1
|
Hu Y, Jin R, Gao M, Xu H, Zou S, Li X, Xing C, Wang Q, Wang H, Feng J, Hu M, Song L. Transcriptional repression of IKKβ by p53 in arsenite-induced GADD45α accumulation and apoptosis. Oncogene 2019; 38:731-746. [PMID: 30177839 PMCID: PMC6355650 DOI: 10.1038/s41388-018-0478-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/01/2023]
Abstract
Our previous studies revealed that GADD45α is a liable protein, which undergoes MDM2-dependent constitutive ubiquitination and degradation in resting HepG2 hepatoma cells. Arsenite exposure induces ribosomal stress responses mediated by the ribosomal protein S7, which can block MDM2 activity and result in GADD45α accumulation and cell apoptosis. In the present study, we found that one of the catalytic subunits of IκB kinase (IKK), IKKβ, exerted a novel IKKα- and NF-κB-independent function in stabilizing MDM2 and therefore contributed to ubiquitination-dependent degradation of GADD45α in resting HepG2 cells. Arsenite stimulation induced transactivation of p53, which formed a complex with its downstream target, Ets-1, and then synergistically repressed IKKβ transcription, reduced MDM2 stability, and ultimately removed the inhibitory effect of MDM2 on GADD45α induction. In addition, DAPK1 functioned as an upstream protein kinase triggering p53/Ets-1-dependent IKKβ and MDM2 reduction and GADD45α accumulation, thus promoting apoptosis in HepG2 cells. Subsequent studies further revealed that the activation of the DAPK1/p53/Ets-1/IKKβ/MDM2/GADD45α cascade was a common signaling event in mediating apoptosis of diverse cancer cells induced by arsenite and other tumor therapeutic agents. Therefore, we conclude that data in the current study have revealed a novel role for IKKβ in negatively regulating GADD45α protein stability and the contribution of p53-dependent IKKβ reduction to mediating cancer cell apoptosis.
Collapse
Affiliation(s)
- Yongliang Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Dermatology, The 309 Hospital of PLA, 17 Heishanhu Street, Beijing, 100091, P. R. China
| | - Rui Jin
- Department of Tumor Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Beijing, 100850, China
| | - Ming Gao
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, P. R. China
| | - Huan Xu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Shuxian Zou
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xiaoguang Li
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Shanghai, 200032, P. R. China
| | - Chen Xing
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Qiyu Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hongli Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Jiannan Feng
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Meiru Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Lun Song
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing, 100850, China.
- Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
- Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
2
|
Wang Y, Jin F, Li F, Qin S, Wang Y. Could targeting the heat shock protein 90 revolutionize antiviral therapy? Future Virol 2018. [DOI: 10.2217/fvl-2017-0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditional antiviral strategies that target viral components are frequently associated with the generation of drug-resistant viruses. Thus, the development of novel antiviral drugs is critical. Hsp90 is a promising broad-spectrum antiviral drug target; however, whether targeting Hsp90 will revolutionize antiviral therapy remains ambiguous. Here, we summarize how Hsp90 functions in relation to its interactors, and listed the specific Hsp90 isoforms that participated in the virus life cycle. We also discuss the advantages and challenges of targeting Hsp90, taking into account antiviral activity, toxicity and the likelihood of emergence of drug-resistant viruses. Overall, we highlight that targeting Hsp90 might represent a novel and effective antiviral strategy. However, further studies are required before Hsp90 inhibitors can be used in antiviral therapy.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
3
|
Yang TY, Teng CLJ, Lin TCC, Chen KC, Hsu SL, Wu CC. Transcriptional repression of Aurora-A gene by wild-type p53 through directly binding to its promoter with histone deacetylase 1 and mSin3a. Int J Cancer 2017; 142:92-108. [PMID: 28884479 DOI: 10.1002/ijc.31035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/06/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023]
Abstract
In this study, we firstly showed that p53 transcriptionally represses Aurora-A gene expression through directly binding to its promoter. DNA affinity precipitation assay and chromatin immunoprecipitation assay indicated that p53 physically bound to the Aurora-A promoter. Moreover, the in vitro and in vivo assays showed that p53 directly bound to the Aurora-A promoter together with histone deacetylase 1 (HDAC1) and mSin3a as corepressors. Furthermore, we identified that the nucleotides -360 to -354 (CCTGCCC), upstream of the Aurora-A transcriptional start site, was responsible for the p53-mediated repression. Mutation within this site disrupted its interaction with p53, mSin3a and HDAC1, as well as attenuated the repressive effect of p53 on Aurora-A promoter activity. Treatment with trichostatin A (TSA), a HDAC1 inhibitor, disrupted the interaction of p53-HDAC1-mSin3a complex with the nucleotides -365∼-345 region, and enhanced the Aurora-A promoter activity and gene expression. Additionally, knockdown of p53 or mSin3a also drastically blocked the formation of p53-HDAC1-mSin3a repressive complex onto this promoter region and elevated the Aurora-A promoter activity and gene expression. Moreover, the p53-HDAC1-mSin3a repressive complex also involved in the inhibition of Aurora-A gene expression upon cisplatin treatment. Finally, the clinical investigation showed that Aurora-A and p53 exhibited an inverse correlation in both the expression level and prognostic status, and the low p53/high Aurora-A showed the poorest prognosis of NSCLC patients. Our findings showed novel regulatory mechanisms of p53 in regulating Aurora-A gene expression in NSCLC cells.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.,Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Tsung-Chieh Chester Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Shih-Lan Hsu
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
| | - Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China.,Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
4
|
Fanning KM, Pfisterer B, Davis AT, Presley TD, Williams IM, Wasserman DH, Cline JM, Kavanagh K. Changes in microvascular density differentiate metabolic health outcomes in monkeys with prior radiation exposure and subsequent skeletal muscle ECM remodeling. Am J Physiol Regul Integr Comp Physiol 2017; 313:R290-R297. [PMID: 28701320 DOI: 10.1152/ajpregu.00108.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Radiation exposure accelerates the onset of age-related diseases such as diabetes, cardiovascular disease, and neoplasia and, thus, lends insight into in vivo mechanisms common to these disorders. Fibrosis and extracellular matrix (ECM) remodeling, which occur with aging and overnutrition and following irradiation, are risk factors for development of type 2 diabetes mellitus. We previously demonstrated an increased incidence of skeletal muscle insulin resistance and type 2 diabetes mellitus in monkeys that had been exposed to whole body irradiation 5-9 yr prior. We hypothesized that irradiation-induced fibrosis alters muscle architecture, predisposing irradiated animals to insulin resistance and overt diabetes. Rhesus macaques (Macaca mulatta, n = 7-8/group) grouped as nonirradiated age-matched controls (Non-Rad-CTL), irradiated nondiabetic monkeys (Rad-CTL), and irradiated monkeys that subsequently developed diabetes (Rad-DM) were compared. Prior radiation exposure resulted in persistent skeletal muscle ECM changes, including a relative overabundance of collagen IV and a trend toward increased transforming growth factor-β1. Preservation of microvascular markers differentiated the irradiated diabetic and nondiabetic groups. Microvascular density and plasma nitrate and heat shock protein 90 levels were lower in Rad-DM than Rad-CTL. These results are consistent with a protective effect of abundant microvasculature in maintaining glycemic control within radiation-induced fibrotic muscle.
Collapse
Affiliation(s)
- K M Fanning
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - B Pfisterer
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - A T Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - T D Presley
- Department of Chemistry, Winston Salem State University, Winston-Salem, North Carolina; and
| | - I M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - D H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - J M Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - K Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina;
| |
Collapse
|
5
|
Grbatinić I, Milošević NT. Incipient UV-Induced Structural Changes in Neutrophil Granulocytes: Morphometric and Texture Analysis of Two-Dimensional Digital Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:387-393. [PMID: 26906218 DOI: 10.1017/s1431927616000532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this study is to determine the ability and consequent significance of fractal and lacunarity analysis together with computational morphometric and gray-level co-occurrence matrix (GLCM) analysis in detecting subtle initial UVB-induced chromatin and cytosolic changes in neutrophil granulocytes. In addition, the direction and potential significance of the observed changes is speculated. Feulgen-stained neutrophils are pictured and their digitalized images are analyzed in specialized software for digital image processing and ImageJ analysis. Significant statistical difference is observed (p0.05). For other parameters there was mostly high statistical significance (p>0.05). Significant unmatched correlations were found as sensitive markers of early morphological changes in cells exposed to UV light. In addition, the correlation between nuclear area and entropy was determined and was highly significant (p<0.001). UVB light, due to its high absorbance by DNA molecules, leads to double behavior of the cells. On one hand, cells start to rearrange but on the other UV light starts very early to immediately damage the cell. All these processes are very subtle in their intensity and GLCM analysis and computational imaging methods based on fractal geometry, i.e. fractal and morphometric analysis, in particular their combination, are very sensitive for detecting and describing these early chromatin changes.
Collapse
Affiliation(s)
- Ivan Grbatinić
- 1Laboratory of Digital Image Processing,School of Medicine,University of Belgrade,Visegradka 2, Belgrade,Serbia
| | - Nebojša T Milošević
- 2Department of Biophysics,School of Medicine,University of Belgrade,Visegradka 2, Belgrade,Serbia
| |
Collapse
|
6
|
Caputo F, De Nicola M, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. NANOSCALE 2015; 7:15643-56. [PMID: 26349675 DOI: 10.1039/c5nr03767k] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce(3+)/Ce(4+) redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Biologia, Università di Roma Tor Vergata, Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sawhney S, Hood K, Shaw A, Braithwaite AW, Stubbs R, Hung NA, Royds JA, Slatter TL. Alpha-enolase is upregulated on the cell surface and responds to plasminogen activation in mice expressing a ∆133p53α mimic. PLoS One 2015; 10:e0116270. [PMID: 25643152 PMCID: PMC4313950 DOI: 10.1371/journal.pone.0116270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
The p53 protein is a master regulator of the stress response. It acts as a tumor suppressor by inducing transcriptional activation of p53 target genes, with roles in apoptosis, cell cycle arrest and metabolism. The discovery of at least 12 isoforms of p53, some of which have tumor-promoting properties, has opened new avenues of research. Our previous work studied tumor phenotypes in four mouse models with different p53 backgrounds: wild-type p53, p53 null, mutant p53 lacking the proline domain (mΔpro), and a mimic for the human Δ133p53α p53 isoform (Δ122p53). To identify the major proteins affected by p53 function early in the response to DNA damage, the current study investigated the entire proteome of bone marrow, thymus, and lung in the four p53 models. Protein extracts from untreated controls and those treated with amsacrine were analyzed using two-dimensional fluorescence difference gel electrophoresis. In the bone marrow, reactive proteins were universally decreased by wild-type p53, including α-enolase. Further analysis of α-enolase in the p53 models revealed that it was instead increased in Δ122p53 hematopoietic and tumor cell cytosol and on the cell surface. Alpha-enolase on the surface of Δ122p53 cells acted as a plasminogen receptor, with tumor necrosis factor alpha induced upon plasminogen stimulation. Taken together, these data identified new proteins associated with p53 function. One of these proteins, α-enolase, is regulated differently by wild-type p53 and Δ122p53 cells, with reduced abundance as part of a wild-type p53 response and increased abundance with Δ122p53 function. Increased cell surface α-enolase on Δ122p53 cells provides a possible explanation for the model’s pro-inflammatory features and suggests that p53 isoforms may direct an inflammatory response by increasing the amount of α-enolase on the cell surface.
Collapse
Affiliation(s)
- Sonal Sawhney
- Wakefield Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Kylie Hood
- Wakefield Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Alisha Shaw
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W. Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Children’s Medical Research Institute, University of Sydney, Westmead, Australia
| | - Richard Stubbs
- Wakefield Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Noelyn A. Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Janice A. Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
8
|
The impact of R213 mutation on p53-mediated p21 activity. Biochimie 2014; 99:215-8. [DOI: 10.1016/j.biochi.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/20/2013] [Indexed: 12/18/2022]
|
9
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
10
|
Biniossek ML, Lechel A, Rudolph KL, Martens UM, Zimmermann S. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J Proteomics 2013; 91:515-35. [PMID: 23969227 DOI: 10.1016/j.jprot.2013.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/25/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023]
Abstract
UNLABELLED Telomerase inhibition causes progressive telomere shortening and cellular senescence, which constitutes a universal barrier to tumor growth and therefore an attractive target for tumor therapy. To expand our previous studies, we investigated the global effects of telomere dysfunction on the proteome of tumor cells in order to find novel senescence biomarkers. Telomerase-deficient HCT-116 cell clones were analyzed by a quantitative proteomic approach using isotope-coded protein labeling (ICPL) and nanoflow-HPLC-MS/MS. Stringent reduction of the extensive proteomic data from this tumor cell model revealed a list of 59 markers including proteins identified in our former studies and a number of novel proteins involved in tumorigenesis and metastasis such as SFN, S100A4, ANXA2, and LGALS1. A loss of the chromatin protein HMGB2 was demonstrated not only in various telomerase-inhibited clones of different tumor cell lines, but also in normal human fibroblasts undergoing replicative senescence and in aging telomerase knockout mice. Impressively, a coherent and dense network of protein-protein interactions for the bulk of the markers and their implementation in signaling pathways involving key regulators for tumorigenesis were revealed. These results have an impact on the understanding of telomere- and senescence-related signal transduction in tumor cells in consideration of the general lack of senescence markers. BIOLOGICAL SIGNIFICANCE Induction of cellular senescence constitutes a potent concept for tumor therapy which interferes with immortalization and additional hallmarks of cancer. The application of a powerful quantitative proteomic approach using isotope-coded protein labeling to an approved model for senescence represented by telomerase inhibited tumor cells led to the identification of novel candidate biomarkers for telomere dysfunction and replicative senescence. Thereby, the identified markers not only fit in the context of the investigated processes with a relevance for additional hallmarks of cancer but are also involved in a strong interaction network and integrated in canonical pathways centered around key cancer-relevant proteins. These potential markers alone or in combination will significantly extend the view on telomere-associated signal transduction in tumor cells and contribute to the field of cellular senescence and aging in consideration of the general lack of biomarkers in this regard.
Collapse
Affiliation(s)
- Martin L Biniossek
- Institute of Molecular Medicine Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Pantic I, Harhaji-Trajkovic L, Pantovic A, Milosevic NT, Trajkovic V. Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis. J Theor Biol 2012; 303:87-92. [PMID: 22763132 DOI: 10.1016/j.jtbi.2012.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 12/30/2022]
Abstract
The aim of our study was to employ fractal analysis for evaluation of ultrastructural changes during early stages of apoptosis. Apoptosis was induced in U251 human glioma cell line by exposure to UVB light. The cells were visualized by optical phase-contrast microscopy and photographed before the UV treatment, immediately after the treatment, as well as at 30 min intervals during 5h observation period. For each of the 32 cells analyzed, cellular and nuclear fractal dimension, as well as nuclear lacunarity, were determined at each time point. Our data demonstrate that cellular ultrastructural complexity determined by fractal dimension and lacunarity significantly decreases after the UV irradiation, with the nuclear lacunarity being a particularly sensitive parameter in detecting early apoptosis. Importantly, fractal analysis was able to detect cellular apoptotic changes earlier than conventional flow cytometric analysis of phosphatidylserine exposure, DNA fragmentation and cell membrane permeabilization. These results indicate that fractal analysis might be a powerful and affordable method for non-invasive early identification of apoptosis in cell cultures.
Collapse
Affiliation(s)
- Igor Pantic
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
12
|
Yan L, Zhao HY, Zhang Y, Shen YF. Differential effects of AdOx on gene expression in P19 embryonal carcinoma cells. BMC Neurosci 2012; 13:6. [PMID: 22221422 PMCID: PMC3276442 DOI: 10.1186/1471-2202-13-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/06/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pluripotent cells maintain a unique gene expression pattern and specific chromatin signature. In this study, we explored the effect of the methyltransferase inhibitor adenosine dialdehyde (AdOx) on pluripotency maintenance and gene expression in P19 embryonal carcinoma cells. RESULTS After AdOx treatment, the pluripotency-related gene network became disordered, and the early developmental genes were released from the repression. Remarkably, AdOx caused contrasting effects on the expression of two key pluripotency genes, nanog and oct3/4, with the reduction of the repressive histone marks H3K27me3, H3K9me3 and H3K9me2 only in the nanog gene. CONCLUSIONS Key pluripotency genes were controlled by different mechanisms, including the differential enrichment of repressive histone methylation marks. These data provided novel clues regarding the critical role of histone methylation in the maintenance of pluripotency and the determination of cell fate in P19 pluripotent cells.
Collapse
Affiliation(s)
- Li Yan
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dongdan Santiao, Beijing 100005, China
| | | | | | | |
Collapse
|
13
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
14
|
Bansal N, Kadamb R, Mittal S, Vig L, Sharma R, Dwarakanath BS, Saluja D. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One 2011; 6:e26156. [PMID: 22028823 PMCID: PMC3197607 DOI: 10.1371/journal.pone.0026156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022] Open
Abstract
Master regulator protein p53, popularly known as the “guardian of genome” is the hub for regulation of diverse cellular pathways. Depending on the cell type and severity of DNA damage, p53 protein mediates cell cycle arrest or apoptosis, besides activating DNA repair, which is apparently achieved by regulation of its target genes, as well as direct interaction with other proteins. p53 is known to repress target genes via multiple mechanisms one of which is via recruitment of chromatin remodelling Sin3/HDAC1/2 complex. Sin3 proteins (Sin3A and Sin3B) regulate gene expression at the chromatin-level by serving as an anchor onto which the core Sin3/HDAC complex is assembled. The Sin3/HDAC co-repressor complex can be recruited by a large number of DNA-binding transcription factors. Sin3A has been closely linked to p53 while Sin3B is considered to be a close associate of E2Fs. The theme of this study was to establish the role of Sin3B in p53-mediated gene repression. We demonstrate a direct protein-protein interaction between human p53 and Sin3B (hSin3B). Amino acids 1–399 of hSin3B protein are involved in its interaction with N-terminal region (amino acids 1–108) of p53. Genotoxic stress induced by Adriamycin treatment increases the levels of hSin3B that is recruited to the promoters of p53-target genes (HSPA8, MAD1 and CRYZ). More importantly recruitment of hSin3B and repression of the three p53-target promoters upon Adriamycin treatment were observed only in p53+/+ cell lines. Additionally an increased tri-methylation of the H3K9 residue at the promoters of HSPA8 and CRYZ was also observed following Adriamycin treatment. The present study highlights for the first time the essential role of Sin3B as an important associate of p53 in mediating the cellular responses to stress and in the transcriptional repression of genes encoding for heat shock proteins or proteins involved in regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Nidhi Bansal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rama Kadamb
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Shilpi Mittal
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Leena Vig
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Raisha Sharma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
15
|
Erythroid Differentiation Regulator 1, an Interleukin 18-Regulated Gene, Acts as a Metastasis Suppressor in Melanoma. J Invest Dermatol 2011; 131:2096-104. [DOI: 10.1038/jid.2011.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal 2011; 15:1691-714. [PMID: 20712408 DOI: 10.1089/ars.2010.3504] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria play a central role in cell survival and cell death. While producing the bulk of intracellular ATP, mitochondrial respiration represents the most prominent source of harmful reactive oxygen species. Mitochondria participate in many anabolic pathways, including cholesterol and nucleotide biosynthesis, yet also control multiple biochemical cascades that contribute to the programmed demise of cells. The tumor suppressor protein p53 is best known for its ability to orchestrate a transcriptional response to stress that can have multiple outcomes, including cell cycle arrest and cell death. p53-mediated tumor suppression, however, also involves transcription-independent mechanisms. Cytoplasmic p53 can physically interact with members of the BCL-2 protein family, thereby promoting mitochondrial membrane permeabilization. Moreover, extranuclear p53 can suppress autophagy, a major prosurvival mechanism that is activated in response to multiple stress conditions. Thirty years have passed since its discovery, and p53 has been ascribed with an ever-increasing number of functions. For instance, p53 has turned out to influence the cell's redox status, by transactivating either anti- or pro-oxidant factors, and to regulate the metabolic switch between glycolysis and aerobic respiration. In this review, we will analyze the mechanisms by which p53 affects the balance between the vital and lethal functions of mitochondria.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM U848, Institut Gustave Roussy, Pavillon de Recherche 1, Villejuif (Paris), France
| | | | | | | | | | | |
Collapse
|
17
|
Rinn JL, Huarte M. To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21:344-53. [PMID: 21601459 DOI: 10.1016/j.tcb.2011.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
p53 is possibly the most central tumor suppressor gene of our cells, integrating stress signals to activate a transcriptional program responsible for maintaining cellular homeostasis. Many of the downstream effects of p53 are a consequence of its activity as a transcription factor, resulting in the induction of multiple target genes. In addition to gene activation, however, gene repression is an essential part of the p53 cellular response. Despite extensive research efforts towards the elucidation of p53 functions, the molecular mechanisms and biological consequences of gene repression by p53 have not been studied extensively. We review our current knowledge of the mechanisms and biological consequences of p53 repression, with special attention to recently discovered mechanisms of repression that involve non-coding RNA molecules, an emerging aspect of regulation in the p53 cellular network.
Collapse
Affiliation(s)
- John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
18
|
Jiang Q, Wang Y, Li T, Shi K, Li Z, Ma Y, Li F, Luo H, Yang Y, Xu C. Heat shock protein 90-mediated inactivation of nuclear factor-κB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells. Mol Biol Cell 2011; 22:1167-80. [PMID: 21346199 PMCID: PMC3078072 DOI: 10.1091/mbc.e10-10-0860] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023] Open
Abstract
Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.
Collapse
Affiliation(s)
- Qian Jiang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhan Wang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tianjiao Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Kejian Shi
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhushi Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yushi Ma
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Feng Li
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hui Luo
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yang Yang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Caimin Xu
- National Laboratory of Medical Molecular Biology; Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
19
|
|
20
|
Antiproliferative and proapoptotic activity of GUT-70 mediated through potent inhibition of Hsp90 in mantle cell lymphoma. Br J Cancer 2010; 104:91-100. [PMID: 21139584 PMCID: PMC3039813 DOI: 10.1038/sj.bjc.6606007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma with poor prognosis, requiring novel anticancer strategies. Methods: Mantle cell lymphoma cell lines with known p53 status were treated with GUT-70, a tricyclic coumarin derived from Calophyllum brasiliense, and the biological and biochemical consequences of GUT-70 were studied. Results: GUT-70 markedly reduced cell proliferation/viability through G1 cell cycle arrest and increased apoptosis, with greater sensitivity in mutant (mt)-p53-expressing MCL cells than in wild-type (wt)-p53-bearing cells. Mechanistically, GUT-70 showed binding affinity to heat-shock protein 90 (Hsp90) and ubiquitin-dependent proteasomal degradation of Hsp90 client proteins, including cyclin D1, Raf-1, Akt, and mt-p53. Depletion of constitutively overexpressed cyclin D1 by GUT-70 was accompanied by p27 accumulation and decreased Rb phosphorylation. GUT-70 induced mitochondrial apoptosis with Noxa upregulation and Mcl-1 downregulation in mt-p53 cells, but Mcl-1 accumulation in wt-p53 cells. Noxa and Mcl-1 were coimmunoprecipitated, and activated BAK. Treatment with a combination of GUT-70 and bortezomib or doxorubicin had synergistic antiproliferative effects in MCL cells that were independent of p53 status. Conclusion: GUT-70 has pronounced antiproliferative effects in MCL with mt-p53, a known negative prognostic factor for MCL, through Hsp90 inhibition. These findings suggest that GUT-70 has potential utility for the treatment of MCL.
Collapse
|
21
|
A switch from hBrm to Brg1 at IFNγ-activated sequences mediates the activation of human genes. Cell Res 2010; 20:1345-60. [PMID: 21079652 DOI: 10.1038/cr.2010.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The SWI/SNF chromatin-remodeling complexes utilize energy from ATP hydrolysis to reposition nucleosomes and regulate the expression of human genes. Here, we studied the roles of human Brahma (hBrm) and Brahma-related gene 1 (Brg1), the ATPase subunits of the SWI/SNF complexes, in regulating human genes. Our results indicate that both hBrm and Brg1 interact with Signal transducer and activator of transcription (Stat) 1 in vitro. However, Stat1 in its native form only recruits hBrm to IFNγ-activated sequences (GAS) of individual genes; by contrast, in a stress-induced phosphorylated form, Stat1 mainly binds to Brg1. Under basal conditions, hBrm is recruited by native Stat1 to the GAS and exists in a mSin3/HDAC co-repressor complex on the hsp90α gene, which shows a compact chromatin structure. Upon heat-shock, hBrm is acetylated by p300 and dissociates from the co-repressor complex, which the phosphorylated Stat1 is increased, and binds and recruits Brg1 to the GAS, leading to elevated induction of the gene. This hBrm/Brg1 switch also occurs at the GAS of all of the three examined immune genes in heat-shocked cells; however, this switch only occurs in specific cell types upon exposure to IFNγ. Regardless of the stimulus, the hBrm/Brg1 switch at the GAS elicits an increase in gene activity. Our data are consistent with the hypothesis that the hBrm/Brg1 switch is an indicator of the responsiveness of a gene to heat-shock or IFNγ stimulation and may represent an "on-off switch" of gene expression in vivo.
Collapse
|
22
|
Albrecht I, Niesner U, Janke M, Menning A, Loddenkemper C, Kühl AA, Lepenies I, Lexberg MH, Westendorf K, Hradilkova K, Grün J, Hamann A, Epstein JA, Chang HD, Tokoyoda K, Radbruch A. Persistence of effector memory Th1 cells is regulated by Hopx. Eur J Immunol 2010; 40:2993-3006. [PMID: 21061432 DOI: 10.1002/eji.201040936] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/08/2022]
Abstract
Th1 cells are prominent in inflamed tissue, survive conventional immunosuppression, and are believed to play a pivotal role in driving chronic inflammation. Here, we identify homeobox only protein (Hopx) as a critical and selective regulator of the survival of Th1 effector/memory cells, both in vitro and in vivo. Expression of Hopx is induced by T-bet and increases upon repeated antigenic restimulation of Th1 cells. Accordingly, the expression of Hopx is low in peripheral, naïve Th cells, but highly up-regulated in terminally differentiated effector/memory Th1 cells of healthy human donors. In murine Th1 cells, Hopx regulates the expression of genes involved in regulation of apoptosis and survival and makes them refractory to Fas-induced apoptosis. In vivo, adoptively transferred Hopx-deficient murine Th1 cells do not persist. Consequently, they cannot induce chronic inflammation in murine models of transfer-induced colitis and arthritis, demonstrating a key role of Hopx for Th1-mediated immunopathology.
Collapse
Affiliation(s)
- Inka Albrecht
- German Rheumatism Research Center Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cheng MB, Zhang Y, Zhong X, Sutter B, Cao CY, Chen XS, Cheng XK, Zhang Y, Xiao L, Shen YF. Stat1 mediates an auto-regulation of hsp90β gene in heat shock response. Cell Signal 2010; 22:1206-13. [DOI: 10.1016/j.cellsig.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
|
24
|
Gao X, Pan WS, Dai H, Zhang Y, Wu NH, Shen YF. CARM1 activates myogenin gene via PCAF in the early differentiation of TPA-induced rhabdomyosarcoma-derived cells. J Cell Biochem 2010; 110:162-70. [PMID: 20213728 DOI: 10.1002/jcb.22522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CARM1/PRMT4 is a member of the protein arginine methyltransferase (PRMT) family. CARM1 as a transcriptional coactivator plays an active role on mammalian genes. Here, we show that CARM1 can be recruited to the promoter of myogenin gene to enhance its transcriptional activation via PCAF at the early stage of TPA-induced RD cell differentiation. By adding adenosine dialdehyde, AdOx, to inhibit the PRMT in RD cells, the TPA-induced recruiting of p300, PCAF and the Brg1 at the myogenin promoter is abolished and myogenic differentiation is blocked. More specifically, the expression of PCAF and its nucleation are prohibited when CARM1 is knockdown by its specific siRNA. We suggest that the physical interaction of CARM1 and PCAF is likely pivotal for the activation of PCAF in the downstream of CARM1 pathway for inducing myogenin under TPA-induced differentiation. The findings shed lights on novel therapeutic targets in the treatment of rhabdomyosarcoma patients.
Collapse
Affiliation(s)
- Xin Gao
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Pantzartzi C, Drosopoulou E, Yiangou M, Drozdov I, Tsoka S, Ouzounis CA, Scouras ZG. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species. PLoS Comput Biol 2010; 6:e1000847. [PMID: 20628614 PMCID: PMC2900285 DOI: 10.1371/journal.pcbi.1000847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/02/2010] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.
Collapse
Affiliation(s)
- Chrysa Pantzartzi
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ignat Drozdov
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- BHF Centre of Research Excellence, Cardiovascular Division, School of Medicine, James Black Centre, Denmark Hill Campus, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
| | - Christos A. Ouzounis
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- Computational Genomics Unit, Institute of Agrobiotechnology, Centre for Research & Technology Hellas, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| | - Zacharias G. Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| |
Collapse
|
26
|
Abstract
Inactivation of p53 is critical for the formation of most tumors. Illumination of the key function(s) of p53 protein in protecting cells from becoming cancerous is therefore a worthy goal. Arguably p53's most important function is to act as a transcription factor that directly regulates perhaps several hundred of the cell's RNA polymerase II (RNAP II)-transcribed genes, and indirectly regulates thousands of others. Indeed p53 is the most well studied mammalian transcription factor. The p53 tetramer binds to its response element where it can recruit diverse transcriptional coregulators such as histone modifying enzymes, chromatin remodeling factors, subunits of the mediator complex, and components of general transcription machinery and preinitiation complex (PIC) to modulate RNAPII activity at target loci (Laptenko and Prives 2006). The p53 transcriptional program is regulated in a stimulus-specific fashion (Murray-Zmijewski et al. 2008; Vousden and Prives 2009), whereby distinct subsets of p53 target genes are induced in response to different p53-activating agents, likely allowing cells to tailor their response to different types of stress. How p53 is able to discriminate between these different loci is the subject of intense research. Here, we describe key aspects of the fundamentals of p53-mediated transcriptional regulation and target gene promoter selectivity.
Collapse
Affiliation(s)
- Rachel Beckerman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
27
|
Abstract
NeuroD, a basic helix-loop-helix transcription factor, is capable of converting embryonic epidermal cells into neuronal cells. However, whether histone deacetylases (HDACs) are involved in the autoregulation of neuroD or not is unclear. In this study, neuroD expression was found to be significantly increased in the all-trans retinoid acid-treated P19 cells. Meanwhile, neuroD could itself enhance its promoter activity and mRNA expression. By using specific inhibitors to histone modification enzymes, HDAC3 was identified to specifically augment the autoactivation of neuroD in P19 cells. The data suggest that the elevation of HDAC3 and neuroD in all-trans retinoid acid-treated cells exponentially increases the neuroD expression and mediates an early commitment of P19 cells for neuronal differentiation.
Collapse
|
28
|
Zhang Y, Leung DYM, Nordeen SK, Goleva E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 2009; 284:24542-52. [PMID: 19586900 DOI: 10.1074/jbc.m109.021469] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although glucocorticoids suppress proliferation of many cell types and are used in the treatment of certain cancers, trials of glucocorticoid therapy in breast cancer have been a disappointment. Another suggestion that estrogens may affect glucocorticoid action is that the course of some inflammatory diseases tends to be more severe and less responsive to corticosteroid treatment in females. To date, the molecular mechanism of cross-talk between estrogens and glucocorticoids is poorly understood. Here we show that, in both MCF-7 and T47D breast cancer cells, estrogen inhibits glucocorticoid induction of the MKP-1 (mitogen-activated protein kinase phosphatase-1) and serum/glucocorticoid-regulated kinase genes. Estrogen did not affect glucocorticoid-induced glucocorticoid receptor (GR) nuclear translocation but reduced ligand-induced GR phosphorylation at Ser-211, which is associated with the active form of GR. We show that estrogen increases expression of protein phosphatase 5 (PP5), which mediates the dephosphorylation of GR at Ser-211. Gene knockdown of PP5 abolished the estrogen-mediated suppression of GR phosphorylation and induction of MKP-1 and serum/glucocorticoid-regulated kinase. More importantly, after PP5 knockdown estrogen-promoted cell proliferation was significantly suppressed by glucocorticoids. This study demonstrates cross-talk between estrogen-induced PP5 and GR action. It also reveals that PP5 inhibition may antagonize estrogen-promoted events in response to corticosteroid therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
29
|
Banerjee T, Nath S, Roychoudhury S. DNA damage induced p53 downregulates Cdc20 by direct binding to its promoter causing chromatin remodeling. Nucleic Acids Res 2009; 37:2688-98. [PMID: 19273532 PMCID: PMC2677870 DOI: 10.1093/nar/gkp110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDC20 is a critical molecule in the Spindle Assembly Checkpoint (SAC). It activates the Anaphase promoting complex and helps a dividing cell to proceed towards Anaphase. CDC20 is overexpressed in many tumor cells which cause chromosomal instability. There have been limited reports on the mechanism of SAC's response to genotoxic stress. We show that ectopically expressed p53 or DNA damage induced endogenous p53 can downregulate Cdc20 transcriptionally. We have identified a consensus p53-binding site on the Cdc20 promoter and have shown that it is being used by p53 to bind the promoter and bring about chromatin remodeling thereby repressing Cdc20. Additionally, p53 also downregulates Cdc20 promoter through CDE/CHR element, but in a p21 independent manner. This CDE/CHR element-mediated downregulation occurs only under p53 overexpressed condition but not in the context of DNA damage. The present results suggest that the two CCAAT elements in the Cdc20 promoter are not used by p53 to downregulate its activity, as reported earlier.
Collapse
Affiliation(s)
- Taraswi Banerjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata 700032, India
| | | | | |
Collapse
|
30
|
Genome-wide distribution of histone H3 acetylation in all-trans retinoic acid induced neuronal differentiation of SH-SY5Y cells. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0109-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Habib GM. p53 regulates Hsp90beta during arsenite-induced cytotoxicity in glutathione-deficient cells. Arch Biochem Biophys 2009; 481:101-9. [PMID: 18996350 PMCID: PMC2639750 DOI: 10.1016/j.abb.2008.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/02/2008] [Accepted: 10/16/2008] [Indexed: 02/06/2023]
Abstract
p53, a tumor suppressor and transcription factor, is a critical modulator in the cellular response to stress. Exposure of glutathione-deficient GCS-2 cells to arsenite significantly phosphorylated and stabilized p53. In addition, p53 transcriptionally repressed Hsp90beta gene expression. Mutation analysis revealed a p53 binding site in the 5' flanking region responsible for the regulation of Hsp90beta gene. Electrophoretic mobility shift assay showed that p53 is bound to Hsp90beta promoter region. ATM kinase, a major determinant in the modulation of p53 specifically affected its phosphorylation at Ser-15. ATM kinase-mediated phosphorylation of p53 is regulated through phosphorylation of Chk2. Down-regulation of ATM and Chk2 by their small interfering RNAs (siRNAs) attenuated the arsenite-induced phosphorylation of p53 and restored Hsp90beta mRNA levels. Taken together, these findings suggest that arsenite acts through ATM and Chk2 to induce phosphorylation of p53. This results in the transcriptional repression of Hsp90beta, under GSH-deficient conditions which may play a role in arsenic-mediated pathogenesis.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Isolation and characterization of two cytoplasmic hsp90s from Mytilus galloprovincialis (Mollusca: Bivalvia) that contain a complex promoter with a p53 binding site. Gene 2008; 431:47-54. [PMID: 19061940 DOI: 10.1016/j.gene.2008.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 11/21/2022]
Abstract
The commercially important marine bivalve Mytilus galloprovincialis (Mediterranean mussel) is considered a valuable bioindicator, due to its exposure to various pollutants and extreme environmental conditions. Environmental responsive genes, such as the hsp90s, protect the structure and function of cells and accomplish a significant task in cellular homeostasis. To study the hsp90s in M. galloprovincialis a genomic library was screened and two hsp90s were isolated. Sequence analysis revealed that the two genes exhibit great similarities in both the 5' non-coding and the coding region but differ in the 3' non-coding region, as well as in three introns, due to the presence of repeated sequences. Few synonymous substitutions in the coding region of the genes result to an identical predicted polypeptide, which belongs to the cytoplasmic HSP90 subfamily. The 5' non-coding region contains a non-translated exon and multiple binding sites for various transcription factors. The presence of a p53 binding site in the promoter of the isolated genes raises questions about the possible implication of hsp90s in the molluscan leukemia.
Collapse
|
33
|
Chaiyarit P, Jintakanon D, Klanrit P, Siritapetawee M, Thongprasom K. Immunohistochemical analyses of survivin and heat shock protein 90 expression in patients with oral lichen planus. J Oral Pathol Med 2008; 38:55-62. [DOI: 10.1111/j.1600-0714.2008.00713.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Chao CC, Sun FC, Wang CH, Lo CW, Chang YS, Chang KC, Chang MDT, Lai YK. Concerted actions of multiple transcription elements confer differential transactivation of HSP90 isoforms in geldanamycin-treated 9L rat gliosarcoma cells. J Cell Biochem 2008; 104:1286-96. [PMID: 18320580 DOI: 10.1002/jcb.21705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HSP90 chaperones are transducer proteins of many signaling pathways in cells. Using a highly specific inhibitor, geldanamycin (GA), an increasing number of the HSP90 client proteins have been identified. Nevertheless, there is little information on the differential transactivation of the two isoforms of the hsp90 genes, hsp90alpha and beta, in cells under stress conditions. Here, we demonstrate the differential expression of the HSP90 isoforms, HSP90alpha and beta, in rat gliosarcoma 9L cells using a modified SDS-PAGE system that allowed us to distinguish the isoforms. We subsequently assessed the transcriptional controls involving the transcription elements located in the promoter regions of the hsp90 genes. At the protein level, HSP90alpha is more responsive to GA in terms of rate of de novo synthesis and amount of accumulation, as shown by metabolic-labeling and Western-blotting analyses. Upregulation of the hsp90 genes was demonstrated by real-time qPCR. The promoter elements hsp90alpha-HSE2 and hsp90beta-HSE1 were also identified to be the major transcription elements involved in GA-activated gene expression, as shown by EMSA, whereas the results of supershift showed that the transcription factor HSF1 is also involved. Moreover, EMSA results of analysis of the GC box showed differences in both the initial amounts and inductive response of hsp90s transcripts, whereas analysis of the TATA box showed GA responsiveness in hsp90alpha only. Collectively, these results indicate that GA exerts its regulatory effects through transcription elements including heat-shock elements (HSEs), GC boxes and TATA boxes, resulting in differential transactivation of hsp90alpha and hsp90beta in rat gliosarcoma 9L cells.
Collapse
Affiliation(s)
- Chih-Chung Chao
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.
Collapse
|
36
|
Mori E, Takahashi A, Kitagawa K, Kakei S, Tsujinaka D, Unno M, Nishikawa S, Ohnishi K, Hatoko M, Murata N, Watanabe M, Furusawa Y, Ohnishi T. Time course and spacial distribution of UV effects on human skin in organ culture. JOURNAL OF RADIATION RESEARCH 2008; 49:269-277. [PMID: 18311036 DOI: 10.1269/jrr.07106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Apoptosis plays an important role in eliminating cells from populations when cells have been exposed to UV irradiation and damaged. Studies of cells in culture have provided some details of the mechanisms involved when stress response genes act after exposure to UV irradiation and other environmental stresses. However, little is known about the responses of intact sections of human skin growing in organ culture to UV irradiation. In the work reported here, it was found that the response of organ-cultured human skin after exposure to UV irradiation is different than the response of cultured cells. At wavelengths below 300 nm, the action spectrum obtained from organ-cultured skin samples showed a lower sensitivity than that observed at 300 nm, indicating that the overlying stratum corneum and upper epidermal cell layers had probably caused a selective absorption of incident UV radiation at some wavelengths. At 3 hours after UV irradiation, p53 was phosphorylated at Ser 15 and Ser 46, and accumulated in the cell nuclei, notably after exposure to 280-320 nm wavelengths. Accumulations of Bax, active Caspase-3 and cleaved PARP were detected in apoptotic cells at 24 hours post-exposure, along with a reduction of Bcl-2 levels, notably after exposure to 300-365 nm light. This difference in apoptotic responses may result from the characteristics of the different irradiation wavelengths used, and from details in the skin's structure. The data obtained in this study using an organ-culture system utilized direct measurements of the biological effects of different wavelengths of UV lights.
Collapse
Affiliation(s)
- Eiichiro Mori
- Department of Biology, School of Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen XS, Zhang Y, Wang JS, Li XY, Cheng XK, Zhang Y, Wu NH, Shen YF. Diverse effects of Stat1 on the regulation of hsp90alpha gene under heat shock. J Cell Biochem 2008; 102:1059-66. [PMID: 17427945 DOI: 10.1002/jcb.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stat1 has been known as a regulator of gene expression and a mediator of IFNgamma signaling in mammalian cells, while its effect in a heat shock response remains unclear. We used RNAi knockdown, point mutations, ChIP and promoter activity assays to study the effect of Stat1 on the heat-shock induction of the hsp90alpha gene under heat shock conditions. We found that Stat1 regulates the heat shock induction of its target genes, the hsp90alpha gene in a heat shock response while the constitutive activity of the gene remains unaffected. The result of Stat1 in complex with Stat3 and HSF1 that bound at the GAS to lead a moderate heat shock induction was designated as an "intrinsic" induction of the hsp90alpha gene. Additionally a reduced or an elevated level of heat shock induction was also controlled by the Stat1 on hsp90alpha. These diverse effects on the hsp90alpha gene were a "reduced" induction with over-expressed Stat1 elicited by transfection of wild-type Stat1 or IFNgamma treatment, bound at the GAS as homodimer; and an "enhanced" heat shock induction with a mutation-mediated prohibition of Stat1/GAS binding. In conclusion, the status and efficacy of Stat1 bound at the GAS of its target gene are pivotal in determining the impact of Stat1 under heat shock. The results provided the first evidence on the tumor suppressor Stat1 that it could play diverse roles on its target genes under heat shock that also shed lights on patients with fever or under thermotherapy.
Collapse
Affiliation(s)
- Xue-song Chen
- National Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 2008; 12:743-61. [PMID: 18266962 PMCID: PMC4401125 DOI: 10.1111/j.1582-4934.2008.00273.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with components of the cell signalling pathways, for example those of the tightly regulated caspasedependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like process by interacting with apoptogenic factors such as apoptosis-inducing factor (AIF) or by acting at the lysosome level. This review will describe the different key apoptotic proteins interacting with HSPs and the consequences of these interactions in cell survival, proliferation and apoptotic processes. Our purpose will be illustrated by emerging strategies in targeting these protective proteins to treat haematological malignancies.
Collapse
|
39
|
Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 2008; 27:3371-83. [PMID: 18223694 DOI: 10.1038/sj.onc.1211010] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
p53 missense mutant proteins commonly show increased stability compared to wild-type p53, which is thought to depend largely on the inability of mutant p53 to induce the ubiquitin ligase MDM2. However, recent work using mouse models has shown that the accumulation of mutant p53 occurs only in tumour cells, indicating that stabilization requires additional factors. To clarify the stabilization of p53 mutants in tumours, we analysed factors that affect their folding and degradation. Although all missense mutants that we studied are more stable than wild-type p53, the levels correlate with individual structural characteristics, which may be reflected in different gain-of-function properties. In the absence of Hsp90 activity, the less stable unfolded p53 mutants preferentially associate in a complex with Hsp70 and CHIP (carboxy terminus of Hsp70-interacting protein), and we show that CHIP is responsible for ubiquitination and degradation of these mutants. The demonstration of a complex interplay between Hsp90, Hsp70 and CHIP that regulate the stability of different p53 mutant proteins improves our understanding of the pro-tumorigenic effects of increased Hsp90 activity during multi-stage carcinogenesis. Understanding the roles of Hsp90, Hsp70 and CHIP in cancers may also provide an important avenue through which to target p53 to enhance treatment of human cancers.
Collapse
Affiliation(s)
- P Muller
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
40
|
Häbig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson's disease key player. Neurogenetics 2007; 9:83-94. [PMID: 18097693 DOI: 10.1007/s10048-007-0114-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
The protein leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease (PD). Mutations in the LRRK2 gene account for up to 10% of all autosomal dominant forms of familiar and for approximately 1-3% of sporadic PD patients. Although the LRRK2 protein has many functional domains like a leucine-rich repeat domain, a Roc-GTPase domain, a kinase domain of the tyrosine kinase-like subfamily and multiple protein interaction domains (armadillo, ankyrin, WD40), the exact biological role of LRRK2 in the human brain is elusive. To gain more insight into the biological function of this protein, we monitored the changes in the expression profiles of SH-SY5Y cells, a dopaminergic neuroblastoma cell line, induced by a depletion of LRRK2 levels by RNA interference (RNAi) with Affymetrix U133 Plus 2.0 microarrays. A total of 187 genes were differentially regulated by at least a 1.5-fold change with 94 transcripts being upregulated and 93 transcripts being downregulated compared to scrambled control siRNA transfected cells. Key players of the interaction networks were independently verified by qRT-PCR. The differentially expressed gene products are involved in axonal guidance, nervous system development, cell cycle, cell growth, cell differentiation, cell communication, MAPKKK cascade, and Ras protein signal transduction. Defined gene expression networks will now serve to look more closely for candidates affected by LRRK2 reduction and how they might be altered in other forms of familial or sporadic PD.
Collapse
Affiliation(s)
- K Häbig
- Department of Medical Genetics, Microarray Facility, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Erdmann F, Jarczowski F, Weiwad M, Fischer G, Edlich F. Hsp90-mediated inhibition of FKBP38 regulates apoptosis in neuroblastoma cells. FEBS Lett 2007; 581:5709-14. [PMID: 18036348 DOI: 10.1016/j.febslet.2007.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/22/2007] [Accepted: 11/12/2007] [Indexed: 02/08/2023]
Abstract
The FK506-binding protein 38 (FKBP38) is a pro-apoptotic regulator of Bcl-2 in neuroblastoma cells. Hsp90 inhibits the pro-apoptotic FKBP38/CaM/Ca(2+) complex and thus prevents interactions between FKBP38 and Bcl-2. Here we show that Hsp90 increases cell survival rates of neuroblastoma cells after apoptosis induction. Depletion of FKBP38 by short interference RNA significantly decreased the anti-apoptotic effect of Hsp90 expression. In addition, the influence of high cellular Hsp90 levels was only observed in post-stimulation apoptosis that is sensitive to selective FKBP38 active site inhibition. Similar anti-apoptotic effects in neuroblastoma cells were observed after stimulation of endogenous Hsp90 expression. Hence, the inhibition of FKBP38 by Hsp90 participates in programmed cell death control of neuroblastoma cells.
Collapse
Affiliation(s)
- Frank Erdmann
- Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120, Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
42
|
Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 2007; 27:2445-55. [PMID: 17982489 DOI: 10.1038/sj.onc.1210893] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In chronic lymphocytic leukaemia (CLL), mutation/deletion of TP53 is strongly associated with early disease progression, resistance to chemotherapy and short patient survival. Consequently, there is a pressing need to develop novel treatment protocols for this high-risk patient group. The present study was performed to evaluate Hsp90 inhibition as a possible therapeutic approach for such patients. Primary CLL cells of defined ataxia telangiectasia mutated (ATM)/p53 status were incubated with the Hsp90 inhibitor geldanamycin (GA) and analysed by western blotting for the expression of p53, p21, MDM2 and Akt. GA downregulated overexpressed mutant p53 protein (an oncogene) and upregulated wild-type (wt) p53 (a tumour suppressor). The upregulation of wt p53 by GA was independent of ATM and was accompanied by downregulation of Akt and the active form of MDM2, indicating a possible mechanism. GA also produced a p53/ATM-independent increase in the levels of p21-a potent inducer of cell-cycle arrest. In-vitro cytotoxicity studies showed that GA killed cultured CLL cells in a dose- and time-dependent fashion irrespective of their p53/ATM status and more effectively than normal blood mononuclear cells. In summary, our findings reveal important consequences of inhibiting Hsp90 in CLL cells and strongly support the therapeutic evaluation of Hsp90 inhibitors in poor-prognosis patients with p53 defects.
Collapse
|
43
|
Cui Q, Yu JH, Wu JN, Tashiro SI, Onodera S, Minami M, Ikejima T. P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Acta Pharmacol Sin 2007; 28:1057-66. [PMID: 17588343 DOI: 10.1111/j.1745-7254.2007.00588.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. METHODS The viability of oridonin-treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated DNase (ICAD) protein expressions were detected by Western blot analysis. RESULTS Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pancaspase inhibitor Z-VAD-fmk and calpain inhibitor II both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of DeltaPhimit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by caspase-3. CONCLUSION DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.
Collapse
Affiliation(s)
- Qiao Cui
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Li ZY, Yang J, Gao X, Lu JY, Zhang Y, Wang K, Cheng MB, Wu NH, Zhang Y, Wu Z, Shen YF. Sequential recruitment of PCAF and BRG1 contributes to myogenin activation in 12-O-tetradecanoylphorbol-13-acetate-induced early differentiation of rhabdomyosarcoma-derived cells. J Biol Chem 2007; 282:18872-8. [PMID: 17468105 DOI: 10.1074/jbc.m609448200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myogenin and its upstream regulator MyoD are known to be required for myogenic cell differentiation. Although both of them can be expressed in rhabdomyosarcoma-derived RD cells, the cells are unable to undergo full-scale terminal myogenic differentiation. 12-O-Tetradecanoylphorbol-13-acetate (TPA) has been found to be functional in the induction of RD cell differentiation, whereas its mechanism is not fully understood. By using quantitative real-time-based chromatin immunoprecipitation and real-time reverse transcription-PCR-based promoter activity assays, we examined the activation mechanism of the myogenin gene during TPA-induced differentiation of the RD cells. We have shown that a histone acetyltransferase PCAF and ATPase subunit BRG1 of the SWI/SNF chromatin remodeling complex are sequentially recruited to the promoter of the myogenin gene. Both PCAF and BRG1 are also involved in the activation of the myogenin gene. In addition, we have found that the p38 mitogen-activated protein kinase is required for BRG1 recruitment in TPA-mediated myogenin induction. We propose that there are two distinct activation steps for the induction of myogenin in TPA-induced early differentiation of RD cells: 1) an early step that requires PCAF activity to acetylate core histones and MyoD to initiate myogenin gene expression, and 2) a later step that requires p38-dependent activity of the SWI/SNF remodeling complex to provide an open conformation for the induction of myogenin. Our studies reveal an essential role for epigenetic regulation in TPA-induced differentiation of RD cells and provide potential drug targets for future treatment of the rhabdomyosarcoma.
Collapse
Affiliation(s)
- Zhao-yong Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1:53-60. [PMID: 19164900 DOI: 10.4161/pri.1.1.4059] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.
Collapse
|
46
|
Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 2006; 81:15-27. [PMID: 16931602 DOI: 10.1189/jlb.0306167] [Citation(s) in RCA: 417] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stress or heat shock proteins (HSPs) are the most conserved proteins present in both prokaryotes and eukaryotes. Their expression is induced in response to a wide variety of physiological and environmental insults. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and preventing their aggregation. HSPs have a dual function depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several HSPs have also been demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream and downstream of the mitochondrial events. On the other hand, extracellular located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response modulated either by the adaptive or innate immune system. This review will focus on HSP27, HSP70, and HSP90. We will discuss the dual role of these HSPs, protective vs. immunogenic properties, making a special emphasis in their utility as targets in cancer therapy.
Collapse
Affiliation(s)
- E Schmitt
- INSERM U-517, 7 Boulevard Jeanne d'Arc, Faculty of Medicine and Pharmacy, Dijon 21079, France, and Department of Hematology/Oncology, University Hospital Regensburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C. Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 2006:171-98. [PMID: 16610360 DOI: 10.1007/3-540-29717-0_8] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly conserved heat shock proteins (Hsps) accumulate in cells exposed to heat and a variety of other stressful stimuli. Hsps, that function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and Hsps induced in response to stress appear to function at key regulatory points in the control of apoptosis. Hsps include anti-apoptotic and pro-apoptotic proteins that interact with a variety of cellular proteins involved in apoptosis. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory Hsps, in particular Hsp27 and Hsp70, may participate in carcinogenesis. This review summarizes the apoptosis-regulatory function of Hsps.
Collapse
Affiliation(s)
- C Didelot
- Faculty of Medicine and Pharmacy, INSERM U-517, Dijon, France
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
In response to various stresses, p53 is rapidly activated and transcriptionally regulates a number of target genes by which p53 modulates a variety of cellular activities. The transcriptional activity of p53 is delicately regulated by a plethora of cellular factors, independently or synergistically, in multiple ways in order to achieve a specific response. This article reviewed the role of the basal transcriptional machinery, co-activators, and co-repressors involved in p53-dependent transcription, and the underlying mechanism by which the p53 transcriptional activity is regulated. We also discussed some potentially interesting questions and future directions in the field.
Collapse
Affiliation(s)
- Gang Liu
- Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
49
|
Lu Y, Sheng DQ, Mo ZC, Li HF, Wu NH, Shen YF. A negative regulatory element-dependent inhibitory role of ITF2B on IL-2 receptor alpha gene. Biochem Biophys Res Commun 2005; 336:142-9. [PMID: 16126178 DOI: 10.1016/j.bbrc.2005.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/05/2005] [Indexed: 11/23/2022]
Abstract
Despite the fact that the negative regulatory element (NRE) within the upstream regulatory region of human IL-2 receptor alpha (IL-2Ralpha) gene has been identified two decades ago, mechanisms of the NRE function on the gene are hitherto unknown. In this paper, we report for the first time that the immunoglobulin transcription factor 2B (ITF2B) encoded by transcription factor 4 (TCF4) gene is a NRE binding protein. The full-length TCF4 cDNA clone was obtained from a HTLV-1 transformed human peripheral T cell MACHERMAKER cDNA library with NRE as the bait in yeast one-hybrid system. The NRE binding ability of ITF2B was further confirmed in chromatin-immunoprecipitation assay. Competitive RT-PCR-based promoter activity assay showed that over-expression of ITF2B protein inhibited the expression of IL-2Ralpha gene in Jurkat cells in an NRE-dependent manner. The function of ITF2B on the inhibition of both the IL-2Ralpha and the 5'LTR activity of HIV-1 shed light on the essence of NRE binding protein as a potential target for immune therapy and treatment in AIDS patients.
Collapse
Affiliation(s)
- Yu Lu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
50
|
Müller P, Ceskova P, Vojtesek B. Hsp90 Is Essential for Restoring Cellular Functions of Temperature-sensitive p53 Mutant Protein but Not for Stabilization and Activation of Wild-type p53. J Biol Chem 2005; 280:6682-91. [PMID: 15613472 DOI: 10.1074/jbc.m412767200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several signaling pathways that monitor the dynamic state of the cell converge on the tumor suppressor p53. The ability of p53 to process these signals and exert a dynamic downstream response in the form of cell cycle arrest and/or apoptosis is crucial for preventing tumor development. This p53 function is abrogated by p53 gene mutations leading to alteration of protein conformation. Hsp90 has been implicated in regulating both wild-type and mutant p53 conformations, and Hsp90 antagonists are effective for the therapy of some human tumors. Using cell lines that contain human tumor-derived temperature-sensitive p53 mutants we show that Hsp90 is required for both stabilization and reactivation of mutated p53 at the permissive temperature. A temperature decrease to 32 degrees C causes conversion to a protein conformation that is capable of inducing expression of MDM2, leading to reduction of reactivated p53 levels by negative feedback. Mutant reactivation is enhanced by simultaneous treatment with agents that stabilize the reactivated protein and is blocked by geldanamycin, a specific inhibitor of Hsp90 activity, indicating that Hsp90 antagonist therapy and therapies that act to reactivate mutant p53 will be incompatible. In contrast, Hsp90 is not required for maintaining wild-type p53 or for stabilizing wild-type p53 after treatment with chemotherapeutic agents, indicating that Hsp90 therapy might synergize with conventional therapies in patients with wild-type p53. Our data demonstrate the importance of the precise characterization of the interaction between p53 mutants and stress proteins, which may shed valuable information for fighting cancer via the p53 tumor suppressor pathway.
Collapse
Affiliation(s)
- Petr Müller
- Department of Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 656 53, Czech Republic
| | | | | |
Collapse
|