Ghosh AS. MSMEG_2432 of Mycobacterium smegmatis mc 2155 is a dual function enzyme that exhibits DD-carboxypeptidase and β-lactamase activities. MICROBIOLOGY-SGM 2020; 166:546-553. [PMID: 32301689 DOI: 10.1099/mic.0.000902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterial peptidoglycan (PG) is an unsolved puzzle due to its complex structure and involvement of multiple enzymes in the process of its remodelling. dd-Carboxypeptidases are low molecular mass penicillin-binding proteins (LMM-PBPs) that catalyzes the cleavage of terminal d-Ala of muramyl pentapeptide branches and thereby helps in the PG remodelling process. Here, we have assigned the function of a putative LMM-PBP, MSMEG_2432 of Mycobacterium smegmatis, by showing that it exhibits both dd-CPase and β-lactamase activities. Like conventional dd-CPase (PBP5 from E. coli), upon ectopic complementation in a deformed seven PBP deletion mutant of E. coli, MSMEG_2432 has manifested its ability to restore ~75 % of the cell population to their normal rod shape. Further, in vitrodd-CPase assay has confirmed its ability to release terminal d-Ala from the synthetic tripeptide and the peptidoglycan mimetic pentapeptide substrates ending with d-Ala-d-Ala. Also, elevated resistance against penicillins and cephalosporins upon ectopic expression of MSMEG_2432 suggests the presence of β-lactamase activity, which is further confirmed in vitro through nitrocefin hydrolysis assay. Moreover, it is found apparent that D169A substitution in MSMEG_2432 influences both of its in vivo and in vitrodd-CPase and β-lactamase activities. Thus, we infer that MSMEG_2432 is a dual function enzyme that possesses both dd-CPase and β-lactamase activities.
Collapse
Affiliation(s)
- Satya Deo Pandey
- University of Kansas Medical Center, USA.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Diamond Jain
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Neeraj Kumar
- Centre for DNA fingerprinting & Diagnostics, India.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Ganesh Kumar N
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| |
Collapse
|
11
|
Influence of the α-Methoxy Group on the Reaction of Temocillin with Pseudomonas aeruginosa PBP3 and CTX-M-14 β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01473-19. [PMID: 31685462 DOI: 10.1128/aac.01473-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022] Open
Abstract
The prevalence of multidrug-resistant Pseudomonas aeruginosa has led to the reexamination of older "forgotten" drugs, such as temocillin, for their ability to combat resistant microbes. Temocillin is the 6-α-methoxy analogue of ticarcillin, a carboxypenicillin with well-characterized antipseudomonal properties. The α-methoxy modification confers resistance to serine β-lactamases, yet temocillin is ineffective against P. aeruginosa growth. The origins of temocillin's inferior antibacterial properties against P. aeruginosa have remained relatively unexplored. Here, we analyze the reaction kinetics, protein stability, and binding conformations of temocillin and ticarcillin with penicillin-binding protein 3 (PBP3), an essential PBP in P. aeruginosa We show that the 6-α-methoxy group perturbs the stability of the PBP3 acyl-enzyme, which manifests in an elevated off-rate constant (k off) in biochemical assays comparing temocillin with ticarcillin. Complex crystal structures with PBP3 reveal similar binding modes of the two drugs but with important differences. Most notably, the 6-α-methoxy group disrupts a high-quality hydrogen bond with a conserved residue important for ligand binding while also being inserted into a crowded active site, possibly destabilizing the active site and enabling water molecule from bulk solvent to access and cleave the acyl-enzyme bond. This hypothesis is supported by the observation that the acyl-enzyme complex of temocillin has reduced thermal stability compared with ticarcillin. Furthermore, we explore temocillin's mechanism of β-lactamase inhibition with a high-resolution complex structure of CTX-M-14 class A serine β-lactamase. The results suggest that the α-methoxy group prevents hydrolysis by locking the compound into an unexpected conformation that impedes access of the catalytic water to the acyl-enzyme adduct.
Collapse
|
12
|
Kumar N, Sood D, Tomar R, Chandra R. Antimicrobial Peptide Designing and Optimization Employing Large-Scale Flexibility Analysis of Protein-Peptide Fragments. ACS OMEGA 2019; 4:21370-21380. [PMID: 31867532 PMCID: PMC6921640 DOI: 10.1021/acsomega.9b03035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/15/2019] [Indexed: 05/24/2023]
Abstract
The mankind relies on the use of antibiotics for a healthy life. The epidemic-like emergence of drug-resistant bacterial strains is increasingly becoming one of the leading causes of morbidity and mortality, which gives rise to design a potential antimicrobial peptide (AMP). Here, we have designed the potential AMP using the extensive dynamics simulation since protein-peptide interactions are linked to large conformational changes. Therefore, we have employed the advanced computational avenue CABS molecular docking method that enabled the flexible peptide-protein molecular docking with a large-scale rearrangement of the protein. Lead AMP was investigated against the wild-type (WT) and mutant-PBP5 (MT-PBP5) proteins (antiresistance property). AMP20 showed strong interactions with wtPBP5 and mtPBP5 and involvement of a large number of elements in interactions determined through an atomic model study. Full flexibility analysis showed the stable interaction of AMP20 with both the wild-type and mutant form of PBP5 with root-mean-square deviation (RMSD) values of ∼4.51 and 4.85 Å, respectively. Moreover, peptide dynamics showed involvement of all residues of AMP20 through contact map analysis, and extensive simulation confirmed the stable interaction of AMP20, with lower values of RMSD, radius of gyration, and root-mean-square fluctuation. This study paves the way for a potential approach to design the AMP with amino acid walking and large-scale conformational rearrangements of amino acids.
Collapse
|
13
|
Ealand CS, Asmal R, Mashigo L, Campbell L, Kana BD. Characterization of putative DD-carboxypeptidase-encoding genes in Mycobacterium smegmatis. Sci Rep 2019; 9:5194. [PMID: 30914728 PMCID: PMC6435803 DOI: 10.1038/s41598-019-41001-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/22/2019] [Indexed: 01/21/2023] Open
Abstract
Penicillin binding proteins (PBPs) are the target of numerous antimicrobial agents that disrupt bacterial cell wall synthesis. In mycobacteria, cell elongation occurs through insertion of nascent cell wall material in the sub-polar region, a process largely driven by High Molecular Weight PBPs. In contrast, the function of DD-carboxypeptidases (DD-CPases), which are Low Molecular Weight Class 1C PBPs, in mycobacteria remains poorly understood. Mycobacterium smegmatis encodes four putative DD-CPase homologues, which display homology to counterparts in Escherichia coli. Herein, we demonstrate that these are expressed in varying abundance during growth. Deletion of MSMEG_1661, MSMEG_2433 or MSMEG_2432, individually resulted in no defects in growth, cell morphology, drug susceptibility or spatial incorporation of new peptidoglycan. In contrast, deletion of MSMEG_6113 (dacB) was only possible in a merodiploid strain expressing the homologous M. tuberculosis operon encoding Rv3627c (dacB), Rv3626c, Rv3625c (mesJ) and Rv3624c (hpt), suggestive of essentiality. To investigate the role of this operon in mycobacterial growth, we depleted gene expression using anhydrotetracycline-responsive repressors and noted reduced bipolar peptidoglycan synthesis. These data point to a possible role for this four gene operon, which is highly conserved across all mycobacterial species, in regulating spatial localization of peptidoglycan synthesis.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg, 2000, South Africa
| | - Rukaya Asmal
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg, 2000, South Africa
| | - Lethabo Mashigo
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg, 2000, South Africa
| | - Lisa Campbell
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg, 2000, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P.O. Box 1038, Johannesburg, 2000, South Africa.
- MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa.
| |
Collapse
|
14
|
Alexander JAN, Chatterjee SS, Hamilton SM, Eltis LD, Chambers HF, Strynadka NCJ. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. J Biol Chem 2018; 293:19854-19865. [PMID: 30366985 DOI: 10.1074/jbc.ra118.004952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious community-acquired and nosocomial infections worldwide. MRSA strains are resistant to a variety of antibiotics, including the classic penicillin and cephalosporin classes of β-lactams, making them intractable to treatment. Although β-lactam resistance in MRSA has been ascribed to the acquisition and activity of penicillin-binding protein 2a (PBP2a, encoded by mecA), it has recently been observed that resistance can also be mediated by penicillin-binding protein 4 (PBP4). Previously, we have shown that broad-spectrum β-lactam resistance can arise following serial passaging of a mecA-negative COL strain of S. aureus, creating the CRB strain. This strain has two missense mutations in pbp4 and a mutation in the pbp4 promoter, both of which play an instrumental role in β-lactam resistance. To better understand PBP4's role in resistance, here we have characterized its kinetics and structure with clinically relevant β-lactam antibiotics. We present the first crystallographic PBP4 structures of apo and acyl-enzyme intermediate forms complexed with three late-generation β-lactam antibiotics: ceftobiprole, ceftaroline, and nafcillin. In parallel, we characterized the structural and kinetic effects of the PBP4 mutations present in the CRB strain. Localized within the transpeptidase active-site cleft, the two substitutions appear to have different effects depending on the drug. With ceftobiprole, the missense mutations impaired the Km value 150-fold, decreasing the proportion of inhibited PBP4. However, ceftaroline resistance appeared to be mediated by other factors, possibly including mutation of the pbp4 promoter. Our findings provide evidence that S. aureus CRB has at least two PBP4-mediated resistance mechanisms.
Collapse
Affiliation(s)
- J Andrew N Alexander
- From the Department of Biochemistry and Molecular Biology.,the Centre for Blood Research, and
| | - Som S Chatterjee
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Stephanie M Hamilton
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Lindsay D Eltis
- From the Department of Biochemistry and Molecular Biology.,the Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Henry F Chambers
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology, .,the Centre for Blood Research, and
| |
Collapse
|
15
|
Crystal Structures of Penicillin-Binding Protein D2 from Listeria monocytogenes and Structural Basis for Antibiotic Specificity. Antimicrob Agents Chemother 2018; 62:AAC.00796-18. [PMID: 30082290 DOI: 10.1128/aac.00796-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
β-Lactam antibiotics that inhibit penicillin-binding proteins (PBPs) have been widely used in the treatment of bacterial infections. However, the molecular basis underlying the different inhibitory potencies of β-lactams against specific PBPs is not fully understood. Here, we present the crystal structures of penicillin-binding protein D2 (PBPD2) from Listeria monocytogenes, a Gram-positive foodborne bacterial pathogen that causes listeriosis in humans. The acylated structures in complex with four antibiotics (penicillin G, ampicillin, cefotaxime, and cefuroxime) revealed that the β-lactam core structures were recognized by a common set of residues; however, the R1 side chains of each antibiotic participate in different interactions with PBPD2. In addition, the structural complementarities between the side chains of β-lactams and the enzyme were found to be highly correlated with the relative reactivities of penam or cephem antibiotics against PBPD2. Our study provides the structural basis for the inhibition of PBPD2 by clinically important β-lactam antibiotics that are commonly used in listeriosis treatment. Our findings imply that the modification of β-lactam side chains based on structural complementarity could be useful for the development of potent inhibitors against β-lactam-resistant PBPs.
Collapse
|
16
|
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life 2018; 70:855-868. [PMID: 29717815 DOI: 10.1002/iub.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by β-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, β-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating β-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in β-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one β-lactamase homologue is present, suggesting that enzymatic degradation of β-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate β-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of β-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E Machowski
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| |
Collapse
|
17
|
Kar D, Pandey SD, Mallick S, Dutta M, Ghosh AS. Substitution of Alanine at Position 184 with Glutamic Acid in Escherichia coli PBP5 Ω-Like Loop Introduces a Moderate Cephalosporinase Activity. Protein J 2018; 37:122-131. [DOI: 10.1007/s10930-018-9765-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Nagra S, Kumar D, Bhattacharyya R, Banerjee D, Mukherjee T. Designing of a penta-peptide against drug resistant E. coli. Bioinformation 2017; 13:192-195. [PMID: 28729761 PMCID: PMC5512857 DOI: 10.6026/97320630013192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 01/21/2023] Open
Abstract
Drug resistant pathogens are vibrant global problem. Penicillin binding protein 5 (PBP5) plays important role in bacterial cell wall biosynthesis. Mutation in PBP5 is a well-known mechanism for development of drug resistant strain of bacteria. In this context we have designed a peptide that fits better at the ligand-binding site of mutant PBP5 compared to wild type PBP5. It is expected that the designed peptide will halt the growth of drug resistant pathogen harboring mutant variety of PBP5. We have recommended experimental validation of the above concept.
Collapse
Affiliation(s)
- Sachin Nagra
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Rajasri Bhattacharyya
- past: Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207; present: Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Tapan Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207
| |
Collapse
|
19
|
Bukowska-Faniband E, Hederstedt L. Transpeptidase activity of penicillin-binding protein SpoVD in peptidoglycan synthesis conditionally depends on the disulfide reductase StoA. Mol Microbiol 2017; 105:98-114. [PMID: 28383125 DOI: 10.1111/mmi.13689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells.
Collapse
Affiliation(s)
- Ewa Bukowska-Faniband
- Microbiology Group, Department of Biology, Lund University, Sölvegatan 35, Lund, SE- 223 62, Sweden
| | - Lars Hederstedt
- Microbiology Group, Department of Biology, Lund University, Sölvegatan 35, Lund, SE- 223 62, Sweden
| |
Collapse
|
20
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
21
|
Peters K, Kannan S, Rao VA, Biboy J, Vollmer D, Erickson SW, Lewis RJ, Young KD, Vollmer W. The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli. mBio 2016; 7:e00819-16. [PMID: 27329754 PMCID: PMC4916385 DOI: 10.1128/mbio.00819-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED Peptidoglycan (PG) is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of the PG layer must be sufficiently robust to allow cell growth and division under different conditions. We have analyzed the PG composition of 28 mutants lacking multiple PG enzymes (penicillin-binding proteins [PBPs]) after growth in acidic or near-neutral-pH media. Statistical analysis of the muropeptide profiles identified dd-carboxypeptidases (DD-CPases) that were more active in cells grown at acidic pH. In particular, the absence of the DD-CPase PBP6b caused a significant increase in the pentapeptide content of PG as well as morphological defects when the cells were grown at acidic pH. Other DD-CPases (PBP4, PBP4b, PBP5, PBP6a, PBP7, and AmpH) and the PG synthase PBP1B made a smaller or null contribution to the pentapeptide-trimming activity at acidic pH. We solved the crystal structure of PBP6b and also demonstrated that the enzyme is more stable and has a lower Km at acidic pH, explaining why PBP6b is more active at low pH. Hence, PBP6b is a specialized DD-CPase that contributes to cell shape maintenance at low pH, and E. coli appears to utilize redundant DD-CPases for normal growth under different conditions. IMPORTANCE Escherichia coli requires peptidoglycan dd-carboxypeptidases to maintain cell shape by controlling the amount of pentapeptide substrates available to the peptidoglycan synthetic transpeptidases. Why E. coli has eight, seemingly redundant dd-carboxypeptidases has remained unknown. We now show that one of these dd-carboxypeptidases, PBP6b, is important for cell shape maintenance in acidic growth medium, consistent with the higher activity and stability of the enzyme at low pH. Hence, the presence of multiple dd-carboxypeptidases with different enzymatic properties may allow E. coli to maintain a normal cell shape under various growth conditions.
Collapse
Affiliation(s)
- Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suresh Kannan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincenzo A Rao
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniela Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stephen W Erickson
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Richard J Lewis
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Filippova EV, Kieser KJ, Luan CH, Wawrzak Z, Kiryukhina O, Rubin EJ, Anderson WF. Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillin-binding protein PonA1 reveal potential mechanisms of antibiotic resistance. FEBS J 2016; 283:2206-18. [PMID: 27101811 PMCID: PMC5245116 DOI: 10.1111/febs.13738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 01/21/2023]
Abstract
UNLABELLED Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of β-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop β4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested β-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. DATABASE Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen J Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chi-Hao Luan
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Zdzislaw Wawrzak
- Life Science Collaborative Access Team, Synchrotron Research Center, Northwestern University, Evanston, IL, USA
| | - Olga Kiryukhina
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Midwest Center for Structural Genomics (MCSG), Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5010012. [PMID: 27025527 PMCID: PMC4810414 DOI: 10.3390/antibiotics5010012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
Collapse
|
24
|
Aneja B, Irfan M, Hassan MI, Prakash A, Yadava U, Daniliuc CG, Zafaryab M, Rizvi MMA, Azam A, Abid M. Monocyclic β-lactam and unexpected oxazinone formation: synthesis, crystal structure, docking studies and antibacterial evaluation. J Enzyme Inhib Med Chem 2015; 31:834-52. [PMID: 26133357 DOI: 10.3109/14756366.2015.1058257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Novel monocyclic β-lactam derivatives bearing aryl, phenyl and heterocyclic rings were synthesized as possible antibacterial agents. Cyclization of imines (3h, 3t) with phenylacetic acid in the presence of phosphoryl chloride and triethyl amine did not afford the expected β-lactams. Instead, highly substituted 1,3-oxazin-4-ones (4h, 4t) were isolated as the only product and confirmed by single crystal X-ray analysis of 4t. The results of antibacterial activity showed that compound 4l exhibited considerable antibacterial activity with MIC and MBC values of 62.5 µg/mL against Klebsiella pneumoniae. Cytotoxicity assay on Chinese Hamster Ovary (CHO) cell line revealed non-cytotoxic behavior of compounds 4d, 4h, 4k and 4l up to 200 μg/mL conc. Molecular docking was performed for compound 4l with penicillin binding protein-5 to identify the nature of interactions. The results of both in silico and in vitro evaluation provide the basis for compound 4l to be carried as a potential lead molecule in the drug discovery pipeline against bacterial infections.
Collapse
Affiliation(s)
- Babita Aneja
- a Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India .,b Department of Chemistry , Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Mohammad Irfan
- a Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Md Imtaiyaz Hassan
- c Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Amresh Prakash
- c Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Umesh Yadava
- d Department of Biochemistry , Albert Einstein College of Medicine of Yeshiva University , Bronx , NY , USA
| | - Constantin G Daniliuc
- e Organisch-Chemisches Institut, Westfälische Wilhelm-Universität , Münster , Germany , and
| | - Md Zafaryab
- f Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - M Moshahid A Rizvi
- f Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Amir Azam
- b Department of Chemistry , Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| | - Mohammad Abid
- a Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia (A Central University) , Jamia Nagar , New Delhi , India
| |
Collapse
|
25
|
A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology (Reading) 2015; 161:895-902. [DOI: 10.1099/mic.0.000052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
|
26
|
Bansal A, Kar D, Murugan RA, Mallick S, Dutta M, Pandey SD, Chowdhury C, Ghosh AS. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase. MICROBIOLOGY-SGM 2015; 161:1081-1091. [PMID: 25750082 DOI: 10.1099/mic.0.000074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities.
Collapse
Affiliation(s)
- Ankita Bansal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Debasish Kar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Rajagopal A Murugan
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Mouparna Dutta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Satya Deo Pandey
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Chiranjit Chowdhury
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal PIN-721302, India
| |
Collapse
|
27
|
Fedarovich A, Cook E, Tomberg J, Nicholas RA, Davies C. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of Neisseria gonorrhoeae. Biochemistry 2014; 53:7596-603. [PMID: 25403720 PMCID: PMC4263433 DOI: 10.1021/bi5011317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A hallmark
of penicillin-binding protein 2 (PBP2) from penicillin-resistant
strains of Neisseria gonorrhoeae is insertion of
an aspartate after position 345. The insertion resides on a loop near
the active site and is immediately adjacent to an existing aspartate
(Asp346) that forms a functionally important hydrogen bond with Ser363
of the SxN conserved motif. Insertion of other amino acids, including
Glu and Asn, can also lower the rate of acylation by penicillin, but
these insertions abolish transpeptidase function. Although the kinetic
consequences of the Asp insertion are well-established, how it impacts
the structure of PBP2 is unknown. Here, we report the 2.2 Å resolution
crystal structure of a truncated construct of PBP2 containing all
five mutations present in PBP2 from the penicillin-resistant strain
6140, including the Asp insertion. Commensurate with the strict specificity
for the Asp insertion over similar amino acids, the insertion does
not cause disordering of the structure, but rather induces localized
flexibility in the β2c−β2d loop. The crystal structure
resolves the ambiguity of whether the insertion is Asp345a or Asp346a
(due to the adjacent Asp) because the hydrogen bond between Asp346
and Ser362 is preserved and the insertion is therefore Asp346a. The
side chain of Asp346a projects directly toward the β-lactam-binding
site near Asn364 of the SxN motif. The Asp insertion may lower the
rate of acylation by sterically impeding binding of the antibiotic
or by hindering breakage of the β-lactam ring during acylation
because of the negative charge of its side chain.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | | | | | | | | |
Collapse
|
28
|
Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One 2014; 9:e97202. [PMID: 24810745 PMCID: PMC4014608 DOI: 10.1371/journal.pone.0097202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/16/2014] [Indexed: 01/26/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.
Collapse
|
29
|
Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 2013; 57:3137-46. [PMID: 23629710 DOI: 10.1128/aac.00505-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Penicillin-binding protein 5 (PBP5) is one of the most abundant PBPs in Pseudomonas aeruginosa. Although its main function is that of a cell wall dd-carboxypeptidase, it possesses sufficient β-lactamase activity to contribute to the ability of P. aeruginosa to resist the antibiotic activity of the β-lactams. The study of these dual activities is important for understanding the mechanisms of antibiotic resistance by P. aeruginosa, an important human pathogen, and to the understanding of the evolution of β-lactamase activity from the PBP enzymes. We purified a soluble version of P. aeruginosa PBP5 (designated Pa sPBP5) by deletion of its C-terminal membrane anchor. Under in vitro conditions, Pa sPBP5 demonstrates both dd-carboxypeptidase and expanded-spectrum β-lactamase activities. Its crystal structure at a 2.05-Å resolution shows features closely resembling those of the class A β-lactamases, including a shortened loop spanning residues 74 to 78 near the active site and with respect to the conformations adopted by two active-site residues, Ser101 and Lys203. These features are absent in the related PBP5 of Escherichia coli. A comparison of the two Pa sPBP5 monomers in the asymmetric unit, together with molecular dynamics simulations, revealed an active-site flexibility that may explain its carbapenemase activity, a function that is absent in the E. coli PBP5 enzyme. Our functional and structural characterizations underscore the versatility of this PBP5 in contributing to the β-lactam resistance of P. aeruginosa while highlighting how broader β-lactamase activity may be encoded in the structural folds shared by the PBP and serine β-lactamase classes.
Collapse
|
30
|
Expression of blaA underlies unexpected ampicillin-induced cell lysis of Shewanella oneidensis. PLoS One 2013; 8:e60460. [PMID: 23555975 PMCID: PMC3610667 DOI: 10.1371/journal.pone.0060460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/26/2013] [Indexed: 02/05/2023] Open
Abstract
Shewanella oneidensis is a facultative anaerobic γ-proteobacterium possessing remarkably diverse respiratory capacities for reducing various organic and inorganic substrates. As a veteran research model for investigating redox transformations of environmental contaminants the bacterium is well known to be a naturally ampicillin-resistant microorganism. However, in this study we discovered that ampicillin has a significant impact on growth of S. oneidensis. Particularly, cell lysis occurred only with ampicillin at levels ranging from 0.49 to 6.25 µg/ml but not at 50 µg/ml. This phenotype is attributable to insufficient expression of the β-lactamase BlaA. The subsequent analysis revealed that the blaA gene is strongly induced by ampicillin at high (50 µg/ml), but not at low levels (2.5 µg/ml). In addition, we demonstrated that penicillin binding protein 5 (PBP5), the most abundant low molecular weight PBP (LMW PBP), is the only one relevant to β-lactam resistance under the tested conditions. This nonessential PBP, largely resembling its Escherichia coli counterpart in functionality, mediates expression of the blaA gene.
Collapse
|
31
|
Chakraborty S, Rao BJ, Baker N, Asgeirsson B. Structural phylogeny by profile extraction and multiple superimposition using electrostatic congruence as a discriminator. INTRINSICALLY DISORDERED PROTEINS 2013; 1. [PMID: 25364645 PMCID: PMC4212511 DOI: 10.4161/idp.25463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phylogenetic analysis of proteins using multiple sequence alignment (MSA) assumes an underlying evolutionary relationship in these proteins which occasionally remains undetected due to considerable sequence divergence. Structural alignment programs have been developed to unravel such fuzzy relationships. However, none of these structure based methods have used electrostatic properties to discriminate between spatially equivalent residues. We present a methodology for MSA of a set of related proteins with known structures using electrostatic properties as an additional discriminator (STEEP). STEEP first extracts a profile, then generates a multiple structural superimposition providing a consolidated spatial framework for comparing residues and finally emits the MSA. Residues that are aligned differently by including or excluding electrostatic properties can be targeted by directed evolution experiments to transform the enzymatic properties of one protein into another. We have compared STEEP results to those obtained from a MSA program (ClustalW) and a structural alignment method (MUSTANG) for chymotrypsin serine proteases. Subsequently, we used PhyML to generate phylogenetic trees for the serine and metallo-β-lactamase superfamilies from the STEEP generated MSA, and corroborated the accepted relationships in these superfamilies. We have observed that STEEP acts as a functional classifier when electrostatic congruence is used as a discriminator, and thus identifies potential targets for directed evolution experiments. In summary, STEEP is unique among phylogenetic methods for its ability to use electrostatic congruence to specify mutations that might be the source of the functional divergence in a protein family. Based on our results, we also hypothesize that the active site and its close vicinity contains enough information to infer the correct phylogeny for related proteins.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Nathan Baker
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Bjarni Asgeirsson
- Science Institute, Department of Biochemistry, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
| |
Collapse
|
32
|
Chowdhury C, Kar D, Dutta M, Kumar A, Ghosh AS. Moderate deacylation efficiency of DacD explains its ability to partially restore beta-lactam resistance in Escherichia coli PBP5 mutant. FEMS Microbiol Lett 2012; 337:73-80. [PMID: 22978571 DOI: 10.1111/1574-6968.12009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022] Open
Abstract
Of the five dd-carboxypeptidases in Escherichia coli, only PBP5 demonstrates its physiological significance by maintaining cell shape and intrinsic beta-lactam resistance. DacD can partially compensate for the lost beta-lactam resistance in PBP5 mutant, although its biochemical reason is unclear. To understand the mechanism(s) underlying such behaviour, we constructed soluble DacD (sDacD) and compared its biophysical and biochemical properties with those of sPBP5, in vitro. Unlike sPBP6, sDacD can deacylate Bocillin significantly, which is very similar to sPBP5. sDacD shows weak dd-carboxypeptidase activity, although lower than that of sPBP5. Bioinformatics analyses reveal a similar architecture of sPBP5 and sDacD. Therefore, based on the obtained results we can infer that biochemically DacD and PBP5 are more closely related to each other than to PBP6, enabling DacD and PBP5 to play a nearly similar physiological function in terms of recovering the lost beta-lactam resistance.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | | | | | | |
Collapse
|
33
|
Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JRH, Park SY. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. J Mol Biol 2012; 423:351-64. [PMID: 22846910 DOI: 10.1016/j.jmb.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.
Collapse
Affiliation(s)
- Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Shilabin A, Dzhekieva L, Misra P, Jayaram B, Pratt RF. 4-quinolones as noncovalent inhibitors of high molecular mass penicillin-binding proteins. ACS Med Chem Lett 2012; 3:592-5. [PMID: 24900515 PMCID: PMC4025767 DOI: 10.1021/ml3001006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/28/2012] [Indexed: 11/29/2022] Open
Abstract
Penicillin-binding proteins (PBPs) are important bacterial enzymes that carry out the final steps of bacterial cell wall assembly. Their DD-transpeptidase activity accomplishes the essential peptide cross-linking step of the cell wall. To date, all attempts to discover effective inhibitors of PBPs, apart from β-lactams, have not led to new antibiotics. Therefore, the need for new classes of efficient inhibitors of these enzymes remains. Guided by a computational fragment-based docking procedure, carried out on Escherichia coli PBP5, we have designed and synthesized a series of 4-quinolones as potential inhibitors of PBPs. We describe their binding to the PBPs of E. coli and Bacillus subtilis. Notably, these compounds bind quite tightly to the essential high molecular mass PBPs.
Collapse
Affiliation(s)
- Abbas
G. Shilabin
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| | - Liudmila Dzhekieva
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| | - Pushpa Misra
- Department
of Chemistry, IIT Delhi, Hauz Khas, New
Delhi 110016, India
| | - B. Jayaram
- Department
of Chemistry, IIT Delhi, Hauz Khas, New
Delhi 110016, India
| | - R. F. Pratt
- Department
of Chemistry, Wesleyan University, Middletown,
Connecticut 06459,
United States
| |
Collapse
|
35
|
Chakraborty S. An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues. PLoS One 2012; 7:e40408. [PMID: 22811760 PMCID: PMC3394801 DOI: 10.1371/journal.pone.0040408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/06/2012] [Indexed: 12/25/2022] Open
Abstract
The aspiration to mimic and accelerate natural evolution has fueled interest in directed evolution experiments, which endow or enhance functionality in enzymes. Barring a few de novo approaches, most methods take a template protein having the desired activity, known active site residues and structure, and proceed to select a target protein which has a pre-existing scaffold congruent to the template motif. Previously, we have established a computational method (CLASP) based on spatial and electrostatic properties to detect active sites, and a method to quantify promiscuity in proteins. We exploit the prospect of promiscuous active sites to serve as the starting point for directed evolution and present a method to select a target protein which possesses a significant partial match with the template scaffold (DECAAF). A library of partial motifs, constructed from the active site residues of the template protein, is used to rank a set of target proteins based on maximal significant matches with the partial motifs, and cull out the best candidate from the reduced set as the target protein. Considering the scenario where this ‘incubator’ protein lacks activity, we identify mutations in the target protein that will mirror the template motif by superimposing the target and template protein based on the partial match. Using this superimposition technique, we analyzed the less than expected gain of activity achieved by an attempt to induce β-lactamase activity in a penicillin binding protein (PBP) (PBP-A from T. elongatus), and attributed this to steric hindrance from neighboring residues. We also propose mutations in PBP-5 from E. coli, which does not have similar steric constraints. The flow details have been worked out in an example which aims to select a substitute protein for human neutrophil elastase, preferably related to grapevines, in a chimeric anti-microbial enzyme which bolsters the innate immune defense system of grapevines.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
36
|
Lee DW, Peggie M, Deak M, Toth R, Gage ZO, Wood N, Schilde C, Kurz T, Knebel A. The Dac-tag, an affinity tag based on penicillin-binding protein 5. Anal Biochem 2012; 428:64-72. [PMID: 22705378 DOI: 10.1016/j.ab.2012.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Penicillin-binding protein 5 (PBP5), a product of the Escherichia coli gene dacA, possesses some β-lactamase activity. On binding to penicillin or related antibiotics via an ester bond, it deacylates and destroys them functionally by opening the β-lactam ring. This process takes several minutes. We exploited this process and showed that a fragment of PBP5 can be used as a reversible and monomeric affinity tag. At ambient temperature (e.g., 22°C), a PBP5 fragment binds rapidly and specifically to ampicillin Sepharose. Release can be facilitated either by eluting with 10mM ampicillin or in a ligand-free manner by incubation in the cold (1-10°C) in the presence of 5% glycerol. The "Dac-tag", named with reference to the gene dacA, allows the isolation of remarkably pure fusion protein from a wide variety of expression systems, including (in particular) eukaryotic expression systems.
Collapse
Affiliation(s)
- David Wei Lee
- Advantagen, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tomberg J, Temple B, Fedarovich A, Davies C, Nicholas RA. A highly conserved interaction involving the middle residue of the SXN active-site motif is crucial for function of class B penicillin-binding proteins: mutational and computational analysis of PBP 2 from N. gonorrhoeae. Biochemistry 2012; 51:2775-84. [PMID: 22397678 PMCID: PMC3338128 DOI: 10.1021/bi2017987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs, and its importance is also supported by multisequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g., by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved.
Collapse
Affiliation(s)
- Joshua Tomberg
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Brenda Temple
- Departments of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
- Departments of R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| | - Alena Fedarovich
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher Davies
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert A. Nicholas
- Department of Pharmacology University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365
| |
Collapse
|
38
|
Abstract
The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway.
Collapse
Affiliation(s)
- Jean van Heijenoort
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Bat 430, Université Paris-Sud, Orsay F-91405, France.
| |
Collapse
|
39
|
Nemmara VV, Dzhekieva L, Sarkar KS, Adediran SA, Duez C, Nicholas RA, Pratt RF. Substrate specificity of low-molecular mass bacterial DD-peptidases. Biochemistry 2011; 50:10091-101. [PMID: 22029692 DOI: 10.1021/bi201326a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Skoog K, Bruzell FS, Ducroux A, Hellberg M, Johansson H, Lehtiö J, Högbom M, Daley DO. Penicillin-binding protein 5 can form a homo-oligomeric complex in the inner membrane of Escherichia coli. Protein Sci 2011; 20:1520-9. [PMID: 21674665 DOI: 10.1002/pro.677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/09/2011] [Accepted: 06/03/2011] [Indexed: 11/06/2022]
Abstract
Penicillin-binding protein 5 (PBP5) is a DD-carboxypeptidase, which cleaves the terminal D-alanine from the muramyl pentapeptide in the peptidoglycan layer of Escherichia coli and other bacteria. In doing so, it varies the substrates for transpeptidation and plays a key role in maintaining cell shape. In this study, we have analyzed the oligomeric state of PBP5 in detergent and in its native environment, the inner membrane. Both approaches indicate that PBP5 exists as a homo-oligomeric complex, most likely as a homo-dimer. As the crystal structure of the soluble domain of PBP5 (i.e., lacking the membrane anchor) shows a monomer, we used our experimental data to generate a model of the homo-dimer. This model extends our understanding of PBP5 function as it suggests how PBP5 can interact with the peptidoglycan layer. It suggests that the stem domains interact and the catalytic domains have freedom to move from the position observed in the crystal structure. This would allow the catalytic domain to have access to pentapeptides at different distances from the membrane.
Collapse
Affiliation(s)
- Karl Skoog
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bobba S, Gutheil WG. Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. Int J Biochem Cell Biol 2011; 43:1490-9. [PMID: 21740978 DOI: 10.1016/j.biocel.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are targets of the β-lactam antibiotics. They can be subdivided into essential high-molecular-mass (HMM) and non-essential low-molecular-mass (LMM) PBPs, and further divided into subclasses based on sequence homologies. PBPs can catalyze transpeptidase or hydrolase (carboxypeptidase and endopeptidase) reactions. The PBPs are of interest for their role in bacterial cell wall biosynthesis, and as mechanistically interesting enzymes which can catalyze alternative reaction pathways using the same catalytic machinery. A global catalytic residue comparison seemed likely to provide insight into structure-function correlations within the PBPs. More than 90 PBP structures were aligned, and a number (40) of active site geometrical parameters extracted. This dataset was analyzed using both univariate and multivariate statistical methods. Several interesting relationships were observed. (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain (DA_1) was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase classification/activity (P<0.001). This structural feature may therefore be associated with the main functional difference between the HMM and LMM PBPs. (2) The distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved, suggesting importance for PBP function, and a possibly conserved role in the catalytic mechanism of the PBPs. (3) Principal components-based cluster analysis revealed several distinct clusters, with the HMM Class A and B, LMM Class C, and LMM Class A K15 PBPs forming one "Main" cluster, and demonstrating a globally similar arrangement of catalytic residues within this group.
Collapse
Affiliation(s)
- Sudheer Bobba
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | | |
Collapse
|
42
|
Chowdhury C, Ghosh AS. Differences in active-site microarchitecture explain the dissimilar behaviors of PBP5 and 6 in Escherichia coli. J Mol Graph Model 2011; 29:650-6. [DOI: 10.1016/j.jmgm.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
|
43
|
Macheboeuf P, Piuzzi M, Finet S, Bontems F, Pérez J, Dessen A, Vachette P. Solution X-ray scattering study of a full-length class A penicillin-binding protein. Biochem Biophys Res Commun 2011; 405:107-11. [PMID: 21216228 DOI: 10.1016/j.bbrc.2011.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
Penicillin binding proteins (PBPs) catalyze essential steps in the biosynthesis of peptidoglycan, the main component of the bacterial cell wall. PBPs can harbor two catalytic domains, namely the glycosyltransferase (GT) and transpeptidase (TP) activities, the latter being the target for β-lactam antibiotics. Despite the availability of structural information regarding bi-functional PBPs, little is known regarding the interaction and flexibility between the TP and GT domains. Here, we describe the structural characterization in solution by small angle X-ray scattering (SAXS) of PBP1b, a bi-functional PBP from Streptococcus pneumoniae. The molecule is present in solution as an elongated monomer. Refinement of internal coordinates starting from a homology model yields models in which the two domains are in an extended conformation without any mutual contact compatible with the existence of restricted mobility.
Collapse
Affiliation(s)
- P Macheboeuf
- Institut de Biologie Structurale, Bacterial Pathogenesis Group, UMR 5075 (CEA, CNRS, University Joseph Fourier-Grenoble I), Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nicola G, Tomberg J, Pratt RF, Nicholas RA, Davies C. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 2010; 49:8094-104. [PMID: 20726582 PMCID: PMC2947372 DOI: 10.1021/bi100879m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are the molecular targets for the widely used β-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the β-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with the rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the β-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the β-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the β-lactam ring.
Collapse
Affiliation(s)
- George Nicola
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Joshua Tomberg
- Department of Pharmacology, CB#7365, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Robert A. Nicholas
- Department of Pharmacology, CB#7365, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher Davies
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
45
|
Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Distèche M, den Blaauwen T. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol Microbiol 2010; 77:300-23. [PMID: 20545860 PMCID: PMC2909392 DOI: 10.1111/j.1365-2958.2010.07205.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2010] [Indexed: 11/28/2022]
Abstract
The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.
Collapse
Affiliation(s)
- Lakshmiprasad Potluri
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR 72205-7199, US
| | - Aneta Karczmarek
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, the Netherlands
| | - Jolanda Verheul
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, the Netherlands
| | - Andre Piette
- Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Université de LiègeB-4000 Sart Tilman, Belgium
| | - Jean-Marc Wilkin
- Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Université de LiègeB-4000 Sart Tilman, Belgium
| | - Nadine Werth
- Mikrobielle Genetik, Eberhard Karls Universität TübingenTübingen, Germany
| | - Manuel Banzhaf
- Centre for Bacterial Cell Biology, Newcastle University, Framlington PlaceNewcastle upon Tyne, NE2 4HH, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Newcastle University, Framlington PlaceNewcastle upon Tyne, NE2 4HH, UK
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical SciencesLittle Rock, AR 72205-7199, US
| | - Martine Nguyen-Distèche
- Centre d'Ingénierie des Protéines, Institut de Chimie B6a, Université de LiègeB-4000 Sart Tilman, Belgium
| | - Tanneke den Blaauwen
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
46
|
Kluge AF, Petter RC. Acylating drugs: redesigning natural covalent inhibitors. Curr Opin Chem Biol 2010; 14:421-7. [PMID: 20457000 DOI: 10.1016/j.cbpa.2010.03.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/18/2010] [Accepted: 03/26/2010] [Indexed: 11/26/2022]
Abstract
Structural modification of naturally occurring beta-lactams and beta-lactones is a highly effective strategy for generating drugs for treating bacterial infections, cancer, obesity, and hyperlipidemia. These drugs acylate catalytic amino acids (serine, threonine, or cysteine) in enzyme targets such as penicillin-binding proteins (PBPs), beta-lactamases, lipases, HMG-CoA reductase, fatty acid synthetase, and the 20S proteasome. Optimally performing drugs combine features of high target affinity, chemoselective reactivity, and high stability of the acylated target protein. This review provides a perspective on these two classes of acylating agents and summarizes recent advances in mechanism and structure-based design of acylating drugs.
Collapse
Affiliation(s)
- Arthur F Kluge
- Avila Therapeutics, 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
47
|
Fedarovich A, Nicholas RA, Davies C. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. J Mol Biol 2010; 398:54-65. [PMID: 20206184 PMCID: PMC2854034 DOI: 10.1016/j.jmb.2010.02.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 A resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characteristic of penicillin-interacting enzymes. Whilst the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the "x" of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between beta 5 and alpha 11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or beta-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
48
|
Kawai F, Clarke TB, Roper DI, Han GJ, Hwang KY, Unzai S, Obayashi E, Park SY, Tame JR. Crystal Structures of Penicillin-Binding Proteins 4 and 5 from Haemophilus influenzae. J Mol Biol 2010; 396:634-45. [DOI: 10.1016/j.jmb.2009.11.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/20/2009] [Accepted: 11/22/2009] [Indexed: 10/20/2022]
|
49
|
Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B. Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bacteriol 2010; 192:134-44. [PMID: 19854906 PMCID: PMC2798245 DOI: 10.1128/jb.00822-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the D-Ala-D-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala. Beta-lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a beta-lactamase and is not trapped as an acyl intermediate with beta-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.
Collapse
Affiliation(s)
- Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Varun Sood
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - K. Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - Gayathri Arakere
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| | - B. Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, Sir Dorabji Tata Center for Research in Tropical Diseases, Indian Institute of Science Campus, Bangalore 560 012, India
| |
Collapse
|
50
|
Chowdhury C, Nayak TR, Young KD, Ghosh AS. A weak DD-carboxypeptidase activity explains the inability of PBP 6 to substitute for PBP 5 in maintaining normal cell shape in Escherichia coli. FEMS Microbiol Lett 2009; 303:76-83. [PMID: 20015336 DOI: 10.1111/j.1574-6968.2009.01863.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Penicillin-binding protein (PBP) 5 plays a critical role in maintaining normal cellular morphology in mutants of Escherichia coli lacking multiple PBPs. The most closely related homologue, PBP 6, is 65% identical to PBP 5, but is unable to substitute for PBP 5 in returning these mutants to their wild-type shape. The relevant differences between PBPs 5 and 6 are localized in a 20-amino acid stretch of domain I in these proteins, which includes the canonical KTG motif at the active site. We determined how these differences affected the enzymatic properties of PBPs 5 and 6 toward beta-lactam binding and the binding and hydrolysis of two peptide substrates. We also investigated the enzymatic properties of recombinant fusion proteins in which active site segments were swapped between PBPs 5 and 6. The results suggest that the in vivo physiological role of PBP 5 is distinguished from PBP 6 by the higher degree of DD-carboxypeptidase activity of the former.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | | | | | |
Collapse
|