1
|
Oyanadel C, Holmes C, Pardo E, Retamal C, Shaughnessy R, Smith P, Cortés P, Bravo-Zehnder M, Metz C, Feuerhake T, Romero D, Roa JC, Montecinos V, Soza A, González A. Galectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells. Mol Biol Cell 2018; 29:557-574. [PMID: 29298841 PMCID: PMC6004583 DOI: 10.1091/mbc.e16-05-0301] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial–mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective β1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin–Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5β1integrin binding. Under subconfluent conditions, Gal-8–overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased β-catenin activity. Changes related to migration/invasion included higher expression of α5β1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8–stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and β1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.
Collapse
Affiliation(s)
- Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Fundación Ciencia y Vida, 7780272 Santiago, Chile
| | - Christopher Holmes
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Evelyn Pardo
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Ronan Shaughnessy
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Patricio Smith
- Unidad de Odontología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Priscilla Cortés
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Marcela Bravo-Zehnder
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile.,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Teo Feuerhake
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Diego Romero
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patología, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Viviana Montecinos
- Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina, Universidad San Sebastián, 7510156 Santiago, Chile .,Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330023 Santiago, Chile
| |
Collapse
|
2
|
Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE, Voth GA, Kovar DR. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 2017; 6. [PMID: 28282023 PMCID: PMC5404920 DOI: 10.7554/elife.23152] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks. DOI:http://dx.doi.org/10.7554/eLife.23152.001 Cells use a protein called actin to provide shape, to generate the forces needed for cells to divide, and for many other essential processes. Inside a cell, individual actin proteins join up to form long filaments. These actin filaments are organized in different ways to make networks that have distinct properties, each tailored for a specific process. For instance, bundles of straight actin filaments help a cell to divide, whereas a network of branched actin filaments allows cells to move. The different proteins that bind to actin filaments influence how quickly actin filaments are assembled and organized into networks. Therefore, many of the properties of an actin filament network are due to the actin binding proteins that are associated with it. Two actin binding proteins called fimbrin and cofilin associate with a type of actin filament network known as the actin patch. A third actin binding protein called tropomyosin associates with a different network that forms a ring. It is not known how particular actin binding proteins choose to associate with one actin network instead of another. Christensen et al. used a fluorescence microscopy technique to study how fimbrin, cofilin and tropomyosin associate with different actin networks in a single-celled organism called fission yeast. This technique involved incubating actin and actin binding proteins together in a microscope chamber. The experiments show that some actin binding proteins, like tropomyosin, cooperate to bind to actin. Individual tropomyosin molecules find it difficult to bind actin filaments on their own, but once one tropomyosin molecule is attached to the filament, others rapidly join to coat the filament. On the other hand, some actin-binding proteins compete for binding to filaments. For example, the binding of fimbrin to actin filaments causes tropomyosin to be removed from the actin network. Further experiments revealed that fimbrin and cofilin work with each other to rapidly generate a dense actin network and displace tropomyosin. Together, the findings of Christensen et al. suggest that competitions between actin binding proteins determine which actin binding proteins are associated with an actin network. The next challenge is to understand how the most competitive actin-binding proteins are kept off actin networks where they do not belong. Further studies will shed light on how these interactions cause large changes in how the cell is organized. DOI:http://dx.doi.org/10.7554/eLife.23152.002
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Glen M Hocky
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Sarah E Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, United States
| | - Gregory A Voth
- Department of Chemistry, The University of Chicago, Chicago, United States.,James Franck Institute, The University of Chicago, Chicago, United States.,Computation Institute, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
3
|
Cotton CU, Hobert ME, Ryan S, Carlin CR. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells. Traffic 2012. [PMID: 23205726 DOI: 10.1111/tra.12032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.
Collapse
Affiliation(s)
- Calvin U Cotton
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
4
|
Valdés V, Valenzuela JI, Salas DA, Jaureguiberry-Bravo M, Otero C, Thiede C, Schmidt CF, Couve A. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors. PLoS One 2012; 7:e44168. [PMID: 22952914 PMCID: PMC3428321 DOI: 10.1371/journal.pone.0044168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022] Open
Abstract
In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA) type B receptors (GABABRs) are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABABRs are obligatory heteromers constituted by two subunits, GABABR1 and GABABR2. GABABR1a and GABABR1b are the most abundant subunit variants. GABABR1b is located in the somatodendritic domain whereas GABABR1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABABR1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABABRs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABABR1a operate in a pre-Golgi compartment. In the axon GABABR1a subunits are enriched in the endoplasmic reticulum (ER), and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC) suggest that they employ a local secretory route. The transport of axonal GABABR1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABABRs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.
Collapse
Affiliation(s)
- Viviana Valdés
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Ignacio Valenzuela
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela A. Salas
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Matías Jaureguiberry-Bravo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- School of Biochemistry, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Otero
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina Thiede
- Georg-August-Universität, Fakultät für Physik, Drittes Physikalisches Institut-Biophysik, Göttingen, Germany
| | - Christoph F. Schmidt
- Georg-August-Universität, Fakultät für Physik, Drittes Physikalisches Institut-Biophysik, Göttingen, Germany
| | - Andrés Couve
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
5
|
Toro AA, Araya CA, Córdova GJ, Arredondo CA, Cárdenas HG, Moreno RE, Venegas A, Koenig CS, Cancino J, Gonzalez A, Santos MJ. Pex3p-dependent peroxisomal biogenesis initiates in the endoplasmic reticulum of human fibroblasts. J Cell Biochem 2009; 107:1083-96. [PMID: 19479899 DOI: 10.1002/jcb.22210] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms of peroxisomal biogenesis remain incompletely understood, specially regarding the role of the endoplasmic reticulum (ER) in human cells, where genetic disorders of peroxisome biogenesis lead to Zellweger syndrome (ZS). The Pex3p peroxisomal membrane protein (PMP) required for early steps of peroxisome biogenesis has been detected in the ER in yeast but not in mammalian cells. Here, we show that Pex3p-GFP expressed in a new ZS cell line (MR), which lacks peroxisomes due to a mutation in the PEX3 gene, localizes first in the ER and subsequently in newly formed peroxisomes. Pex3p bearing an artificial N-glycosylation site shows an electrophoretic shift indicative of ER targeting while en route to preformed peroxisomes in normal fibroblast. A signal peptide that forces its entry into the ER does not eliminate its capability to drive peroxisome biogenesis in ZS cells. Thus, Pex3p is able to drive peroxisome biogenesis from the ER and its ER pathway is not privative of ZS cells. Cross-expression experiments of Pex3p in GM623 cells lacking Pex16p or Pex16p in MR cells lacking Pex3p, showed evidence that Pex3p requires Pex16p for ER location but is dispensable for the ER location of Pex16p. These results indicate that Pex3p follows the ER-to-peroxisomal route in mammalian cells and provides new clues to understand its function.
Collapse
Affiliation(s)
- Andrés A Toro
- Departamento de Biología Celular y Molecular, Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, and MIFAB, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gonzalez A, Rodriguez-Boulan E. Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett 2009; 583:3784-95. [PMID: 19854182 DOI: 10.1016/j.febslet.2009.10.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022]
Abstract
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.
Collapse
Affiliation(s)
- Alfonso Gonzalez
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Centro de Regulación Celular y Patología and Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile.
| | | |
Collapse
|
7
|
Donoso M, Cancino J, Lee J, van Kerkhof P, Retamal C, Bu G, Gonzalez A, Cáceres A, Marzolo MP. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol Biol Cell 2008; 20:481-97. [PMID: 19005208 DOI: 10.1091/mbc.e08-08-0805] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic recycling receptor with two cytoplasmic tyrosine-based basolateral sorting signals. Here we show that during biosynthetic trafficking LRP1 uses AP1B adaptor complex to move from a post-TGN recycling endosome (RE) to the basolateral membrane. Then it recycles basolaterally from the basolateral sorting endosome (BSE) involving recognition by sorting nexin 17 (SNX17). In the biosynthetic pathway, Y(29) but not N(26) from a proximal NPXY directs LRP1 basolateral sorting from the TGN. A N(26)A mutant revealed that this NPXY motif recognized by SNX17 is required for the receptor's exit from BSE. An endocytic Y(63)ATL(66) motif also functions in basolateral recycling, in concert with an additional endocytic motif (LL(86,87)), by preventing LRP1 entry into the transcytotic apical pathway. All this sorting information operates similarly in hippocampal neurons to mediate LRP1 somatodendritic distribution regardless of the absence of AP1B in neurons. LRP1 basolateral distribution results then from spatially and temporally segregation steps mediated by recognition of distinct tyrosine-based motifs. We also demonstrate a novel function of SNX17 in basolateral/somatodendritic recycling from a different compartment than AP1B endosomes.
Collapse
Affiliation(s)
- Maribel Donoso
- Centro de Regulación Celular y Patología , Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and the Millenium Institute for Fundamental and Applied Biology, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez-Boulan E, González A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 2007; 18:4872-84. [PMID: 17881725 PMCID: PMC2096610 DOI: 10.1091/mbc.e07-06-0563] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/11/2007] [Indexed: 01/03/2023] Open
Abstract
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.
Collapse
Affiliation(s)
- Jorge Cancino
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Carolina Torrealba
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Andrea Soza
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - María Isabel Yuseff
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| | - Diego Gravotta
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Henklein
- Institute of Biochemistry Faculty of Medicine, Humboldt University, 10117 Berlin, Germany; and
| | - Enrique Rodriguez-Boulan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021
| | - Alfonso González
- *Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, and Centro de Regulación Celular y Patología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6510260 Santiago, Chile
- Millennium Institute for Fundamental and Applied Biology, 7780344 Santiago, Chile
| |
Collapse
|
9
|
Rodriguez-Boulan E, Müsch A. Protein sorting in the Golgi complex: Shifting paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:455-64. [PMID: 15927284 DOI: 10.1016/j.bbamcr.2005.04.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 02/08/2023]
Abstract
The paradigms for transport along the biosynthetic route have changed dramatically over the past 15 years. Unlike the situation 15 years ago, the current paradigm involves sorting signals practically at every step of the pathway. In particular, at the exit from the Golgi complex, apical, basolateral and lysosomal targeting signals result in the generation of a variety of routes. Furthermore, it is now quite clear that not all sorting in the biosynthetic route occurs in the Golgi complex or the Trans Golgi Network (TGN). Sorting may occur distally to the Golgi, in recycling endosomes or in budded tubulosaccular structures, or it may occur proximally to the Golgi complex, at the exit from the ER. Several adaptors are candidates to sort apical and basolateral proteins but only AP1B and AP4 are currently involved. Progress is fast and future work should elucidate many of the open questions.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, LC-300, 1300 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
10
|
Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005; 6:233-47. [PMID: 15738988 DOI: 10.1038/nrm1593] [Citation(s) in RCA: 497] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|