1
|
Ullah F, Jabeen S, Salton M, Reddy ASN, Ben-Hur A. Evidence for the role of transcription factors in the co-transcriptional regulation of intron retention. Genome Biol 2023; 24:53. [PMID: 36949544 PMCID: PMC10031921 DOI: 10.1186/s13059-023-02885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Alternative splicing is a widespread regulatory phenomenon that enables a single gene to produce multiple transcripts. Among the different types of alternative splicing, intron retention is one of the least explored despite its high prevalence in both plants and animals. The recent discovery that the majority of splicing is co-transcriptional has led to the finding that chromatin state affects alternative splicing. Therefore, it is plausible that transcription factors can regulate splicing outcomes. RESULTS We provide evidence for the hypothesis that transcription factors are involved in the regulation of intron retention by studying regions of open chromatin in retained and excised introns. Using deep learning models designed to distinguish between regions of open chromatin in retained introns and non-retained introns, we identified motifs enriched in IR events with significant hits to known human transcription factors. Our model predicts that the majority of transcription factors that affect intron retention come from the zinc finger family. We demonstrate the validity of these predictions using ChIP-seq data for multiple zinc finger transcription factors and find strong over-representation for their peaks in intron retention events. CONCLUSIONS This work opens up opportunities for further studies that elucidate the mechanisms by which transcription factors affect intron retention and other forms of splicing. AVAILABILITY Source code available at https://github.com/fahadahaf/chromir.
Collapse
Affiliation(s)
- Fahad Ullah
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Saira Jabeen
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Maayan Salton
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Anireddy S N Reddy
- Biochemistry and Molecular Biology Department, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Chen S, Liu S, Shi S, Jiang Y, Cao M, Tang Y, Li W, Liu J, Fang L, Yu Y, Zhang S. Comparative epigenomics reveals the impact of ruminant-specific regulatory elements on complex traits. BMC Biol 2022; 20:273. [PMID: 36482458 PMCID: PMC9730597 DOI: 10.1186/s12915-022-01459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insights into the genetic basis of complex traits and disease in both human and livestock species have been achieved over the past decade through detection of genetic variants in genome-wide association studies (GWAS). A majority of such variants were found located in noncoding genomic regions, and though the involvement of numerous regulatory elements (REs) has been predicted across multiple tissues in domesticated animals, their evolutionary conservation and effects on complex traits have not been fully elucidated, particularly in ruminants. Here, we systematically analyzed 137 epigenomic and transcriptomic datasets of six mammals, including cattle, sheep, goats, pigs, mice, and humans, and then integrated them with large-scale GWAS of complex traits. RESULTS Using 40 ChIP-seq datasets of H3K4me3 and H3K27ac, we detected 68,479, 58,562, 63,273, 97,244, 111,881, and 87,049 REs in the liver of cattle, sheep, goats, pigs, humans and mice, respectively. We then systematically characterized the dynamic functional landscapes of these REs by integrating multi-omics datasets, including gene expression, chromatin accessibility, and DNA methylation. We identified a core set (n = 6359) of ruminant-specific REs that are involved in liver development, metabolism, and immune processes. Genes with more complex cis-REs exhibited higher gene expression levels and stronger conservation across species. Furthermore, we integrated expression quantitative trait loci (eQTLs) and GWAS from 44 and 52 complex traits/diseases in cattle and humans, respectively. These results demonstrated that REs with different degrees of evolutionary conservation across species exhibited distinct enrichments for GWAS signals of complex traits. CONCLUSIONS We systematically annotated genome-wide functional REs in liver across six mammals and demonstrated the evolution of REs and their associations with transcriptional output and conservation. Detecting lineage-specific REs allows us to decipher the evolutionary and genetic basis of complex phenotypes in livestock and humans, which may benefit the discovery of potential biomedical models for functional variants and genes of specific human diseases.
Collapse
Affiliation(s)
- Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Shaolei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
4
|
Xiao T, Li X, Felsenfeld G. The Myc-associated zinc finger protein (MAZ) works together with CTCF to control cohesin positioning and genome organization. Proc Natl Acad Sci U S A 2021; 118:e2023127118. [PMID: 33558242 PMCID: PMC7896315 DOI: 10.1073/pnas.2023127118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Myc-associated zinc finger protein (MAZ) is often found at genomic binding sites adjacent to CTCF, a protein which affects large-scale genome organization through its interaction with cohesin. We show here that, like CTCF, MAZ physically interacts with a cohesin subunit and can arrest cohesin sliding independently of CTCF. It also shares with CTCF the ability to independently pause the elongating form of RNA polymerase II, and consequently affects RNA alternative splicing. CTCF/MAZ double sites are more effective at sequestering cohesin than sites occupied only by CTCF. Furthermore, depletion of CTCF results in preferential loss of CTCF from sites not occupied by MAZ. In an assay for insulation activity like that used for CTCF, binding of MAZ to sites between an enhancer and promoter results in down-regulation of reporter gene expression, supporting a role for MAZ as an insulator protein. Hi-C analysis of the effect of MAZ depletion on genome organization shows that local interactions within topologically associated domains (TADs) are disrupted, as well as contacts that establish the boundaries of individual TADs. We conclude that MAZ augments the action of CTCF in organizing the genome, but also shares properties with CTCF that allow it to act independently.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540
| | - Xin Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0540
| |
Collapse
|
5
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
6
|
Koga M, Hayashi M, Kaida D. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD. Nucleic Acids Res 2015. [PMID: 26202968 PMCID: PMC4787822 DOI: 10.1093/nar/gkv740] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Phosphorylation of the C-terminal domain of the largest subunit of RNA polymerase II (Pol II), especially Ser2 and Ser5 residues, plays important roles in transcription and mRNA processing, including 5′ end capping, splicing and 3′ end processing. These phosphorylation events stimulate mRNA processing, however, it is not clear whether splicing activity affects the phosphorylation status of Pol II. In this study, we found that splicing inhibition by potent splicing inhibitors spliceostatin A (SSA) and pladienolide B or by antisense oligos against snRNAs decreased phospho-Ser2 level, but had little or no effects on phospho-Ser5 level. In contrast, transcription and translation inhibitors did not decrease phospho-Ser2 level, therefore inhibition of not all the gene expression processes cause the decrease of phospho-Ser2. SSA treatment caused early dissociation of Pol II and decrease in phospho-Ser2 level of chromatin-bound Pol II, suggesting that splicing inhibition causes downregulation of phospho-Ser2 through at least these two mechanisms.
Collapse
Affiliation(s)
- Mitsunori Koga
- Frontier Research Core for Life Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Megumi Hayashi
- Frontier Research Core for Life Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
7
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
8
|
Koga M, Satoh T, Takasaki I, Kawamura Y, Yoshida M, Kaida D. U2 snRNP is required for expression of the 3' end of genes. PLoS One 2014; 9:e98015. [PMID: 24845214 PMCID: PMC4028248 DOI: 10.1371/journal.pone.0098015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/28/2014] [Indexed: 01/05/2023] Open
Abstract
Pre-mRNA in eukaryotes is subjected to mRNA processing, which includes capping, polyadenylation, and splicing. Transcription and mRNA processing are coupled, and this coupling stimulates mRNA processing; however, the effects of mRNA processing on transcription are not fully understood. In this study, we found that inhibition of U2 snRNP by a splicing inhibitor, spliceostatin A (SSA), or by an antisense oligonucleotide to U2 snRNA, caused gene-specific 3′-end down-regulation. Removal of SSA from the culture media restored expression of the 3′ ends of genes, suggesting that U2 snRNP is required for expression of the 3′ end of genes. Finally, we found that SSA treatment caused accumulation of Pol II near the 5′ end of 3′-end down regulated genes, such as CDK6, SMEK2 and EGFR, indicating that SSA treatment led to transcription elongation arrest on these genes. These findings suggest that U2 snRNP is important for production of full length mRNA probably through regulation of transcription elongation, and that a novel checkpoint mechanism prevents pre-mRNA from accumulating as a result of splicing deficiencies, and thereby prevents production of aberrant proteins that might be translated from pre-mRNAs through the arrest of transcription elongation.
Collapse
Affiliation(s)
- Mitsunori Koga
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Takayuki Satoh
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Ichiro Takasaki
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yumi Kawamura
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan
- JST, CREST, Kawaguchi, Saitama, Japan
| | - Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
9
|
Hnilicová J, Hozeifi S, Stejskalová E, Dušková E, Poser I, Humpolíčková J, Hof M, Staněk D. The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing. Mol Biol Cell 2013; 24:3557-68. [PMID: 24048450 PMCID: PMC3826993 DOI: 10.1091/mbc.e13-06-0303] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study determines genes that are regulated by Brd2 and finds that, in addition to expression control, Brd2 modulates the alternative splicing of several hundred genes. The in vivo interaction of Brd2 with chromatin is analyzed, and the contributions of individual Brd2 domains to the chromatin interaction are determined. Brd2 is a member of the bromodomain extra terminal (BET) protein family, which consists of four chromatin-interacting proteins that regulate gene expression. Each BET protein contains two N-terminal bromodomains, which recognize acetylated histones, and the C-terminal protein–protein interaction domain. Using a genome-wide screen, we identify 1450 genes whose transcription is regulated by Brd2. In addition, almost 290 genes change their alternative splicing pattern upon Brd2 depletion. Brd2 is specifically localized at promoters of target genes, and our data show that Brd2 interaction with chromatin cannot be explained solely by histone acetylation. Using coimmunoprecipitation and live-cell imaging, we show that the C-terminal part is crucial for Brd2 association with chromatin. Live-cell microscopy also allows us to map the average binding time of Brd2 to chromatin and quantify the contributions of individual Brd2 domains to the interaction with chromatin. Finally, we show that bromodomains and the C-terminal domain are equally important for transcription and splicing regulation, which correlates with the role of these domains in Brd2 binding to chromatin.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01307, Germany J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 182 23, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Schor IE, Gómez Acuña LI, Kornblihtt AR. Coupling between transcription and alternative splicing. Cancer Treat Res 2013; 158:1-24. [PMID: 24222352 DOI: 10.1007/978-3-642-31659-3_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation.
Collapse
Affiliation(s)
- Ignacio E Schor
- Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, PAB. II, 20 Piso, Buenos Aires, 1428, Argentina
| | | | | |
Collapse
|
11
|
Peterson ML. Immunoglobulin heavy chain gene regulation through polyadenylation and splicing competition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:92-105. [PMID: 21956971 DOI: 10.1002/wrna.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunoglobulin heavy chain (IgH) genes, which encode one of the two chains of antibody molecules, were the first cellular genes shown to undergo developmentally regulated alternative RNA processing. These genes produce two different mRNAs from a single primary transcript. One mRNA is cleaved and polyadenylated at an upstream poly(A) signal while the other mRNA removes this poly(A) signal by RNA splicing and is cleaved and polyadenylated at a downstream poly(A) site. A broad range of studies have been performed to understand the mechanism of IgH RNA processing regulation during B lymphocyte development. The model that has emerged is much more complex than envisioned by the earliest view of regulation through poly(A) signal choice. Regulation requires that the IgH gene contain competing splice and cleavage-polyadenylation reactions with balanced efficiencies. Because non-IgH genes with these structural features also can be regulated, IgH gene-specific sequence elements are not required for regulation. Changes in cleavage-polyadenylation and RNA splicing, as well as pol II elongation, all contribute to IgH developmental RNA processing regulation. Multiple factors are likely involved in the regulation during B lymphocyte maturation. Additional biologically relevant factors that contribute to IgH regulation remain to be identified and incorporated into a mechanistic model for regulation. Much of the work to date confirms the complex nature of IgH mRNA regulation and suggests that a thorough understanding of this control will remain a challenge. However, it is also likely that such understanding will help elucidate novel mechanisms of RNA processing regulation.
Collapse
Affiliation(s)
- Martha L Peterson
- Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Vezf1 protein binding sites genome-wide are associated with pausing of elongating RNA polymerase II. Proc Natl Acad Sci U S A 2012; 109:2370-5. [PMID: 22308494 DOI: 10.1073/pnas.1121538109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein Vezf1 plays multiple roles important for embryonic development. In Vezf1(-/-) mouse embryonic stem (mES) cells, our earlier data showed widespread changes in gene-expression profiles, including decreased expression of the full-length active isoform of Dnmt3b methyltransferase and concomitant genome-wide reduction in DNA methylation. Here we show that in HeLaS3 cells there is a strong genome-wide correlation between Vezf1 binding and peaks of elongating Ser2-P RNA polymerase (Pol) ll, reflecting Vezf1-dependent slowing of elongation. In WT mES cells, the elongating form of RNA pol II accumulates near Vezf1 binding sites within the dnmt3b gene and at several other Vezf1 sites, and this accumulation is significantly reduced at these sites in Vezf1(-/-) mES cells. Depending upon genomic location, Vezf1-mediated Pol II pausing can have different regulatory roles in transcription and splicing. We find examples of genes in which Vezf1 binding sites are located near cassette exons, and in which loss of Vezf1 leads to a change in the relative abundance of alternatively spliced messages. We further show that Vezf1 interacts with Mrg15/Mrgbp, a protein that recognizes H3K36 trimethylation, consistent with the role of histone modifications at alternatively spliced sites.
Collapse
|
13
|
Abstract
Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.
Collapse
|
14
|
de la Mata M, Muñoz MJ, Alló M, Fededa JP, Schor IE, Kornblihtt AR. RNA Polymerase II Elongation at the Crossroads of Transcription and Alternative Splicing. GENETICS RESEARCH INTERNATIONAL 2011; 2011:309865. [PMID: 22567350 PMCID: PMC3335476 DOI: 10.4061/2011/309865] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/23/2011] [Indexed: 11/20/2022]
Abstract
The elongation phase of transcription lies at the core of several simultaneous and coupled events leading to alternative splicing regulation. Although underestimated in the past, it is at this phase of the transcription cycle where complexes affecting the transcription machinery itself, chromatin structure, posttranscriptional gene regulation and pre-mRNA processing converge to regulate each other or simply to consolidate higher-order complexes and functions. This paper focuses on the multiple processes that take place during transcription elongation which ultimately regulate the outcome of alternative splicing decisions.
Collapse
Affiliation(s)
- Manuel de la Mata
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular, y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev 2011; 21:366-72. [PMID: 21497503 DOI: 10.1016/j.gde.2011.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 01/09/2023]
Abstract
Large portions of the genome undergo alternative pre-mRNA splicing in often intricate patterns. Alternative splicing regulation requires extensive control mechanisms since errors can have deleterious consequences and may lead to developmental defects and disease. Recent work has identified a complex network of regulatory RNA elements which guide splicing decisions. In addition, the discovery that transcription and splicing are intimately coupled has opened up new directions into alternative splicing regulation. Work at the interface of chromatin and RNA biology has revealed unexpected molecular links between histone modifications, the transcription machinery, and non-coding RNAs (ncRNAs) in the determination of alternative splicing patterns.
Collapse
|
16
|
Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, Bonhoure N, Koch CM, Bye J, James K, Foad NS, Ellis P, Watkins NA, Ouwehand WH, Langford C, Andrews RM, Dunham I, Vetrie D. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution. PLoS One 2010; 5:e12339. [PMID: 20808788 PMCID: PMC2925886 DOI: 10.1371/journal.pone.0012339] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 07/14/2010] [Indexed: 01/18/2023] Open
Abstract
It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.
Collapse
Affiliation(s)
- Pawandeep Dhami
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Peter Saffrey
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Alexander W. Bruce
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Shane C. Dillon
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Kelly Chiang
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Nicolas Bonhoure
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - Christoph M. Koch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Jackie Bye
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Keith James
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicola S. Foad
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Nicholas A. Watkins
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, Cambridge, United Kingdom
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Robert M. Andrews
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ian Dunham
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Vetrie
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 2010; 35:497-504. [PMID: 20418102 DOI: 10.1016/j.tibs.2010.03.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 01/27/2023]
Abstract
Alternative splicing is controlled by cis-regulatory sequences present in the pre-mRNA and their cognate trans-acting factors, as well as by its coupling to RNA polymerase II (pol II) transcription. A unique feature of this polymerase is the presence of a highly repetitive carboxy terminal domain (CTD), which is subject to multiple regulatory post-translational modifications. CTD phosphorylation events affect the transcriptional properties of pol II and the outcome of co-transcriptional alternative splicing by mediating the effects of splicing factors and by modulating transcription elongation rates. Here, we discuss various examples of involvement of the CTD in alternative splicing regulation as well as the current methodological limitations in deciphering the detailed mechanisms of this process.
Collapse
|
18
|
Salato VK, Rediske NW, Zhang C, Hastings ML, Munroe SH. An exonic splicing enhancer within a bidirectional coding sequence regulates alternative splicing of an antisense mRNA. RNA Biol 2010; 7:179-90. [PMID: 20200494 DOI: 10.4161/rna.7.2.11182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The discovery of increasing numbers of genes with overlapping sequences highlights the problem of expression in the context of constraining regulatory elements from more than one gene. This study identifies regulatory sequences encompassed within two genes that overlap in an antisense orientation at their 3' ends. The genes encode the alpha-thyroid hormone receptor gene (TRalpha or NR1A1) and Rev-erbalpha (NR1D1). In mammals TRalpha pre-mRNAs are alternatively spliced to yield mRNAs encoding functionally antagonistic proteins: TRalpha1, an authentic thyroid hormone receptor; and TRalpha2, a non-hormone-binding variant that acts as a repressor. TRalpha2-specific splicing requires two regulatory elements that overlap with Rev-erbalpha sequences. Functional mapping of these elements reveals minimal splicing enhancer elements that have evolved within the constraints of the overlapping Rev-erbalpha sequence. These results provide insight into the evolution of regulatory elements within the context of bidirectional coding sequences. They also demonstrate the ability of the genetic code to accommodate multiple layers of information within a given sequence, an important property of the code recently suggested on theoretical grounds.
Collapse
Affiliation(s)
- Valerie K Salato
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
19
|
Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010; 327:996-1000. [PMID: 20133523 DOI: 10.1126/science.1184208] [Citation(s) in RCA: 810] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alternative splicing of pre-mRNA is a prominent mechanism to generate protein diversity, yet its regulation is poorly understood. We demonstrated a direct role for histone modifications in alternative splicing. We found distinctive histone modification signatures that correlate with the splicing outcome in a set of human genes, and modulation of histone modifications causes splice site switching. Histone marks affect splicing outcome by influencing the recruitment of splicing regulators via a chromatin-binding protein. These results outline an adaptor system for the reading of histone marks by the pre-mRNA splicing machinery.
Collapse
Affiliation(s)
- Reini F Luco
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, Bird G, Bentley D, Bertrand E, Kornblihtt AR. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 2009; 137:708-20. [PMID: 19450518 DOI: 10.1016/j.cell.2009.03.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/22/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
Abstract
DNA damage induces apoptosis and many apoptotic genes are regulated via alternative splicing (AS), but little is known about the control mechanisms. Here we show that ultraviolet irradiation (UV) affects cotranscriptional AS in a p53-independent way, through the hyperphosphorylation of RNA polymerase II carboxy-terminal domain (CTD) and a subsequent inhibition of transcriptional elongation, estimated in vivo and in real time. Phosphomimetic CTD mutants not only display lower elongation but also duplicate the UV effect on AS. Consistently, nonphosphorylatable mutants prevent the UV effect. Apoptosis promoted by UV in cells lacking p53 is prevented when the change in AS of the apoptotic gene bcl-x is reverted, confirming the relevance of this mechanism. Splicing-sensitive microarrays revealed a significant overlap of the subsets of genes that have changed AS with UV and those that have reduced expression, suggesting that transcriptional coupling to AS is a key feature of the DNA-damage response.
Collapse
Affiliation(s)
- Manuel J Muñoz
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Xin D, Hu L, Kong X. Alternative promoters influence alternative splicing at the genomic level. PLoS One 2008; 3:e2377. [PMID: 18560582 PMCID: PMC2409967 DOI: 10.1371/journal.pone.0002377] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/05/2008] [Indexed: 12/28/2022] Open
Abstract
Background More and more experiments have shown that transcription and mRNA processing are not two independent events but are tightly coupled to each other. Both promoter and transcription rate were found to influence alternative splicing. More than half of human genes have alternative promoters, but it is still not clear why there are so many alternative promoters and what their biological roles are. Methodology/Principal Findings In this study, we explored whether there is a functional correlation between alternative promoters and alternative splicing by a genome-wide analysis of human and mouse genes. We constructed a large data set of genes with alternative promoter and alternative splicing annotations. By analyzing these genes, we showed that genes with alternative promoters tended to demonstrate alternative splicing compare to genes with single promoter, and, genes with more alternative promoters tend to have more alternative splicing variants. Furthermore, transcripts from different alternative promoters tended to splice differently. Conclusions/Significance Thus at the genomic level, alternative promoters are positively correlated with alternative splicing.
Collapse
Affiliation(s)
- Dedong Xin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Landian Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA (NEW YORK, N.Y.) 2008; 14:802-13. [PMID: 18369186 PMCID: PMC2327353 DOI: 10.1261/rna.876308] [Citation(s) in RCA: 732] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code" for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
23
|
Gromak N, Talotti G, Proudfoot NJ, Pagani F. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA (NEW YORK, N.Y.) 2008; 14:359-366. [PMID: 18065715 PMCID: PMC2212250 DOI: 10.1261/rna.615508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
Cotranscriptional cleavage mediated by a hammerhead ribozyme can affect alternative splicing if interposed between an exon and its intronic regulatory elements. This has been demonstrated using two different alternative splicing systems based on alpha-tropomyosin and fibronectin genes. We suggest that there is a requirement for intronic regulatory elements to be covalently attached to exons that are in turn tethered to the elongating polymerase. In the case of the alternatively spliced EDA exon of the fibronectin gene, we demonstrate that the newly identified intronic downstream regulatory element is associated with the splicing regulatory protein SRp20. Our results suggest that targeted hammerhead ribozyme cleavage within introns can be used as a tool to define splicing regulatory elements.
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
24
|
Peterson ML. Mechanisms controlling production of membrane and secreted immunoglobulin during B cell development. Immunol Res 2007; 37:33-46. [PMID: 17496345 DOI: 10.1007/bf02686094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
The immunoglobulin gene which encodes both membrane-associated and secreted proteins through alternative RNA processing reactions has been a model system used for over 25 yr to better understand the regulatory mechanisms governing alternative RNA processing. This gene contains competing cleavage-polyadenylation and RNA splicing reactions and the relative use of the two pathways is differentially regulated between B cells and plasma cells. General cleavage-polyadenylation and RNA splicing reactions are both altered during B cell maturation to affect immunoglobulin expression. However, the specific factors involved in this regulation have yet to be identified clearly. As transcriptional regulators stimulate the developmental RNA processing switch, microarray analysis is a promising approach to identify candidate regulators of this complex RNA processing mechanism.
Collapse
Affiliation(s)
- Martha L Peterson
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
25
|
Zhu X, Lee K, Asa SL, Ezzat S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1618-28. [PMID: 17456767 PMCID: PMC1854956 DOI: 10.2353/ajpath.2007.061111] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2007] [Indexed: 01/07/2023]
Abstract
Four members of the fibroblast growth factor receptor (FGFR) family of tyrosine kinases transduce signals of a diverse group of more than 23 fibroblast growth factor (FGF) ligands. Each prototypic receptor is composed of three immunoglobulin-like extracellular domains, two of which are involved in ligand binding. Alternative RNA splicing of one of two exons results in two different forms of the second half of the third immunoglobulin-like domain, the IIIb or IIIc isoforms. The contribution of each receptor and their isoforms in tumorigenesis remains unknown. In the pituitary, FGFR2 is expressed primarily as the IIIb isoform in normal adenohypophysial cells. In contrast, FGFR2 is significantly down-regulated in mouse corticotroph AtT20 tumor cells where the 5' promoter is methylated. Treatment of AtT20 cells with 5'-azacytidine resulted in FGFR2 re-expression, mainly as the FGFR2-IIIb isoform. Chromatin immunoprecipitation revealed evidence of histone methylation, but not of deacetylation, in the silencing of FGFR2 in AtT20 cells. Exposure of these cells to the cognate FGFR2-IIIb ligand FGF-7 resulted in diminished Rb phosphorylation and accumulation of p21 and p27, indicating diminished cell cycle progression. Examination of primary human pituitary adenomas revealed FGFR2 down-regulation in 52% (11 of 21) of samples and FGFR2 promoter DNA methylation in 45% (10 of 22) of samples. These data highlight the contribution from DNA and histone methylation as epigenetic mechanisms responsible for FGFR2 silencing in pituitary neoplasia.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | | | |
Collapse
|
26
|
Bohne J, Schambach A, Zychlinski D. New way of regulating alternative splicing in retroviruses: the promoter makes a difference. J Virol 2007; 81:3652-6. [PMID: 17229710 PMCID: PMC1866029 DOI: 10.1128/jvi.02105-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 01/05/2007] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing has been recognized as a major mechanism for creating proteomic diversity from a limited number of genes. However, not all determinants regulating this process have been characterized. Using subviral human immunodeficiency virus (HIV) env constructs we observed an enhanced splicing of the RNA when expression was under control of the cytomegalovirus (CMV) promoter instead of the HIV long terminal repeat (LTR). We extended these observations to LTR- or CMV-driven murine leukemia proviruses, suggesting that retroviral LTRs are adapted to inefficient alternative splicing at most sites in order to maintain balanced gene expression.
Collapse
Affiliation(s)
- Jens Bohne
- Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, OE 6960, D-30625 Hanover, Germany.
| | | | | |
Collapse
|
27
|
Gendra E, Colgan DF, Meany B, Konarska MM. A sequence motif in the simian virus 40 (SV40) early core promoter affects alternative splicing of transcribed mRNA. J Biol Chem 2007; 282:11648-57. [PMID: 17331949 DOI: 10.1074/jbc.m611126200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new sequence elements in the promoter that affect splicing patterns of pre-mRNAs, we analyzed effects of different promoters on alternative splicing of model reporter genes. We compared the E1a alternative splicing pattern in transcripts expressed from the full-length cytomegalovirus, SV40 early, or a hybrid cytomegalovirus/SV40 early promoter and found that the hybrid promoter improved selection of the suboptimal E1a 5'SS-1. Expressing RNA from the hybrid promoter also enhanced selection of suboptimal splice sites in other alternatively spliced reporter genes, demonstrating the generality of this effect. Unlike previously defined promoter elements shown to affect alternative splicing, which were located in the enhancer/upstream activating sequences, the motif identified in this work is positioned within the core promoter; it is comprised of eight T-residues directly upstream of the SV40 early TATA box. This motif was previously implicated in DNA bending and negative regulation of transcription. Together, these results suggest that the identity of transcription complex assembled in the core promoter-dependent fashion can affect splice site selection during pre-mRNA splicing, perhaps by influencing the processivity of transcription elongation.
Collapse
|
28
|
Kornblihtt AR. Coupling Transcription and Alternative Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:175-89. [DOI: 10.1007/978-0-387-77374-2_11] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 2006; 35:371-89. [PMID: 17170000 PMCID: PMC1802598 DOI: 10.1093/nar/gkl1050] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Humans have two nearly identical copies of the survival motor neuron (SMN ) gene, SMN1 and SMN2. Homozygous loss of SMN1 causes spinal muscular atrophy (SMA). SMN2 is unable to prevent the disease due to skipping of exon 7. Using a systematic approach of in vivo selection, we have previously demonstrated that a weak 5' splice site (ss) serves as the major cause of skipping of SMN2 exon 7. Here we show the inhibitory impact of RNA structure on the weak 5' ss of exon 7. We call this structure terminal stem-loop 2 (TSL2). Confirming the inhibitory nature of TSL2, point mutations that destabilize TSL2 promote exon 7 inclusion in SMN2, whereas strengthening of TSL2 promotes exon 7 skipping even in SMN1. We also demonstrate that TSL2 negatively affects the recruitment of U1snRNP at the 5' ss of exon 7. Using enzymatic structure probing, we confirm that the sequence at the junction of exon 7/intron 7 folds into TSL2 and show that mutations in TSL2 cause predicted structural changes in this region. Our findings reveal for the first time the critical role of RNA structure in regulation of alternative splicing of human SMN.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | | | |
Collapse
|
30
|
Abstract
The multisubunit RNAPs (RNA polymerases) found in all cellular life forms are remarkably conserved in fundamental structure, in mechanism and in their susceptibility to sequence-dependent pausing during transcription of DNA in the absence of elongation regulators. Recent studies of both prokaryotic and eukaryotic transcription have yielded an increasing appreciation of the extent to which gene regulation is accomplished during the elongation phase of transcription. Transcriptional pausing is a fundamental enzymatic mechanism that underlies many of these regulatory schemes. In some cases, pausing functions by halting RNAP for times or at positions required for regulatory interactions. In other cases, pauses function by making RNAP susceptible to premature termination of transcription unless the enzyme is modified by elongation regulators that programme efficient gene expression. Pausing appears to occur by a two-tiered mechanism in which an initial rearrangement of the enzyme's active site interrupts active elongation and puts RNAP in an elemental pause state from which additional rearrangements or regulator interactions can create long-lived pauses. Recent findings from biochemical and single-molecule transcription experiments, coupled with the invaluable availability of RNAP crystal structures, have produced attractive hypotheses to explain the fundamental mechanism of pausing.
Collapse
Affiliation(s)
- R Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
31
|
Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol 2006; 26:4998-5014. [PMID: 16782886 PMCID: PMC1489151 DOI: 10.1128/mcb.01991-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/15/2005] [Accepted: 04/22/2006] [Indexed: 11/20/2022] Open
Abstract
The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAPII) through its WW and FF domains, respectively. WW and FF domains may, therefore, serve to link transcription and splicing components and play a role in coupling transcription and splicing in vivo. In the study presented here, we investigated the subcellular localization and association of CA150 with factors involved in pre-mRNA transcriptional elongation and splicing. Endogenous CA150 colocalized with nuclear speckles, and this was not affected either by inhibition of cellular transcription or by RNAPII CTD phosphorylation. FF domains are essential for the colocalization to speckles, while WW domains are not required for colocalization. We also performed biochemical assays to understand the role of WW and FF domains in mediating the assembly of transcription and splicing components into higher-order complexes. Transcription and splicing components bound to a region in the amino-terminal part of CA150 that contains the three WW domains; however, we identified a region of the C-terminal FF domains that was also critical. Our results suggest that sequences located at both the amino and carboxyl regions of CA150 are required to assemble transcription/splicing complexes, which may be involved in the coupling of those processes.
Collapse
Affiliation(s)
- Miguel Sánchez-Alvarez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicine, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | | | | | | |
Collapse
|
32
|
Swinburne IA, Meyer CA, Liu XS, Silver PA, Brodsky AS. Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription. Genome Res 2006; 16:912-21. [PMID: 16769980 PMCID: PMC1484458 DOI: 10.1101/gr.5211806] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pre-mRNA processing often occurs in coordination with transcription thereby coupling these two key regulatory events. As such, many proteins involved in mRNA processing associate with the transcriptional machinery and are in proximity to DNA. This proximity allows for the mapping of the genomic associations of RNA binding proteins by chromatin immunoprecipitation (ChIP) as a way of determining their sites of action on the encoded mRNA. Here, we used ChIP combined with high-density microarrays to localize on the human genome three functionally distinct RNA binding proteins: the splicing factor polypyrimidine tract binding protein (PTBP1/hnRNP I), the mRNA export factor THO complex subunit 4 (ALY/THOC4), and the 3' end cleavage stimulation factor 64 kDa (CSTF2). We observed interactions at promoters, internal exons, and 3' ends of active genes. PTBP1 had biases toward promoters and often coincided with RNA polymerase II (RNA Pol II). The 3' processing factor, CSTF2, had biases toward 3' ends but was also observed at promoters. The mRNA processing and export factor, ALY, mapped to some exons but predominantly localized to introns and did not coincide with RNA Pol II. Because the RNA binding proteins did not consistently coincide with RNA Pol II, the data support a processing mechanism driven by reorganization of transcription complexes as opposed to a scanning mechanism. In sum, we present the mapping in mammalian cells of RNA binding proteins across a portion of the genome that provides insight into the transcriptional assembly of RNA-protein complexes.
Collapse
Affiliation(s)
- Ian A. Swinburne
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clifford A. Meyer
- Departments of Biostatistics and Computational Biology, The Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - X. Shirley Liu
- Departments of Biostatistics and Computational Biology, The Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Corresponding authors.E-mail ; fax (401) 863-9653.E-mail ; fax (401) 863-9653
| | - Alexander S. Brodsky
- Department of Cancer Biology, The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Corresponding authors.E-mail ; fax (401) 863-9653.E-mail ; fax (401) 863-9653
| |
Collapse
|
33
|
Gromak N, West S, Proudfoot NJ. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 2006; 26:3986-96. [PMID: 16648491 PMCID: PMC1488997 DOI: 10.1128/mcb.26.10.3986-3996.2006] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymerase II (Pol II) transcriptional termination depends on two independent genetic elements: poly(A) signals and downstream terminator sequences. The latter may either promote cotranscriptional RNA cleavage or pause elongating Pol II. We demonstrate that the previously characterized MAZ4 pause element promotes Pol II termination downstream of a poly(A) signal, dependent on both the proximity of the pause site and poly(A) signal and the strength of the poly(A) signal. The 5'-->3' exonuclease Xrn2 facilitates this pause-dependent termination by degrading the 3' product of poly(A) site cleavage. The human beta-actin gene also possesses poly(A) site proximal pause sequences, which like MAZ4 are G rich and promote transcriptional termination. Xrn2 depletion causes an increase in both steady-state RNA and Pol II levels downstream of the beta-actin poly(A) site. Taken together, we provide new insights into the mechanism of pause site-mediated termination and establish a general role for the 5'-->3' exonuclease Xrn2 in Pol II termination.
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
34
|
Hicks MJ, Yang CR, Kotlajich MV, Hertel KJ. Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns. PLoS Biol 2006; 4:e147. [PMID: 16640457 PMCID: PMC1450099 DOI: 10.1371/journal.pbio.0040147] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/09/2006] [Indexed: 11/19/2022] Open
Abstract
RNA processing is carried out in close proximity to the site of transcription, suggesting a regulatory link between transcription and pre-mRNA splicing. Using an in vitro transcription/splicing assay, we demonstrate that an association of RNA polymerase II (Pol II) transcription and pre-mRNA splicing is required for efficient gene expression. Pol II-synthesized RNAs containing functional splice sites are protected from nuclear degradation, presumably because the local concentration of the splicing machinery is sufficiently high to ensure its association over interactions with nucleases. Furthermore, the process of transcription influences alternative splicing of newly synthesized pre-mRNAs. Because other RNA polymerases do not provide similar protection from nucleases, and their RNA products display altered splicing patterns, the link between transcription and RNA processing is RNA Pol II-specific. We propose that the connection between transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs. A novel in vitro method to study transcription and splicing leads to the proposal that linking transcription by Pol II and pre-mRNA splicing guarantees an extended half-life and proper processing of nascent pre-mRNAs.
Collapse
Affiliation(s)
- Martin J Hicks
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Chin-Rang Yang
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Matthew V Kotlajich
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Klemens J Hertel
- 1Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- 2Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
35
|
Abstract
Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Laboratorio de Fisiologia y Biologia Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 2 piso, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
36
|
Brodsky AS, Meyer CA, Swinburne IA, Hall G, Keenan BJ, Liu XS, Fox EA, Silver PA. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol 2005; 6:R64. [PMID: 16086846 PMCID: PMC1273631 DOI: 10.1186/gb-2005-6-8-r64] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/07/2005] [Accepted: 06/17/2005] [Indexed: 11/15/2022] Open
Abstract
Determination of the distribution of RNA Polymerase II within regions of the human genome identifies novel sites of transcription and suggests that a major factor of transcription elongation control in mammals is the coordination of transcription and pre-mRNA processing to define exons. Background Transcription by RNA polymerase II is regulated at many steps including initiation, promoter release, elongation and termination. Accumulation of RNA polymerase II at particular locations across genes can be indicative of sites of regulation. RNA polymerase II is thought to accumulate at the promoter and at sites of co-transcriptional alternative splicing where the rate of RNA synthesis slows. Results To further understand transcriptional regulation at a global level, we determined the distribution of RNA polymerase II within regions of the human genome designated by the ENCODE project. Hypophosphorylated RNA polymerase II localizes almost exclusively to 5' ends of genes. On the other hand, localization of total RNA polymerase II reveals a variety of distinct landscapes across many genes with 74% of the observed enriched locations at exons. RNA polymerase II accumulates at many annotated constitutively spliced exons, but is biased for alternatively spliced exons. Finally, RNA polymerase II is also observed at locations not in gene regions. Conclusion Localizing RNA polymerase II across many millions of base pairs in the human genome identifies novel sites of transcription and provides insights into the regulation of transcription elongation. These data indicate that RNA polymerase II accumulates most often at exons during transcription. Thus, a major factor of transcription elongation control in mammalian cells is the coordination of transcription and pre-mRNA processing to define exons.
Collapse
Affiliation(s)
- Alexander S Brodsky
- Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02155, USA
| | - Ian A Swinburne
- Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | - Giles Hall
- Department of Medicine, Harvard Medical School and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin J Keenan
- Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | - Xiaole S Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02155, USA
| | - Edward A Fox
- Department of Medicine, Harvard Medical School and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| |
Collapse
|
37
|
Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol 2005; 25:5307-16. [PMID: 15964789 PMCID: PMC1156981 DOI: 10.1128/mcb.25.13.5307-5316.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Didier Auboeuf
- INSERM U685/AVENIR, Centre G. Hayem, Hôpital Saint Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
38
|
Takahara T, Tasic B, Maniatis T, Akanuma H, Yanagisawa S. Delay in synthesis of the 3' splice site promotes trans-splicing of the preceding 5' splice site. Mol Cell 2005; 18:245-51. [PMID: 15837427 DOI: 10.1016/j.molcel.2005.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 02/25/2005] [Accepted: 03/21/2005] [Indexed: 11/17/2022]
Abstract
Premessenger RNA (pre-mRNA) splicing can occur within an individual pre-mRNA (cis-splicing) or between separate pre-mRNAs (trans-splicing). Although a number of examples of mammalian trans-splicing have been reported, the molecular mechanisms involved are poorly understood. Here, we investigate the mechanisms of Sp1 pre-mRNA trans-splicing with human cells expressing modified Sp1 transgenes. We find that the presence of a long intron or the insertion of an RNA polymerase II pause site within an intron promotes trans-splicing. We also add examples of naturally occurring trans-splicing. We propose that Sp1 trans-splicing, and other examples of mammalian trans-splicing, are a consequence of low-frequency disruption of the normal mechanisms that couple transcription and splicing.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
39
|
Wagner EJ, Baraniak AP, Sessions OM, Mauger D, Moskowitz E, Garcia-Blanco MA. Characterization of the intronic splicing silencers flanking FGFR2 exon IIIb. J Biol Chem 2005; 280:14017-27. [PMID: 15684416 DOI: 10.1074/jbc.m414492200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell type-specific alternative splicing of FGFR2 pre-mRNA results in the mutually exclusive use of exons IIIb and IIIc, which leads to critically important differences in receptor function. The choice of exon IIIc in mesenchymal cells involves activation of this exon and repression of exon IIIb. This repression is mediated by the function of upstream and downstream intronic splicing silencers (UISS and DISS). Here we present a detailed characterization of the determinants of silencing function within UISS and DISS. We used a systematic mutational analysis, introducing deletions and substitutions to define discrete elements within these two silencers of exon IIIb. We show that UISS requires polypyrimidine tract-binding protein (PTB)-binding sites, which define the UISS1 sub-element, and an eight nucleotide sequence 5'-GCAGCACC-3' (UISS2) that is also required. Even though UISS2 does not bind PTB, the full UISS can be replaced with a synthetic silencer designed to provide optimal PTB binding. DISS is composed of a 5'-conserved sub-element (5'-CE) and two regions that contain multiple PTB sites and are functionally redundant (DISS1 and DISS2). DISS1 and DISS2 are separated by the activator sequence IAS2, and together these opposing elements form the intronic control element. Deletion of DISS in the FGFR2 exon IIIb context resulted in the near full inclusion of exon IIIb, and insertion of this silencer downstream of a heterologous exon with a weak 5' splice site was capable of repressing exon inclusion. Extensive deletion analysis demonstrated that the majority of silencing activity could be mapped to the conserved octamer CUCGGUGC within the 5'CE. Replacement of 5'CE and DISS1 with PTB-binding elements failed to restore repression of exon IIIb. We tested the importance of the relative position of the silencers and of the subelements within each silencer. Whereas UISS1, UISS2, DISS1, and DISS2 appear somewhat malleable, the 5'CE is rigid in terms of relative position and redundancy. Our data defined elements of function within the ISSs flanking exon IIIb and suggested that silencing of this exon is mediated by multiple trans-acting factors.
Collapse
Affiliation(s)
- Eric J Wagner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|