1
|
Collins MA, Avery R, Albert FW. Substrate-specific effects of natural genetic variation on proteasome activity. PLoS Genet 2023; 19:e1010734. [PMID: 37126494 PMCID: PMC10174532 DOI: 10.1371/journal.pgen.1010734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/11/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Protein degradation is an essential biological process that regulates protein abundance and removes misfolded and damaged proteins from cells. In eukaryotes, most protein degradation occurs through the stepwise actions of two functionally distinct entities, the ubiquitin system and the proteasome. Ubiquitin system enzymes attach ubiquitin to cellular proteins, targeting them for degradation. The proteasome then selectively binds and degrades ubiquitinated substrate proteins. Genetic variation in ubiquitin system genes creates heritable differences in the degradation of their substrates. However, the challenges of measuring the degradative activity of the proteasome independently of the ubiquitin system in large samples have limited our understanding of genetic influences on the proteasome. Here, using the yeast Saccharomyces cerevisiae, we built and characterized reporters that provide high-throughput, ubiquitin system-independent measurements of proteasome activity. Using single-cell measurements of proteasome activity from millions of genetically diverse yeast cells, we mapped 15 loci across the genome that influence proteasomal protein degradation. Twelve of these 15 loci exerted specific effects on the degradation of two distinct proteasome substrates, revealing a high degree of substrate-specificity in the genetics of proteasome activity. Using CRISPR-Cas9-based allelic engineering, we resolved a locus to a causal variant in the promoter of RPT6, a gene that encodes a subunit of the proteasome's 19S regulatory particle. The variant increases RPT6 expression, which we show results in increased proteasome activity. Our results reveal the complex genetic architecture of proteasome activity and suggest that genetic influences on the proteasome may be an important source of variation in the many cellular and organismal traits shaped by protein degradation.
Collapse
Affiliation(s)
- Mahlon A. Collins
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randi Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Frank W. Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Prokop JW, Bupp CP, Frisch A, Bilinovich SM, Campbell DB, Vogt D, Schultz CR, Uhl KL, VanSickle E, Rajasekaran S, Bachmann AS. Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development. Genes (Basel) 2021; 12:genes12040470. [PMID: 33806076 PMCID: PMC8064465 DOI: 10.3390/genes12040470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.W.P.); (A.S.B.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA;
| | - Austin Frisch
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Correspondence: (J.W.P.); (A.S.B.)
| |
Collapse
|
3
|
Lovelett RJ, Zhao EM, Lalwani MA, Toettcher JE, Kevrekidis IG, L Avalos J. Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications. ACS Synth Biol 2021; 10:219-227. [PMID: 33492138 PMCID: PMC10410538 DOI: 10.1021/acssynbio.0c00372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.
Collapse
Affiliation(s)
- Robert J Lovelett
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Evan M Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Makoto A Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Yang YF, Lee CY, Hsieh JY, Liu YL, Lin CL, Liu GY, Hung HC. Regulation of polyamine homeostasis through an antizyme citrullination pathway. J Cell Physiol 2021; 236:5646-5663. [PMID: 33432662 DOI: 10.1002/jcp.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022]
Abstract
This study reveals an uncovered mechanism for the regulation of polyamine homeostasis through protein arginyl citrullination of antizyme (AZ), a natural inhibitor of ornithine decarboxylase (ODC). ODC is critical for the cellular production of polyamines. AZ binds to ODC dimers and promotes the degradation of ODC via the 26S proteasome. This study demonstrates the protein citrullination of AZ catalyzed by peptidylarginine deiminase type 4 (PAD4) both in vitro and in cells. Upon PAD4 activation, the AZ protein was citrullinated and accumulated, leading to higher levels of ODC proteins in the cell. In the PAD4-overexpressing and activating cells, the levels of ODC enzyme activity and the product putrescine increased with the level of citrullinated AZ proteins and PAD4 activity. Suppressing cellular PAD4 activity reduces the cellular levels of ODC and downregulates cellular polyamines. Furthermore, citrullination of AZ in the C-terminus attenuates AZ function in the inhibition, binding, and degradation of ODC. This paper provides evidence to illustrate that PAD4-mediated AZ citrullination upregulates cellular ODC and polyamines by retarding ODC degradation, thus interfering with the homeostasis of cellular polyamines, which may be an important pathway regulating AZ functions that is relevant to cancer biology.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Yun Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ju-Yi Hsieh
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Allergy Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Institute of Genomics & Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Chen RP, Gaynor AS, Chen W. Synthetic biology approaches for targeted protein degradation. Biotechnol Adv 2019; 37:107446. [DOI: 10.1016/j.biotechadv.2019.107446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
|
6
|
Salazar-Retana AL, Maruri-López I, Hernández-Sánchez IE, Becerra-Flora A, Guerrero-González MDLL, Jiménez-Bremont JF. PEST sequences from a cactus dehydrin regulate its proteolytic degradation. PeerJ 2019; 7:e6810. [PMID: 31143531 PMCID: PMC6524633 DOI: 10.7717/peerj.6810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Dehydrins (DHNs) are intrinsically disordered proteins expressed under cellular dehydration-related stresses. In this study, we identified potential proteolytic PEST sequences located at the central and C-terminal regions from the Opuntia streptacantha OpsDHN1 protein. In order to evaluate these PEST sequences as proteolytic tags, we generated a translational fusion with the GUS reporter protein and OpsDHN1 coding sequence. We found a GUS degradation effect in tobacco agro-infiltrated leaves and Arabidopsis transgenic lines that expressed the fusion GUS::OpsDHN1 full-length. Also, two additional translational fusions between OpsDHN1 protein fragments that include the central (GUS::PEST-1) or the C-terminal (GUS::PEST-2) PEST sequences were able to decrease the GUS activity, with PEST-2 showing the greatest reduction in GUS activity. GUS signal was abated when the OpsDHN1 fragment that includes both PEST sequences (GUS::PEST-1-2) were fused to GUS. Treatment with the MG132 proteasome inhibitor attenuated the PEST-mediated GUS degradation. Point mutations of phosphorylatable residues in PEST sequences reestablished GUS signal, hence these sequences are important during protein degradation. Finally, in silico analysis identified potential PEST sequences in other plant DHNs. This is the first study reporting presence of PEST motifs in dehydrins.
Collapse
Affiliation(s)
- Adriana L Salazar-Retana
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
| | - Israel Maruri-López
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México.,Current affiliation: Centro de Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Itzell E Hernández-Sánchez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México.,Current affiliation: Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam, Germany
| | - Alicia Becerra-Flora
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
| | | | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
7
|
Tomita T, Matouschek A. Substrate selection by the proteasome through initiation regions. Protein Sci 2019; 28:1222-1232. [PMID: 31074920 DOI: 10.1002/pro.3642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
Abstract
Proteins in the cell have to be eliminated once their function is no longer desired or they become damaged. Most regulated protein degradation is achieved by a large enzymatic complex called the proteasome. Many proteasome substrates are targeted for degradation by the covalent attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation. Here, we review how the proteasome selects initiation sites within its substrates and discuss how the initiation step affects physiological processes.
Collapse
Affiliation(s)
- Takuya Tomita
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
8
|
Becerra-Rivera VA, Dunn MF. Polyamine biosynthesis and biological roles in rhizobia. FEMS Microbiol Lett 2019; 366:5476500. [DOI: 10.1093/femsle/fnz084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
ABSTRACTPolyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.
Collapse
Affiliation(s)
- Victor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
9
|
Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:2452-63. [DOI: 10.1016/j.bbagen.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
10
|
Lee CY, Liu YL, Lin CL, Liu GY, Hung HC. Functional roles of the dimer-interface residues in human ornithine decarboxylase. PLoS One 2014; 9:e104865. [PMID: 25140796 PMCID: PMC4139326 DOI: 10.1371/journal.pone.0104865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/13/2014] [Indexed: 01/06/2023] Open
Abstract
Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the Kd value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Institute of Microbiology and Immunology and Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University and Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology and Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University and Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center (ABC), National Chung-Hsing University (NCHU), Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
11
|
Takamune N, Irisaka Y, Yamamoto M, Harada K, Shoji S, Misumi S. Induction of extremely low protein expression level by fusion of C-terminal region of Nef. Biotechnol Appl Biochem 2013; 59:245-53. [PMID: 23586835 DOI: 10.1002/bab.1021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 04/02/2012] [Indexed: 11/12/2022]
Abstract
Nef is one of the accessory proteins of human immunodeficiency viruses. Here, we noted that the relative expression level of Nef(NL4-3) is much lower than that of NefJR-CSF in HEK293 cells. By evaluating the expression level using a Nef mutant, it was indicated that amino acids 129-206 of Nef(NL4-3), that is, the C-terminal region named NLAA129-206, could contain the region responsible for the induction of the low protein expression level. In addition, the expression levels of the enhanced green fluorescent protein and Renilla luciferase became extremely low with the fusion of NLAA129-206. Interestingly, the NLAA129-206-corresponding sequences of other Nef variants with relatively high expression levels also induced the extremely low protein expression level by fusion. These results suggest that the C-terminal region of Nef can generally induce an extremely low protein expression level. Here, we propose that the C-terminal region of Nef could become an excellent tool for the induction of an extremely low expression level of arbitrary proteins by attachment as fusion proteins.
Collapse
Affiliation(s)
- Nobutoki Takamune
- Department of Pharmaceutical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Too PHM, Erales J, Simen JD, Marjanovic A, Coffino P. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit. J Biol Chem 2013; 288:13243-57. [PMID: 23530043 DOI: 10.1074/jbc.m113.452524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ATP-dependent proteases translocate and unfold their substrates. RESULTS A human virus sequence with only Gly and Ala residues causes similar dysfunctions of eukaryotic and prokaryotic protease motors: unfolding failure. CONCLUSION Sequences with amino acids of simple shape and small size impair unfolding of contiguous stable domains. SIGNIFICANCE Compartmented ATP-dependent proteases of diverse origin share conserved principles of interaction between translocase/effector and substrate/recipient. ATP-dependent proteases engage, translocate, and unfold substrate proteins. A sequence with only Gly and Ala residues (glycine-alanine repeat; GAr) encoded by the Epstein-Barr virus of humans inhibits eukaryotic proteasome activity. It causes the ATPase translocase to slip on its protein track, stalling unfolding and interrupting degradation. The bacterial protease ClpXP is structurally simpler than the proteasome but has related elements: a regulatory ATPase complex (ClpX) and associated proteolytic chamber (ClpP). In this study, GAr sequences were found to impair ClpXP function much as in proteasomes. Stalling depended on interaction between a GAr and a suitably spaced and positioned folded domain resistant to mechanical unfolding. Persistent unfolding failure results in the interruption of degradation and the production of partial degradation products that include the resistant domain. The capacity of various sequences to cause unfolding failure was investigated. Among those tested, a GAr was most effective, implying that viral selection had optimized processivity failure. More generally, amino acids of simple shape and small size promoted unfolding failure. The ClpX ATPase is a homohexamer. Partial degradation products could exit the complex through transient gaps between the ClpX monomers or, alternatively, by backing out. Production of intermediates by diverse topological forms of the hexamer was shown to be similar, excluding lateral escape. In principle, a GAr could interrupt degradation because 1) the translocase thrusts forward less effectively or because 2) the translocase retains substrate less well when resetting between forward strokes. Kinetic analysis showed that the predominant effect was through the second of these mechanisms.
Collapse
Affiliation(s)
- Priscilla Hiu-Mei Too
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
13
|
Liu CW, Jacobson AD. Functions of the 19S complex in proteasomal degradation. Trends Biochem Sci 2013; 38:103-10. [PMID: 23290100 DOI: 10.1016/j.tibs.2012.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
The 26S proteasome degrades ubiquitylated proteins. It consists of the 20S proteasome and the PA700/19S complex. PA700 plays essential roles in processing ubiquitylated substrates; it can bind, deubiquitylate, and unfold ubiquitylated proteins, which then translocate into the proteolytic chamber of the 20S proteasome for degradation. Here, we summarize the current knowledge of PA700-mediated substrate binding and deubiquitylation, and provide models to explain how substrate binding and deubiquitylation could regulate proteasomal degradation. We also discuss the features and potential therapeutic uses of the two recently identified small molecule inhibitors of the proteasome-residing deubiquitylating enzymes.
Collapse
Affiliation(s)
- Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA.
| | | |
Collapse
|
14
|
Joshi SN, Butler DC, Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs 2012; 4:686-93. [PMID: 22929188 DOI: 10.4161/mabs.21696] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrabodies can be powerful reagents to effect modulation of aberrant intracellular proteins that underlie a range of diseases. However, their cytoplasmic solubility can be limiting. We previously reported that overall charge and hydrophilicity can be combined to provide initial estimates of intracellular solubility, and that charge engineering via fusion can alter solubility properties experimentally. Additional studies showed that fusion of a proteasome-targeting PEST motif to the anti-huntingtin intrabody scFv-C4 can degrade mutant huntingtin proteins by directing them to the proteasome, while also increasing the negative charge. We now validate the generality of this approach with intrabodies against α-synuclein (α-syn), an important target in Parkinson disease. In this study, fusion of the PEST sequence to a set of four diverse, poorly soluble anti-α-syn intrabodies (D5E, 10H, D10 scFv, VH14 nanobody) significantly increased steady-state soluble intrabody protein levels in all cases, despite fusion with the PEST proteasomal-targeting signal. Furthermore, adding this PEST motif to the least soluble construct, VH14, significantly enhanced degradation of the target protein, α-syn~GFP. The intrabody-PEST fusion approach thus has dual advantages of potentially solubilizing intrabodies and enhancing their functionality in parallel. Empirical testing of intrabody-PEST fusions is recommended for enhancement of intrabody solubility from diverse sources.
Collapse
Affiliation(s)
- Shubhada N Joshi
- Department of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | | | | |
Collapse
|
15
|
Liu YC, Hsu DH, Huang CL, Liu YL, Liu GY, Hung HC. Determinants of the differential antizyme-binding affinity of ornithine decarboxylase. PLoS One 2011; 6:e26835. [PMID: 22073206 PMCID: PMC3207831 DOI: 10.1371/journal.pone.0026835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/05/2011] [Indexed: 01/26/2023] Open
Abstract
Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The Kd value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the Kd value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the Kd was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC Kd, which suggests that residues 119 and 137 play a role in AZ binding.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Den-Hua Hsu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Liang Huang
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Guang-Yaw Liu
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
16
|
|
17
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
18
|
Liu YC, Liu YL, Su JY, Liu GY, Hung HC. Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS One 2011; 6:e19253. [PMID: 21552531 PMCID: PMC3084279 DOI: 10.1371/journal.pone.0019253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/24/2011] [Indexed: 12/18/2022] Open
Abstract
Both ornithine decarboxylase (ODC) and its regulatory protein, antizyme inhibitor (AZI), can bind with antizyme (AZ), but the latter has a higher AZ-binding affinity. The results of this study clearly identify the critical amino acid residues governing the difference in AZ-binding affinities between human ODC and AZI. Inhibition experiments using a series of ODC mutants suggested that residues 125 and 140 may be the key residues responsible for the differential AZ-binding affinities. The ODC_N125K/M140K double mutant demonstrated a significant inhibition by AZ, and the IC50 value of this mutant was 0.08 µM, three-fold smaller than that of ODC_WT. Furthermore, the activity of the AZ-inhibited ODC_N125K/M140K enzyme was hardly rescued by AZI. The dissociation constant (Kd) of the [ODC_N125K/M140K]-AZ heterodimer was approximately 0.02 µM, which is smaller than that of WT_ODC by approximately 10-fold and is very close to the Kd value of AZI_WT, suggesting that ODC_N125K/M140K has an AZ-binding affinity higher than that of ODC_WT and similar to that of AZI. The efficiency of the AZI_K125N/K140M double mutant in the rescue of AZ-inhibited ODC enzyme activity was less than that of AZI_WT. The Kd value of [AZI_K125N/K140M]-AZ was 0.18 µM, nine-fold larger than that of AZI_WT and close to the Kd value of ODC_WT, suggesting that AZI_K125N/K140M has an AZ-binding affinity lower than that of AZI_WT and similar to that of ODC. These data support the hypothesis that the differences in residues 125 and 140 in ODC and AZI are responsible for the differential AZ-binding affinities.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology and Institute of Immunology, Chung-Shan Medical University and Hospital, Taichung, Taiwan
| | - Jia-Yang Su
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - Guang-Yaw Liu
- Division of Allergy, Immunology and Rheumatology and Institute of Immunology, Chung-Shan Medical University and Hospital, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| | - Hui-Chih Hung
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
- * E-mail: (HCH); (GYL)
| |
Collapse
|
19
|
Gödderz D, Schäfer E, Palanimurugan R, Dohmen RJ. The N-Terminal Unstructured Domain of Yeast ODC Functions as a Transplantable and Replaceable Ubiquitin-Independent Degron. J Mol Biol 2011; 407:354-67. [DOI: 10.1016/j.jmb.2011.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 01/01/2023]
|
20
|
Henderson A, Erales J, Hoyt MA, Coffino P. Dependence of proteasome processing rate on substrate unfolding. J Biol Chem 2011; 286:17495-502. [PMID: 21454622 DOI: 10.1074/jbc.m110.212027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ∼5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.
Collapse
Affiliation(s)
- Allen Henderson
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Human thymidylate synthase (hTS; EC 2.1.1.45) is one of a small group of proteasomal substrates whose intracellular degradation occurs in a ubiquitin-independent manner. Previous studies have shown that proteolytic breakdown of the hTS polypeptide is directed by an intrinsically disordered 27-residue domain at the N-terminal end of the molecule. This domain, in co-operation with an α-helix spanning amino acids 31–45, functions as a degron, in that it has the ability to destabilize a heterologous polypeptide to which it is attached. In the present study, we provide evidence indicating that it is the 26S isoform of the proteasome that is responsible for intracellular degradation of the hTS polypeptide. In addition, we have used targeted in vitro mutagenesis to show that an Arg–Arg motif at residues 10–11 is required for proteolysis, an observation that was confirmed by functional analysis of the TS N-terminus from other mammalian species. The effects of stabilizing mutations on hTS degradation are maintained when the enzyme is provided with an alternative means of proteasome association; thus such mutations perturb one or more post-docking steps in the degradation pathway. Surprisingly, deletion mutants missing large segments of the disordered domain still function as proteasomal substrates; however, degradation of such mutants occurs by a mechanism that is distinct from that for the wild-type protein. Taken together, our results provide information on the roles of specific subregions within the intrinsically disordered N-terminal domain of hTS in regulation of degradation, leading to a deeper understanding of mechanisms underlying the ubiquitin-independent proteasomal degradation pathway.
Collapse
|
22
|
Oxidative protein damage and the proteasome. Amino Acids 2010; 42:23-38. [DOI: 10.1007/s00726-010-0646-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 05/29/2010] [Indexed: 12/24/2022]
|
23
|
Zhao M, Zhang NY, Zurawel A, Hansen KC, Liu CW. Degradation of some polyubiquitinated proteins requires an intrinsic proteasomal binding element in the substrates. J Biol Chem 2009; 285:4771-80. [PMID: 20007692 DOI: 10.1074/jbc.m109.060095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine 48-linked polyubiquitin chains usually target proteins for 26 S proteasomal degradation; however, this modification is not a warrant for destruction. Here, we found that efficient degradation of a physiological substrate UbcH10 requires not only an exogenous polyubiquitin chain modification but also its unstructured N-terminal region. Interestingly, the unstructured N-terminal region of UbcH10 directly binds the 19 S regulatory complex of the 26 S proteasome, and it mediates the initiation of substrate translocation. To promote ubiquitin-dependent degradation of the folded domains of UbcH10, its N-terminal region can be displaced by exogenous proteasomal binding elements. Moreover, the unstructured N-terminal region can initiate substrate translocation even when UbcH10 is artificially cyclized without a free terminus. Polyubiquitinated circular UbcH10 is completely degraded by the 26 S proteasome. Accordingly, we propose that degradation of some polyubiquitinated proteins requires two binding interactions: a polyubiquitin chain and an intrinsic proteasomal binding element in the substrates (likely an unstructured region); moreover, the intrinsic proteasomal binding element initiates substrate translocation regardless of its location in the substrates.
Collapse
Affiliation(s)
- Minglian Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
24
|
Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland. Amino Acids 2009; 38:591-601. [PMID: 19997757 DOI: 10.1007/s00726-009-0422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and beta-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N(1)-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of beta-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of beta-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ.
Collapse
|
25
|
Kodadek T. No Splicing, no dicing: non-proteolytic roles of the ubiquitin-proteasome system in transcription. J Biol Chem 2009; 285:2221-6. [PMID: 19955182 DOI: 10.1074/jbc.r109.077883] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is responsible for most programmed turnover of proteins in eukaryotic cells, and this activity has been known for some time to be involved in transcriptional regulation. More recently, intersections of the UPP and transcription have been discovered that are not proteolytic in nature and appear to revolve around the chaperonin-like activities of the ATPases in the 19 S regulatory subunit of the proteasome. Moreover, monoubiquitylation, which does not signal degradation, has been found to be a key modification of many transcription factors and histones. These various non-proteolytic roles of the UPP in transcription are reviewed here, and plausible mechanistic models are discussed.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA.
| |
Collapse
|
26
|
Abstract
Protein degradation plays a central role in many cellular functions. Misfolded and damaged proteins are removed from the cell to avoid toxicity. The concentrations of regulatory proteins are adjusted by degradation at the appropriate time. Both foreign and native proteins are digested into small peptides as part of the adaptive immune response. In eukaryotic cells, an ATP-dependent protease called the proteasome is responsible for much of this proteolysis. Proteins are targeted for proteasomal degradation by a two-part degron, which consists of a proteasome binding signal and a degradation initiation site. Here we describe how both components contribute to the specificity of degradation.
Collapse
Affiliation(s)
- Erin K Schrader
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
27
|
Peña MMO, Melo SP, Xing YY, White K, Barbour KW, Berger FG. The intrinsically disordered N-terminal domain of thymidylate synthase targets the enzyme to the ubiquitin-independent proteasomal degradation pathway. J Biol Chem 2009; 284:31597-607. [PMID: 19797058 DOI: 10.1074/jbc.m109.038455] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-independent proteasomal degradation pathway is increasingly being recognized as important in regulation of protein turnover in eukaryotic cells. One substrate of this pathway is the pyrimidine biosynthetic enzyme thymidylate synthase (TS; EC 2.1.1.45), which catalyzes the reductive methylation of dUMP to form dTMP and is essential for DNA replication during cell growth and proliferation. Previous work from our laboratory showed that degradation of TS is ubiquitin-independent and mediated by an intrinsically disordered 27-residue region at the N-terminal end of the molecule. In the current study we show that this region, in cooperation with an alpha-helix formed by the next 15 residues, functions as a degron, i.e. it is capable of destabilizing a heterologous protein to which it is fused. Comparative analysis of the primary sequence of TS from a number of mammalian species revealed that the N-terminal domain is hypervariable among species yet is conserved with regard to its disordered nature, its high Pro content, and the occurrence of Pro at the penultimate site. Characterization of mutant proteins showed that Pro-2 protects the N terminus against N(alpha)-acetylation, a post-translational process that inhibits TS degradation. However, although a free amino group at the N terminus is necessary, it is not sufficient for degradation of the polypeptide. The implications of these findings to the proteasome-targeting function of the N-terminal domain, particularly with regard to its intrinsic flexibility, are discussed.
Collapse
Affiliation(s)
- Maria Marjorette O Peña
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
28
|
Su KL, Liao YF, Hung HC, Liu GY. Critical factors determining dimerization of human antizyme inhibitor. J Biol Chem 2009; 284:26768-77. [PMID: 19635796 DOI: 10.1074/jbc.m109.007807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase (ODC) is the first enzyme involved in polyamine biosynthesis, and it catalyzes the decarboxylation of ornithine to putrescine. ODC is a dimeric enzyme, whereas antizyme inhibitor (AZI), a positive regulator of ODC that is homologous to ODC, exists predominantly as a monomer and lacks decarboxylase activity. The goal of this paper was to identify the essential amino acid residues that determine the dimerization of AZI. The nonconserved amino acid residues in the putative dimer interface of AZI (Ser-277, Ser-331, Glu-332, and Asp-389) were substituted with the corresponding residues in the putative dimer interface of ODC (Arg-277, Tyr-331, Asp-332, and Tyr-389, respectively). Analytical ultracentrifugation analysis was used to determine the size distribution of these AZI mutants. The size-distribution analysis data suggest that residue 331 may play a major role in the dimerization of AZI. Mutating Ser-331 to Tyr in AZI (AZI-S331Y) caused a shift from a monomer configuration to a dimer. Furthermore, in comparison with the single mutant AZI-S331Y, the AZI-S331Y/D389Y double mutant displayed a further reduction in the monomer-dimer K(d), suggesting that residue 389 is also crucial for AZI dimerization. Analysis of the triple mutant AZI-S331Y/D389Y/S277R showed that it formed a stable dimer (K(d) value = 1.3 microm). Finally, a quadruple mutant, S331Y/D389Y/S277R/E332D, behaved as a dimer with a K(d) value of approximately 0.1 microm, which is very close to that of the human ODC enzyme. The quadruple mutant, although forming a dimer, could still be disrupted by antizyme (AZ), further forming a heterodimer, and it could rescue the AZ-inhibited ODC activity, suggesting that the AZ-binding ability of the AZI dimer was retained.
Collapse
Affiliation(s)
- Kuo-Liang Su
- Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung
| | | | | | | |
Collapse
|
29
|
Tsvetkov P, Reuven N, Prives C, Shaul Y. Susceptibility of p53 unstructured N terminus to 20 S proteasomal degradation programs the stress response. J Biol Chem 2009; 284:26234-42. [PMID: 19617345 DOI: 10.1074/jbc.m109.040493] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The N-terminal transcription activation domain of p53 is intrinsically unstructured. We show in vitro and in vivo that this domain initiates p53 degradation by the 20 S proteasome in a ubiquitin-independent fashion. The decay of metabolically labeled p53 follows biphasic kinetics with an immediate fast phase that is ubiquitin-independent and a second slower phase that is ubiquitin-dependent. The 20 S proteasome executes the first phase by default, whereas the second phase requires the 26 S proteasome. p53 N-terminal binding proteins, such as Hdmx, can selectively block the first phase of degradation. Remarkably, gamma-irradiation inhibits both p53 decay phases, whereas UV selectively negates the second phase, giving rise to discrete levels of p53 accumulation. Our data of a single protein experiencing double mode degradation mechanisms each with unique kinetics provide the mechanistic basis for programmable protein homeostasis (proteostasis).
Collapse
Affiliation(s)
- Peter Tsvetkov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci U S A 2008; 105:10079-84. [PMID: 18626014 DOI: 10.1073/pnas.0801590105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes.
Collapse
|
31
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
32
|
Structural elements of the ubiquitin-independent proteasome degron of ornithine decarboxylase. Biochem J 2008; 410:401-7. [PMID: 17979831 DOI: 10.1042/bj20071239] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse ODC (ornithine decarboxylase) is quickly degraded by the 26S proteasome in mammalian and fungal cells. Its degradation is independent of ubiquitin but requires a degradation signal composed of residues 425-461 at the ODC C-terminus, cODC (the last 37 amino acids of the ODC C-terminus). Mutational analysis of cODC revealed the presence of two essential elements in the degradation signal. The first consists of cysteine and alanine at residues 441 and 442 respectively. The second element is the C-terminus distal to residue 442; it has little or no sequence specificity, but is intolerant of insertions or deletions that alter its span. Reducing conditions, which preclude all well-characterized chemical reactions of the Cys(441) thiol, are essential for in vitro degradation. These experiments imply that the degradative function of Cys(441) does not involve its participation in chemical reaction; it, instead, functions within a structural element for recognition by the 26S proteasome.
Collapse
|
33
|
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P. A genetic screen forSaccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 2008; 25:199-217. [DOI: 10.1002/yea.1579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Hsieh CH, Chen FD, Wang HE, Hwang JJ, Chang CW, Lee YJ, Gelovani JG, Liu RS. Generation of Destabilized Herpes Simplex Virus Type 1 Thymidine Kinase as Transcription Reporter for PET Reporter Systems in Molecular–Genetic Imaging. J Nucl Med 2007; 49:142-50. [DOI: 10.2967/jnumed.106.038943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Zhou S, DeWille J. Proteasome-mediated CCAAT/enhancer-binding protein delta (C/EBPdelta) degradation is ubiquitin-independent. Biochem J 2007; 405:341-9. [PMID: 17373909 PMCID: PMC1904515 DOI: 10.1042/bj20070082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
C/EBPdelta (CCAAT/enhancer-binding protein delta) is a member of the C/EBP family of nuclear proteins that function in the control of cell growth, survival, differentiation and apoptosis. We previously demonstrated that C/EBPdelta gene transcription is highly induced in G(0) growth-arrested mammary epithelial cells but the C/EBPdelta protein exhibits a t(1/2) of only approximately 120 min. The goal of the present study was to investigate the role of C/EBPdelta modification by ubiquitin and C/EBPdelta proteasome-mediated degradation. Structural and mutational analyses demonstrate that an intact leucine zipper is required for C/EBPdelta ubiquitination; however, the leucine zipper does not provide lysine residues for ubiquitin conjugation. C/EBPdelta ubiquitination is not required for proteasome-mediated C/EBPdelta degradation and the presence of ubiquitin does not increase C/EBPdelta degradation by the proteasome. Instead, the leucine zipper stabilizes the C/EBPdelta protein by forming homodimers that are poor substrates for proteasome degradation. To investigate the cellular conditions associated with C/EBPdelta ubiquitination we treated G(0) growth-arrested mammary epithelial cells with DNA-damage- and oxidative-stress-inducing agents and found that C/EBPdelta ubiquitination is induced in response to H2O2. However, C/EBPdelta protein stability is not influenced by H2O2 treatment. In conclusion, our results demonstrate that proteasome-mediated protein degradation of C/EBPdelta is ubiquitin-independent.
Collapse
Affiliation(s)
- Shanggen Zhou
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
| | - James W. DeWille
- The Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Park SH, Bolender N, Eisele F, Kostova Z, Takeuchi J, Coffino P, Wolf DH. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell 2007; 18:153-65. [PMID: 17065559 PMCID: PMC1751312 DOI: 10.1091/mbc.e06-04-0338] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/11/2022] Open
Abstract
The mechanism of protein quality control and elimination of misfolded proteins in the cytoplasm is poorly understood. We studied the involvement of cytoplasmic factors required for degradation of two endoplasmic reticulum (ER)-import-defective mutated derivatives of carboxypeptidase yscY (DeltassCPY* and DeltassCPY*-GFP) and also examined the requirements for degradation of the corresponding wild-type enzyme made ER-import incompetent by removal of its signal sequence (DeltassCPY). All these protein species are rapidly degraded via the ubiquitin-proteasome system. Degradation requires the ubiquitin-conjugating enzymes Ubc4p and Ubc5p, the cytoplasmic Hsp70 Ssa chaperone machinery, and the Hsp70 cochaperone Ydj1p. Neither the Hsp90 chaperones nor Hsp104 or the small heat-shock proteins Hsp26 and Hsp42 are involved in the degradation process. Elimination of a GFP fusion (GFP-cODC), containing the C-terminal 37 amino acids of ornithine decarboxylase (cODC) directing this enzyme to the proteasome, is independent of Ssa1p function. Fusion of DeltassCPY* to GFP-cODC to form DeltassCPY*-GFP-cODC reimposes a dependency on the Ssa1p chaperone for degradation. Evidently, the misfolded protein domain dictates the route of protein elimination. These data and our further results give evidence that the Ssa1p-Ydj1p machinery recognizes misfolded protein domains, keeps misfolded proteins soluble, solubilizes precipitated protein material, and escorts and delivers misfolded proteins in the ubiquitinated state to the proteasome for degradation.
Collapse
Affiliation(s)
- Sae-Hun Park
- *Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany; and
| | - Natalia Bolender
- *Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany; and
| | - Frederik Eisele
- *Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany; and
| | - Zlatka Kostova
- *Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany; and
| | - Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Dieter H. Wolf
- *Institut fuer Biochemie, Universitaet Stuttgart, 70569 Stuttgart, Germany; and
| |
Collapse
|
37
|
Takeuchi J, Chen H, Coffino P. Proteasome substrate degradation requires association plus extended peptide. EMBO J 2006; 26:123-31. [PMID: 17170706 PMCID: PMC1782366 DOI: 10.1038/sj.emboj.7601476] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022] Open
Abstract
To determine the minimum requirements for substrate recognition and processing by proteasomes, the functional elements of a ubiquitin-independent degradation tag were dissected. The 37-residue C-terminus of ornithine decarboxylase (cODC) is a native degron, which also functions when appended to diverse proteins. Mutating the cysteine 441 residue within cODC impaired its proteasome association in the context of ornithine decarboxylase and prevented the turnover of GFP-cODC in yeast cells. Degradation of GFP-cODC with C441 mutations was restored by providing an alternate proteasome association element via fusion to the Rpn10 proteasome subunit. However, Rpn10-GFP was stable, unless extended by cODC or other peptides of similar size. In vitro reconstitution experiments confirmed the requirement for both proteasome tethering and a loosely structured region. Therefore, cODC and degradation tags in general must serve two functions: proteasome association and a site, consisting of an extended peptide region, used for initiating insertion into the protease.
Collapse
Affiliation(s)
- Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Hui Chen
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Ave, Microbiology room S430, San Francisco, CA 94143, USA. Tel.: +1 415 516 6515; Fax: +1 415 476 8201; E-mail:
| |
Collapse
|
38
|
Sandhu KS, Dash D. Conformational flexibility may explain multiple cellular roles of PEST motifs. Proteins 2006; 63:727-32. [PMID: 16493650 DOI: 10.1002/prot.20918] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PEST sequences are one of the major motifs that serve as signal for the protein degradation and are also involved in various cellular processes such as phosphorylation and protein-protein interaction. In our earlier study, we found that these motifs contribute largely to eukaryotic protein disorder. This observation led us to evaluate their conformational variability in the nonredundant Protein Data Bank (PDB) structures. For this purpose, crystallographic temperature factors, structural alignment of multiple NMR models, and dihedral angle order parameters have been used in this study. The study has revealed the hypermobility of PEST motifs as compared to other regions of the protein. Conformational flexibility may allow them to participate in number of molecular interactions under different conditions. This analysis may explain the role of protein backbone flexibility in bringing about multiple cellular roles of PEST motifs.
Collapse
Affiliation(s)
- Kuljeet Singh Sandhu
- G. N. Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | | |
Collapse
|
39
|
von Janowsky B, Knapp K, Major T, Krayl M, Guiard B, Voos W. Structural properties of substrate proteins determine their proteolysis by the mitochondrial AAA+ protease Pim1. Biol Chem 2006; 386:1307-17. [PMID: 16336126 DOI: 10.1515/bc.2005.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The protease Pim1/LON, a member of the AAA+ family of homo-oligomeric ATP-dependent proteases, is responsible for the degradation of soluble proteins in the mitochondrial matrix. To establish the molecular parameters required for the specific recognition and proteolysis of substrate proteins by Pim1, we analyzed the in organello degradation of imported reporter proteins containing different structural properties. The amino acid composition at the amino-terminal end had no major effect on the proteolysis reaction. However, proteins with an amino-terminal extension of less than 60 amino acids in front of a stably folded reporter domain were completely resistant to proteolysis by Pim1. Substrate proteins with a longer amino-terminal extension showed incomplete proteolysis, resulting in the generation of a defined degradation fragment. We conclude that Pim1-mediated protein degradation is processive and is initiated from an unstructured amino-terminal segment. Resistance to degradation and fragment formation was abolished if the folding state of the reporter domain was destabilized, indicating that Pim1 is not able to unravel folded proteins for proteolysis. We propose that the requirement for an exposed, large, non-native protein segment, in combination with a limited unfolding capability, accounts for the selectivity of the protease Pim1 for damaged or misfolded polypeptides.
Collapse
Affiliation(s)
- Birgit von Janowsky
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J 2006; 25:1720-9. [PMID: 16601692 PMCID: PMC1440830 DOI: 10.1038/sj.emboj.7601058] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 03/01/2006] [Indexed: 11/09/2022] Open
Abstract
Proteasome ATPases unravel folded proteins. Introducing a sequence containing only glycine and alanine residues (GAr) into substrates can impair their digestion. We previously proposed that a GAr interferes with the unfolding capacity of the proteasome, leading to partial degradation of products. Here we tested that idea in several ways. Stabilizing or destabilizing a folded domain within substrate proteins changed GAr-mediated intermediate production in the way predicted by the model. A downstream folded domain determined the sites of terminal proteolysis. The spacing between a GAr and a folded domain was critical for intermediate production. Intermediates containing a GAr did not remain associated with proteasomes, excluding models whereby retained GAr-containing proteins halt further processing. The following model is supported: a GAr positioned within the ATPase ring reduces the efficiency of coupling between nucleotide hydrolysis and work performed on the substrate. If this impairment takes place when unfolding must be initiated, insertion pauses and proteolysis is limited to the portion of the substrate that has already entered the catalytic chamber of the proteasome.
Collapse
Affiliation(s)
- Martin A Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Judith Zich
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Mingsheng Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Cedric Govaerts
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, UCSF, 513 Parnassus Avenue, San Francisco, CA 94143-0414, USA. Tel.: +1 415 476 1783; E-mail:
| |
Collapse
|
41
|
Peña M, Xing Y, Koli S, Berger F. Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase. Biochem J 2006; 394:355-63. [PMID: 16259621 PMCID: PMC1386034 DOI: 10.1042/bj20051479] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymidylate synthase (TS) catalyses the reductive methylation of dUMP to form dTMP, a reaction that is essential for maintenance of nucleotide pools during cell growth. Because the enzyme is indispensable for DNA replication in actively dividing cells, it is an important target for cytotoxic drugs used in cancer chemotherapy, including fluoropyrimidines (e.g. 5-fluorouracil and 5-fluoro-2'-deoxyuridine) and anti-folates (e.g. raltitrexed, LY231514, ZD9331 and BW1843U89). These drugs generate metabolites that bind to the enzyme's active site and inhibit catalytic activity, leading to thymidylate deprivation and cellular apoptosis. Ligand binding to TS results in stabilization of the enzyme and an increase in its intracellular concentration. Previously, we showed that degradation of the TS polypeptide is carried out by the 26 S proteasome in a ubiquitin-independent manner. Such degradation is directed by the disordered N-terminal region of the TS polypeptide, and is abrogated by ligand binding. In the present study, we have verified the ubiquitin-independent nature of TS proteolysis by showing that a 'lysine-less' polypeptide, in which all lysine residues were replaced by arginine, is still subject to proteasome-mediated degradation. In addition, we have mapped the structural determinants of intracellular TS degradation in more detail and show that residues at the N-terminal end of the molecule, particularly the penultimate amino acid Pro2, play an important role in governing the half-life of the enzyme. This region is capable on its own of destabilizing an evolutionarily distinct TS molecule that normally lacks this domain, indicating that it functions as a degradation signal. Interestingly, degradation of an intrinsically unstable mutant form of TS, containing a Pro-->Leu substitution at residue 303, is directed by C-terminal, rather than N-terminal, sequences. The implications of these findings for the control of TS expression, and for the regulation of protein degradation in general, are discussed.
Collapse
Affiliation(s)
- Maria Marjorette O. Peña
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, U.S.A
| | - Yang Yang Xing
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, U.S.A
| | - Sangita Koli
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, U.S.A
| | - Franklin G. Berger
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Abstract
Ornithine decarboxylase (ODC) initiates the polyamine biosynthetic pathway. The amount of ODC is altered in response to many growth factors, oncogenes, and tumor promoters and to changes in polyamine levels. Susceptibility to tumor development is increased in transgenic mice expressing high levels of ODC and is decreased in mice with reduced ODC due to loss of one ODC allele or elevated expression of antizyme, a protein that stimulates ODC degradation. This review describes key factors that contribute to the regulation of ODC levels, which can occur at the levels of transcription, translation, and protein turnover.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
43
|
Liao M, Zgoda VG, Zgoda VA, Murray BP, Correia MA. Vacuolar degradation of rat liver CYP2B1 in Saccharomyces cerevisiae: further validation of the yeast model and structural implications for the degradation of mammalian endoplasmic reticulum P450 proteins. Mol Pharmacol 2005; 67:1460-9. [PMID: 15703377 DOI: 10.1124/mol.104.009654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins with highly variable half-lives. CYP3A4, the dominant human liver drug-metabolizing enzyme, and its rat liver orthologs undergo ubiquitin (Ub)-dependent 26S proteasomal degradation after suicide inactivation or after heterologous expression in Saccharomyces cerevisiae. In contrast, rat liver CYP2C11 is degraded by the vacuolar "lysosomal" pathway when similarly expressed in yeast. The structural determinants that commit P450s to proteasomal or lysosomal degradation are unknown. To further validate S. cerevisiae as a model for exploring mammalian P450 turnover, the degradation of phenobarbital-inducible liver CYP2B1, an enzyme reportedly degraded via the rat hepatic autophagic-lysosomal pathway, was examined in a yeast strain (pep4delta) deficient in vacuolar degradation and its isogenic wild-type control (PEP4). Although CYP2B1 was equivalently expressed in both strains during early logarithmic growth, its degradation was retarded in pep4delta strain, remaining at a level 5-fold higher than that in PEP4 yeast when monitored at the stationary phase. No comparable CYP2B1 stabilization was detected in yeast genetically deficient in the ER Ub-conjugating enzyme Ubc6p or Ubc7p or defective in 19S proteasomal subunit Hrd2p. Thus, as in the rat liver, CYP2B1 is a target of vacuolar/lysosomal rather than proteasomal degradation in yeast, thereby further validating this model for mammalian P450 turnover. It is intriguing that a chimeric protein, CYP2B1-3A4CT, with the CYP3A4 C-terminal heptapeptide grafted onto the CYP2B1 C terminus, was proteasomally degraded after similar expression. Such diversion of CYP2B1 from its predominantly vacuolar degradation suggests that the CYP3A4 heptapeptide could either actively signal its proteasomal degradation or block its vacuolar proteolysis.
Collapse
Affiliation(s)
- Mingxiang Liao
- Department of Cellular and Molecular Pharmacology, and Liver Center, University of California, San Francisco, 94143-0450, USA
| | | | | | | | | |
Collapse
|
44
|
Luciani F, Keşmir C, Mishto M, Or-Guil M, de Boer RJ. A mathematical model of protein degradation by the proteasome. Biophys J 2005; 88:2422-32. [PMID: 15665121 PMCID: PMC1305341 DOI: 10.1529/biophysj.104.049221] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is the major protease for intracellular protein degradation. The influx rate of protein substrates and the exit rate of the fragments/products are regulated by the size of the axial channels. Opening the channels is known to increase the overall degradation rate and to change the length distribution of fragments. We develop a mathematical model with a flux that depends on the gate size and a phenomenological cleavage mechanism. The model has Michaelis-Menten kinetics with a V(max) that is inversely related to the length of the substrate, as observed in the in vitro experiments. We study the distribution of fragment lengths assuming that proteasomal cleavage takes place at a preferred distance from the ends of a protein fragment, and find multipeaked fragment length distributions similar to those found experimentally. Opening the gates in the model increases the degradation rate, increases the average length of the fragments, and increases the peak in the distribution around a length of 8-10 amino acids. This behavior is also observed in immunoproteasomes equipped with PA28. Finally, we study the effect of re-entry of processed fragments in the degradation kinetics and conclude that re-entry is only expected to affect the cleavage dynamics when short fragments enter the proteasome much faster than the original substrate. In summary, the model proposed in this study captures the known characteristics of proteasomal degradation, and can therefore help to quantify MHC class I antigen processing and presentation.
Collapse
Affiliation(s)
- Fabio Luciani
- Institute for Theoretical Biology, Humboldt University-Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
45
|
Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1695:19-31. [PMID: 15571806 DOI: 10.1016/j.bbamcr.2004.10.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|