1
|
Durer ZA, İnce Hİ, Düvenci ZŞ, Timuçin E, Gräwert T, Orun O, Kan B, Sayers Z. Insights into the solution structure of the actin-binding tail domain of metavinculin by small angle X-ray scattering and molecular dynamics simulations. Int J Biol Macromol 2025:144376. [PMID: 40409637 DOI: 10.1016/j.ijbiomac.2025.144376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/07/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Vinculin is a ubiquitously expressed focal adhesion protein that plays an important role in cell-matrix and cell-to-cell junctions. Metavinculin, a muscle-specific splice variant of vinculin, contains a 68-amino acid disordered insert region in its actin binding tail domain (MVt). Mutations in this insert are linked to cardiomyopathies. This study investigates the solution structures and structural ensembles of wild-type (WT) and two mutant MVts, ΔLeu954 and R975W, which have been associated with cardiomyopathies, using small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. SAXS analyses revealed subtle differences in the estimated maximum dimensions and corroborated the elongated shape of the MVts. Quantitative comparisons of SAXS profiles indicated similarity between the WT and ΔLeu954, whereas R975W exhibited differences in the small-angle region. MD simulations demonstrated reduced conformational flexibility and greater packing of the insert in WT compared to mutants. Notably, a salt-bridge observed between R975 and D928 in a WT simulation provides a structural basis for the destabilization caused by the R975W mutation. These findings provide insights into the structure and dynamics of WT and mutant MVt, reflecting the promise of SAXS combined with MD simulations to elucidate the structural properties of proteins with structural disorder.
Collapse
Affiliation(s)
- Zeynep Aslıhan Durer
- School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; Faculty of Pharmacy, Department of Biochemistry, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| | - Hande İpek İnce
- Institute of Health Sciences, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Zeynep Şevval Düvenci
- Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Emel Timuçin
- Institute of Health Sciences, Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey; School of Medicine, Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Tobias Gräwert
- European Molecular Biology Laboratory - Hamburg Unit, Biological Small Angle Scattering Group, Hamburg, Germany
| | - Oya Orun
- Institute of Health Sciences, Department of Biophysics, Marmara University, Istanbul, Turkey; School of Medicine, Department of Biophysics, Marmara University, Istanbul, Turkey
| | - Beki Kan
- School of Medicine, Department of Biophysics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Zehra Sayers
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, İstanbul, Turkey
| |
Collapse
|
2
|
Khan MAI, Chirasani VR, Sarker M, McCormick L, Campbell SL. Molecular basis for differential PIP2-mediated association between Vinculin and its splice isoform Metavinculin. J Biol Chem 2025:110232. [PMID: 40378952 DOI: 10.1016/j.jbc.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/28/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025] Open
Abstract
Vinculin (Vcn) and its splice variant metavinculin (MVcn) are cell adhesion proteins that regulate cell morphology, adhesion and motility. They function as scaffold proteins that anchor membrane receptors to filamentous actin (F-actin) at focal adhesions (FA) and cell-cell junctions. MVcn bears an extra 68 amino acid insert in the tail domain and is selectively expressed in cardiac and smooth muscle cells at sub-stoichiometric levels relative to Vcn. Mutations in the MVcn tail domain (MVt) promote cardiomyopathy, yet how these mutations alter ligand interactions to promote defects in force transduction and reduced blood flow is unclear. One difference between Vcn and MVcn lies in the ability to reorganize F-actin, with MVcn negatively regulating Vcn-mediated F-actin bundling. Vcn associates with phosphatidylinositol 4,5-bisphosphate (PIP2) through its tail domain (Vt) to drive recruitment, activation and FA turnover. However, it remains unclear whether MVcn specifically associates with PIP2-containing membranes and how such interactions might influence its functional interplay with Vcn in tissues where both isoforms coexist. To evaluate the interaction of MVt and MVt cardiomyopathy mutants with PIP2-membranes in comparison with Vt, we conducted mutagenesis, phospholipid-association assays and computational modeling. We found that MVt shows reduced association for PIP2-containing liposomes relative to Vt due to sequence differences within the insert region. Moreover, mutations in MVt that promote cardiomyopathies do not affect PIP2-dependent lipid association. These findings suggest that MVcn differs from Vcn in driving PIP2-mediated membrane association and sheds light on the coordinate role of Vcn and MVcn in membrane association as well as MVcn cardiomyopathy defects.
Collapse
Affiliation(s)
- Mohammad Ashhar I Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R. L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muzaddid Sarker
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura McCormick
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Gholipour A, Zahedmehr A, Arabian M, Shakerian F, Maleki M, Oveisee M, Malakootian M. MiR-6721-5p as a natural regulator of Meta-VCL is upregulated in the serum of patients with coronary artery disease. Noncoding RNA Res 2025; 10:25-34. [PMID: 39296643 PMCID: PMC11406674 DOI: 10.1016/j.ncrna.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Background Coronary artery disease (CAD), the leading cause of mortality globally, arises from atherosclerotic blockage of the coronary arteries. Meta-vinculin (meta-VCL), a large spliced isoform of VCL, co-localizes in muscular adhesive structures and plays significant roles in cardiac physiology and pathophysiology. This study aimed to identify microRNAs (miRNAs) regulating meta-VCL expression and investigate the expression alterations of the miRNAs of interest and meta-VCL as potential biomarkers in the serum of CAD patients. Methods Bioinformatics tools were employed to select miRNAs targeting meta-VCL. Cell-based ectopic expression analysis and a dual-luciferase assay were used to examine the interactions between miRNAs and meta-VCL. An ELISA assessed the concentrations of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α). MiRNA and meta-VCL expression patterns and biomarker suitability were evaluated in serum samples from CAD and non-CAD individuals using real-time PCR. A cardiac cell-line data set and CAD blood exosome samples were analyzed using bioinformatics and ROC curve analyses, respectively. Results miR-6721-5p directly interacted with the putative target sites at the 3'-UTR of meta-VCL and regulated its expression. IL-10 and TNF-α concentrations, which may act as anti-inflammatory factors, decreased following miR-6721-5p upregulation and meta-VCL downregulation. Bioinformatics and experimental expression analyses confirmed downregulated meta-VCL expression and upregulated miR-6721-5p expression in CAD samples. ROC curve analysis yielded an AUC score of 0.705 (P = 0.018), indicating the potential suitability of miR-6721-5p as a biomarker for CAD. Conclusions miR-6721-5p plays a regulatory role in meta-VCL expression and may contribute to CAD development by reducing anti-inflammatory factors. These findings suggest that miR-6721-5p could serve as a novel biomarker in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chirasani VR, Khan MAI, Malavade JN, Dokholyan NV, Hoffman BD, Campbell SL. Molecular basis and cellular functions of vinculin-actin directional catch bonding. Nat Commun 2023; 14:8300. [PMID: 38097542 PMCID: PMC10721916 DOI: 10.1038/s41467-023-43779-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
The ability of cells and tissues to respond differentially to mechanical forces applied in distinct directions is mediated by the ability of load-bearing proteins to preferentially maintain physical linkages in certain directions. However, the molecular basis and biological consequences of directional force-sensitive binding remain unclear. Vinculin (Vcn) is a load-bearing linker protein that exhibits directional catch bonding due to interactions between the Vcn tail domain (Vt) and filamentous (F)-actin. We developed a computational approach to predict Vcn residues involved in directional catch bonding and produced a set of associated Vcn variants with unaltered Vt structure, actin binding, or phospholipid interactions. Incorporation of the variants did not affect Vcn activation but reduced Vcn loading and altered exchange dynamics, consistent with the loss of directional catch bonding. Expression of Vcn variants perturbed the coordination of subcellular structures and cell migration, establishing key cellular functions for Vcn directional catch bonding.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohammad Ashhar I Khan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
- Department of Chemistry, Penn State College of Medicine, Hershey, PA, USA.
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University, Durham, NC, USA.
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Solís C, Russell B. Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification. Biophys Rev 2021; 13:679-695. [PMID: 34777614 PMCID: PMC8555064 DOI: 10.1007/s12551-021-00835-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Brenda Russell
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
6
|
Kanoldt V, Kluger C, Barz C, Schweizer AL, Ramanujam D, Windgasse L, Engelhardt S, Chrostek-Grashoff A, Grashoff C. Metavinculin modulates force transduction in cell adhesion sites. Nat Commun 2020; 11:6403. [PMID: 33335089 PMCID: PMC7747745 DOI: 10.1038/s41467-020-20125-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Vinculin is a ubiquitously expressed protein, crucial for the regulation of force transduction in cells. Muscle cells express a vinculin splice-isoform called metavinculin, which has been associated with cardiomyopathies. However, the molecular function of metavinculin has remained unclear and its role for heart muscle disorders undefined. Here, we have employed a set of piconewton-sensitive tension sensors to probe metavinculin mechanics in cells. Our experiments reveal that metavinculin bears higher molecular forces but is less frequently engaged as compared to vinculin, leading to altered force propagation in cell adhesions. In addition, we have generated knockout mice to investigate the consequences of metavinculin loss in vivo. Unexpectedly, these animals display an unaltered tissue response in a cardiac hypertrophy model. Together, the data reveal that the transduction of cell adhesion forces is modulated by expression of metavinculin, yet its role for heart muscle function seems more subtle than previously thought.
Collapse
Affiliation(s)
- Verena Kanoldt
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Carleen Kluger
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Christiane Barz
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Anna-Lena Schweizer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, 80802, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Lukas Windgasse
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, 80802, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Anna Chrostek-Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149, Münster, Germany.
- Max Planck Institute of Biochemistry, Group of Molecular Mechanotransduction, 82152, Martinsried, Germany.
| |
Collapse
|
7
|
Kelley CF, Litschel T, Schumacher S, Dedden D, Schwille P, Mizuno N. Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. eLife 2020; 9:e56110. [PMID: 32657269 PMCID: PMC7384861 DOI: 10.7554/elife.56110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
Focal adhesions (FA) are large macromolecular assemblies which help transmit mechanical forces and regulatory signals between the extracellular matrix and an interacting cell. Two key proteins talin and vinculin connecting integrin to actomyosin networks in the cell. Both proteins bind to F-actin and each other, providing a foundation for network formation within FAs. However, the underlying mechanisms regulating their engagement remain unclear. Here, we report on the results of in vitro reconstitution of talin-vinculin-actin assemblies using synthetic membrane systems. We find that neither talin nor vinculin alone recruit actin filaments to the membrane. In contrast, phosphoinositide-rich membranes recruit and activate talin, and the membrane-bound talin then activates vinculin. Together, the two proteins then link actin to the membrane. Encapsulation of these components within vesicles reorganized actin into higher-order networks. Notably, these observations were made in the absence of applied force, whereby we infer that the initial assembly stage of FAs is force independent. Our findings demonstrate that the local membrane composition plays a key role in controlling the stepwise recruitment, activation, and engagement of proteins within FAs.
Collapse
Affiliation(s)
- Charlotte F Kelley
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Stephanie Schumacher
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Dirk Dedden
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUnited States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Krokhotin A, Sarker M, Sevilla EA, Costantini LM, Griffith JD, Campbell SL, Dokholyan NV. Distinct Binding Modes of Vinculin Isoforms Underlie Their Functional Differences. Structure 2019; 27:1527-1536.e3. [PMID: 31422909 PMCID: PMC6774862 DOI: 10.1016/j.str.2019.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Vinculin and its splice isoform metavinculin play key roles in regulating cellular morphology, motility, and force transduction. Vinculin is distinct from metavinculin in its ability to bundle filamentous actin (F-actin). To elucidate the molecular basis for these differences, we employed computational and experimental approaches. Results from these analyses suggest that the C terminus of both vinculin and metavinculin form stable interactions with the F-actin surface. However, the metavinculin tail (MVt) domain contains a 68 amino acid insert, with helix 1 (H1) sequestered into a globular subdomain, which protrudes from the F-actin surface and prevents actin bundling by sterically occluding actin filaments. Consistent with our model, deletion and selective point mutations within the MVt H1 disrupt this protruding structure, and facilitate actin bundling similar to vinculin tail (Vt) domain.
Collapse
Affiliation(s)
- Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pathology, Genetics and Developmental Biology, Howard Hughes Medical Institute, Stanford Medical School, Palo Alto, CA 94305, USA
| | - Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ernesto Alva Sevilla
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack D Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Pharmacology and Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Lee HT, Sharek L, O’Brien ET, Urbina FL, Gupton SL, Superfine R, Burridge K, Campbell SL. Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. PLoS One 2019; 14:e0221962. [PMID: 31483833 PMCID: PMC6726196 DOI: 10.1371/journal.pone.0221962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
Vinculin (Vcn) is a ubiquitously expressed cytoskeletal protein that links transmembrane receptors to actin filaments, and plays a key role in regulating cell adhesion, motility, and force transmission. Metavinculin (MVcn) is a Vcn splice isoform that contains an additional exon encoding a 68-residue insert within the actin binding tail domain. MVcn is selectively expressed at sub-stoichiometic amounts relative to Vcn in smooth and cardiac muscle cells. Mutations in the MVcn insert are linked to various cardiomyopathies. In vitro analysis has previously shown that while both proteins can engage filamentous (F)-actin, only Vcn can promote F-actin bundling. Moreover, we and others have shown that MVcn can negatively regulate Vcn-mediated F-actin bundling in vitro. To investigate functional differences between MVcn and Vcn, we stably expressed either Vcn or MVcn in Vcn-null mouse embryonic fibroblasts. While both MVcn and Vcn were observed at FAs, MVcn-expressing cells had larger but fewer focal adhesions per cell compared to Vcn-expressing cells. MVcn-expressing cells migrated faster and exhibited greater persistence compared to Vcn-expressing cells, even though Vcn-containing FAs assembled and disassembled faster. Magnetic tweezer measurements on Vcn-expressing cells show a typical cell stiffening phenotype in response to externally applied force; however, this was absent in Vcn-null and MVcn-expressing cells. Our findings that MVcn expression leads to larger but fewer FAs per cell, in conjunction with the inability of MVcn to bundle F-actin in vitro and rescue the cell stiffening response, are consistent with our previous findings of actin bundling deficient Vcn variants, suggesting that deficient actin-bundling may account for some of the differences between Vcn and MVcn.
Collapse
Affiliation(s)
- Hyunna T. Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa Sharek
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Fabio L. Urbina
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sarker M, Lee HT, Mei L, Krokhotin A, de Los Reyes SE, Yen L, Costantini LM, Griffith J, Dokholyan NV, Alushin GM, Campbell SL. Cardiomyopathy Mutations in Metavinculin Disrupt Regulation of Vinculin-Induced F-Actin Assemblies. J Mol Biol 2019; 431:1604-1618. [PMID: 30844403 DOI: 10.1016/j.jmb.2019.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Debilitating heart conditions, notably dilated and hypertrophic cardiomyopathies (CMs), are associated with point mutations in metavinculin, a larger isoform of the essential cytoskeletal protein vinculin. Metavinculin is co-expressed with vinculin at sub-stoichiometric ratios in cardiac tissues. CM mutations in the metavinculin tail domain (MVt) occur within the extra 68-residue insert that differentiates it from the vinculin tail domain (Vt). Vt binds actin filaments (F-actin) and promotes vinculin dimerization to bundle F-actin into thick fibers. While MVt binds to F-actin in a similar manner to Vt, MVt is incapable of F-actin bundling and inhibits Vt-mediated F-actin bundling. We performed F-actin co-sedimentation and negative-stain EM experiments to dissect the coordinated roles of metavinculin and vinculin in actin fiber assembly and the effects of three known metavinculin CM mutations. These CM mutants were found to weakly induce the formation of disordered F-actin assemblies. Notably, they fail to inhibit Vt-mediated F-actin bundling and instead promote formation of large assemblies embedded with linear bundles. Computational models of MVt bound to F-actin suggest that MVt undergoes a conformational change licensing the formation of a protruding sub-domain incorporating the insert, which sterically prevents dimerization and bundling of F-actin by Vt. Sub-domain formation is destabilized by CM mutations, disrupting this inhibitory mechanism. These findings provide new mechanistic insights into the ability of metavinculin to tune actin organization by vinculin and suggest that dysregulation of this process by CM mutants could underlie their malfunction in disease.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hyunna T Lee
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lin Mei
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Krokhotin
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Laura Yen
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10025, USA
| | - Lindsey M Costantini
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack Griffith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Nicholson CJ, Singh K, Saphirstein RJ, Gao YZ, Li Q, Chiu JG, Leavis P, Verwoert GC, Mitchell GF, Porter T, Morgan KG. Reversal of Aging-Induced Increases in Aortic Stiffness by Targeting Cytoskeletal Protein-Protein Interfaces. J Am Heart Assoc 2018; 7:e008926. [PMID: 30021807 PMCID: PMC6201469 DOI: 10.1161/jaha.118.008926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening. METHODS AND RESULTS We examined the contribution of common genetic variation to aortic stiffness in humans by interrogating results from the AortaGen Consortium genome-wide association study of carotid-femoral pulse wave velocity. Common genetic variation in the N-WASP (WASL) locus is associated with carotid-femoral pulse wave velocity (rs600420, P=0.0051). Thus, we tested the hypothesis that decoy proteins designed to disrupt the interaction of cytoskeletal proteins such as N-WASP with its binding partners in the vascular smooth muscle cytoskeleton could decrease ex vivo stiffness of aortas from a mouse model of aging. A synthetic decoy peptide construct of N-WASP significantly reduced activated stiffness in ex vivo aortas of aged mice. Two other cytoskeletal constructs targeted to VASP and talin-vinculin interfaces similarly decreased aging-induced ex vivo active stiffness by on-target specific actions. Furthermore, packaging these decoy peptides into microbubbles enables the peptides to be ultrasound-targeted to the wall of the proximal aorta to attenuate ex vivo active stiffness. CONCLUSIONS We conclude that decoy peptides targeted to vascular smooth muscle cytoskeletal protein-protein interfaces and microbubble packaged can decrease aortic stiffness ex vivo. Our results provide proof of concept at the ex vivo level that decoy peptides targeted to cytoskeletal protein-protein interfaces may lead to substantive dynamic modulation of aortic stiffness.
Collapse
MESH Headings
- Aging
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- DNA/genetics
- Genome-Wide Association Study/methods
- Humans
- Hypertension/genetics
- Hypertension/pathology
- Hypertension/physiopathology
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Polymorphism, Single Nucleotide
- Pulse Wave Analysis
- Vascular Stiffness/physiology
Collapse
Affiliation(s)
| | - Kuldeep Singh
- Department of Health Sciences, Sargent College Boston University, Boston, MA
| | | | - Yuan Z Gao
- Department of Health Sciences, Sargent College Boston University, Boston, MA
| | - Qian Li
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Joanna G Chiu
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Paul Leavis
- Department of Integrative Physiology and Pathobiology, Tufts University, Boston, MA
| | - Germaine C Verwoert
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Tyrone Porter
- Department of Biomedical Engineering, Boston University, Boston, MA
- Department of Mechanical Engineering, Boston University, Boston, MA
| | - Kathleen G Morgan
- Department of Health Sciences, Sargent College Boston University, Boston, MA
| |
Collapse
|
12
|
Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Sci Rep 2018; 8:2693. [PMID: 29426917 PMCID: PMC5807537 DOI: 10.1038/s41598-018-21006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed (“auto-inhibited”) or open (“active”) conformation. A direct experimental demonstration, however, of the conformational transition between the two states is still absent. In this study, we combined multiple structural and biological approaches to probe the transition from the auto-inhibited to the active conformation, and determine its effects on FA structure and dynamics. We further show that the transition from a closed to an open conformation requires two sequential steps that can differentially regulate FA growth and stability.
Collapse
|
13
|
Dwivedi M, Winter R. Binding of Vinculin to Lipid Membranes in Its Inhibited and Activated States. Biophys J 2017; 111:1444-1453. [PMID: 27705767 DOI: 10.1016/j.bpj.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 10/20/2022] Open
Abstract
Phosphoinositols are an important class of phospholipids that are involved in a myriad of cellular processes, from cell signaling to motility and adhesion. Vinculin (Vn) is a major adaptor protein that regulates focal adhesions in conjunction with PIP2 in lipid membranes and other cytoskeletal components. The binding and unbinding transitions of Vn at the membrane interface are an important link to understanding the coordination of cell signaling and motility. Using different biophysical tools, including atomic force microscopy combined with confocal fluorescence microscopy and Fourier transform infrared spectroscopy, we studied the nanoscopic interactions of activated and autoinhibited states of Vn with lipid membranes. We hypothesize that a weak interaction occurs between Vn and lipid membranes, which leads to binding of autoinhibited Vn to supported lipid bilayers, and to unbinding in freestanding lipid vesicles. Likely driving forces may include tethering of the C-terminus to the lipid membrane, as well as hydrophobic helix-membrane interactions. Conversely, activated Vn binds strongly to membranes through specific interactions with clusters of PIP2 embedded in lipid membranes. Activated Vn harbored on PIP2 clusters may form small oligomeric interaction platforms for further interaction partners, which is necessary for the proper function of focal adhesion points.
Collapse
Affiliation(s)
- Mridula Dwivedi
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
14
|
Zhang Z, Cheng X, Yao Y, Luo J, Tang Q, Wu H, Lin S, Han C, Wei Q, Chen L. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J Mater Chem B 2016; 4:7584-7595. [PMID: 32263815 DOI: 10.1039/c6tb02122k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrophoretically deposited (EPD) coatings have often been employed recently for the addition of different new chemical compositions to classic chitosan coatings to improve the biocompatibility and therapeutic potential of coated implants. However, little attention has been paid to enhance the cell response to EPD coatings via integrating the effects of chemical components and surface topography. Here, we fabricated EPD chitosan/gelatin (CS/G) coatings with controlled porous surface topography by controlling bubble generation in the EPD process via changing the gelatin content in solution from 0, 0.01, 0.1, and 1 to 10 mg ml-1. The pure chitosan coating surface was characterized by homogeneous large pores of 500 μm. After 0.01 mg ml-1 gelatin was added, 180 μm small pores appeared on the walls of large pores. As the gelatin content increased to 0.1 mg ml-1, a number of small pores increased noticeably. When the gelatin content reached 1 mg ml-1, large pores disappeared, and the coating displayed homogeneous small pores. 10 mg ml-1 gelatin concentration led to coatings consisting of small pores with not integral and continuous structures. The initial osteoblastic responses, including cell adherence progress, spreading area, proliferation rate, and focal adhesion-related gene expression, gradually improved from 0 to 0.01, 0.1, and 1 mg ml-1 gelatin content, but decreased from 1 to 10 mg ml-1. All these results indicated that the initial cell responses to coatings reached a peak when it was 1 mg ml-1 gelatin and they had homogeneous small pores, which might contribute to the synergistic effects of the porous surface structure and components. This work would be beneficial for expanding the potential application of EPD coatings.
Collapse
Affiliation(s)
- Zhen Zhang
- Dept. Stomatol., Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Differential lipid binding of vinculin isoforms promotes quasi-equivalent dimerization. Proc Natl Acad Sci U S A 2016; 113:9539-44. [PMID: 27503891 DOI: 10.1073/pnas.1600702113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The main cause of death globally remains debilitating heart conditions, such as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which are often due to mutations of specific components of adhesion complexes. Vinculin regulates these complexes and plays essential roles in intercalated discs that are necessary for muscle cell function and coordinated movement and in the development and function of the heart. Humans bearing familial or sporadic mutations in vinculin suffer from chronic, progressively debilitating DCM that ultimately leads to cardiac failure and death, whereas autosomal dominant mutations in vinculin can also provoke HCM, causing acute cardiac failure. The DCM/HCM-associated mutants of vinculin occur in the 68-residue insert unique to the muscle-specific, alternatively spliced isoform of vinculin, termed metavinculin (MV). Contrary to studies that suggested that phosphoinositol-4,5-bisphosphate (PIP2) only induces vinculin homodimers, which are asymmetric, we show that phospholipid binding results in a domain-swapped symmetric MV dimer via a quasi-equivalent interface compared with vinculin involving R975. Although one of the two PIP2 binding sites is preserved, the symmetric MV dimer that bridges two PIP2 molecules differs from the asymmetric vinculin dimer that bridges only one PIP2 Unlike vinculin, wild-type MV and the DCM/HCM-associated R975W mutant bind PIP2 in their inactive conformations, and R975W MV fails to dimerize. Mutating selective vinculin residues to their corresponding MV residues, or vice versa, switches the isoform's dimeric constellation and lipid binding site. Collectively, our data suggest that MV homodimerization modulates microfilament attachment at muscular adhesion sites and furthers our understanding of MV-mediated cardiac remodeling.
Collapse
|
16
|
Izard T, Brown DT. Mechanisms and Functions of Vinculin Interactions with Phospholipids at Cell Adhesion Sites. J Biol Chem 2016; 291:2548-55. [PMID: 26728462 DOI: 10.1074/jbc.r115.686493] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cytoskeletal protein vinculin is a major regulator of cell adhesion and attaches to the cell surface by binding to specific phospholipids. Structural, biochemical, and biological studies provided much insight into how vinculin binds to membranes, what components it recognizes, and how lipid binding is regulated. Here we discuss the roles and mechanisms of phospholipids in regulating the structure and function of vinculin and of its muscle-specific metavinculin splice variant. A full appreciation of these processes is necessary for understanding how vinculin regulates cell motility, migration, and wound healing, and for understanding of its role in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Tina Izard
- From the Cell Adhesion Laboratory, Department of Cancer Biology and Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - David T Brown
- the Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
17
|
Oztug Durer ZA, McGillivary RM, Kang H, Elam WA, Vizcarra CL, Hanein D, De La Cruz EM, Reisler E, Quinlan ME. Metavinculin Tunes the Flexibility and the Architecture of Vinculin-Induced Bundles of Actin Filaments. J Mol Biol 2015; 427:2782-98. [PMID: 26168869 DOI: 10.1016/j.jmb.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022]
Abstract
Vinculin is an abundant protein found at cell-cell and cell-extracellular matrix junctions. In muscles, a longer splice isoform of vinculin, metavinculin, is also expressed. The metavinculin-specific insert is part of the C-terminal tail domain, the actin-binding site of both isoforms. Mutations in the metavinculin-specific insert are linked to heart disease such as dilated cardiomyopathies. Vinculin tail domain (VT) both binds and bundles actin filaments. Metavinculin tail domain (MVT) binds actin filaments in a similar orientation but does not bundle filaments. Recently, MVT was reported to sever actin filaments. In this work, we asked how MVT influences F-actin alone or in combination with VT. Cosedimentation and limited proteolysis experiments indicated a similar actin binding affinity and mode for both VT and MVT. In real-time total internal reflection fluorescence microscopy experiments, MVT's severing activity was negligible. Instead, we found that MVT binding caused a 2-fold reduction in F-actin's bending persistence length and increased susceptibility to breakage. Using mutagenesis and site-directed labeling with fluorescence probes, we determined that MVT alters actin interprotomer contacts and dynamics, which presumably reflect the observed changes in bending persistence length. Finally, we found that MVT decreases the density and thickness of actin filament bundles generated by VT. Altogether, our data suggest that MVT alters actin filament flexibility and tunes filament organization in the presence of VT. Both of these activities are potentially important for muscle cell function. Perhaps MVT allows the load of muscle contraction to act as a signal to reorganize actin filaments.
Collapse
Affiliation(s)
- Zeynep A Oztug Durer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Rebecca M McGillivary
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Hyeran Kang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Dorit Hanein
- Bioinformatics and Structural Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
18
|
Chinthalapudi K, Patil DN, Rangarajan ES, Rader C, Izard T. Lipid-directed vinculin dimerization. Biochemistry 2015; 54:2758-68. [PMID: 25880222 DOI: 10.1021/acs.biochem.5b00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vinculin localizes to cellular adhesions where it regulates motility, migration, development, wound healing, and response to force. Importantly, vinculin loss results in cancer phenotypes, cardiovascular disease, and embryonic lethality. At the plasma cell membrane, the most abundant phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), binds the vinculin tail domain, Vt, and triggers homotypic and heterotypic interactions that amplify binding of vinculin to the actin network. Binding of PIP2 to Vt is necessary for maintaining optimal focal adhesions, for organizing stress fibers, for cell migration and spreading, and for the control of vinculin dynamics and turnover of focal adhesions. While the recently determined Vt/PIP2 crystal structure revealed the conformational changes occurring upon lipid binding and oligomerization, characterization of PIP2-induced vinculin oligomerization has been challenging in the adhesion biology field. Here, via a series of novel biochemical assays not performed in previous studies that relied on chemical cross-linking, we characterize the PIP2-induced vinculin oligomerization. Our results show that Vt/PIP2 forms a tight dimer with Vt or with the muscle-specific vinculin isoform, metavinculin, at sites of adhesion at the cell membrane. Insight into how PIP2 regulates clustering and into mechanisms that regulate cell adhesion allows the development for a more definite sensor for PIP2, and our developed techniques can be applied generally and thus open the door for the characterization of many other protein/PIP2 complexes under physiological conditions.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dipak N Patil
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Erumbi S Rangarajan
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christoph Rader
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Tina Izard
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Chinthalapudi K, Rangarajan ES, Patil DN, George EM, Brown DT, Izard T. Lipid binding promotes oligomerization and focal adhesion activity of vinculin. ACTA ACUST UNITED AC 2015; 207:643-56. [PMID: 25488920 PMCID: PMC4259812 DOI: 10.1083/jcb.201404128] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PIP2 binds vinculin and directs its oligomerization, which promotes proper focal adhesion structure and function. Adherens junctions (AJs) and focal adhesion (FA) complexes are necessary for cell migration and morphogenesis, and for the development, growth, and survival of all metazoans. Vinculin is an essential regulator of both AJs and FAs, where it provides links to the actin cytoskeleton. Phosphatidylinositol 4,5-bisphosphate (PIP2) affects the functions of many targets, including vinculin. Here we report the crystal structure of vinculin in complex with PIP2, which revealed that PIP2 binding alters vinculin structure to direct higher-order oligomerization and suggests that PIP2 and F-actin binding to vinculin are mutually permissive. Forced expression of PIP2-binding–deficient mutants of vinculin in vinculin-null mouse embryonic fibroblasts revealed that PIP2 binding is necessary for maintaining optimal FAs, for organization of actin stress fibers, and for cell migration and spreading. Finally, photobleaching experiments indicated that PIP2 binding is required for the control of vinculin dynamics and turnover in FAs. Thus, through oligomerization, PIP2 directs a transient vinculin sequestration at FAs that is necessary for proper FA function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458
| | - Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458
| | - Dipak N Patil
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458
| | - Eric M George
- Department of Biochemistry and Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216 Department of Biochemistry and Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216
| | - David T Brown
- Department of Biochemistry and Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
20
|
Vinculin and metavinculin: Oligomerization and interactions with F-actin. FEBS Lett 2013; 587:1220-9. [DOI: 10.1016/j.febslet.2013.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
|
21
|
Thoss F, Dietrich F, Punkt K, Illenberger S, Rottner K, Himmel M, Ziegler WH. Metavinculin: New insights into functional properties of a muscle adhesion protein. Biochem Biophys Res Commun 2012; 430:7-13. [PMID: 23159629 DOI: 10.1016/j.bbrc.2012.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 11/16/2022]
Abstract
Metavinculin is a muscle-specific splice variant of the ubiquitously expressed cytoskeletal adaptor protein vinculin. Both proteins are thought to be co-expressed in all muscle types where they co-localize to microfilament-associated adhesion sites. It has been shown that a metavinculin-specific insertion of 68 amino acids alters the biochemical properties of the five-helix bundle in the tail domain. Here, we demonstrate that the metavinculin-specific helix H1' plays an important role for protein stability of the tail domain, since a point mutation in this helix, R975W, which is associated with the occurrence of dilated cardiomyopathy in man, further decreases thermal stability of the metavinculin tail domain. In striated muscle progenitor cells (myoblasts), both, metavinculin and the R975W mutant show significantly reduced, albeit distinctive residency and exchange rates in adhesion sites as compared to vinculin. In contrast to previous studies, we show that metavinculin is localized in a muscle fiber type-dependent fashion to the costameres of striated muscle, reflecting the individual metabolic and physiological status of a given muscle fiber. Metavinculin expression is highest in fast, glycolytic muscle fibers and virtually absent in M. diaphragmaticus, a skeletal muscle entirely lacking fast, glycolytic fibers. In summary, our data suggest that metavinculin enrichment in attachment sites of muscle cells leads to higher mechanical stability of adhesion complexes allowing for greater shear force resistance.
Collapse
Affiliation(s)
- Florian Thoss
- Interdisciplinary Center for Clinical Research (IZKF) Leipzig, Faculty of Medicine, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Lee JH, Rangarajan ES, Vonrhein C, Bricogne G, Izard T. The metavinculin tail domain directs constitutive interactions with raver1 and vinculin RNA. J Mol Biol 2012; 422:697-704. [PMID: 22709580 DOI: 10.1016/j.jmb.2012.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/02/2012] [Accepted: 06/11/2012] [Indexed: 11/26/2022]
Abstract
Vinculin is a key regulator of the actin cytoskeleton attachment to the cell membrane at cellular adhesion sites, which is crucial for processes such as cell motility and migration, development, survival, and wound healing. Vinculin loss results in embryonic lethality, cardiovascular diseases, and cancer. Its tail domain, Vt, is crucial for vinculin activation and focal adhesion turnover and binds to the actin cytoskeleton and acidic phospholipids upon which it unfurls. The RNA binding protein raver1 regulates the assembly of focal adhesions transcriptionally by binding to vinculin. The muscle-specific splice form, metavinculin, is characterized by a 68-residue insert in the tail domain (MVt) and correlates with hereditary idiopathic dilated cardiomyopathy. Here, we report that metavinculin can bind to raver1 in its inactive state. Our crystal structure explains this permissivity, where an extended coil unique to MVt is unfurled in the MVtΔ954:raver1 complex structure. Our binding assays show that raver1 forms a ternary complex with MVt and vinculin mRNA. These findings suggest that the metavinculin:raver1:RNA complex is constitutively recruited to adhesion complexes.
Collapse
Affiliation(s)
- Jun Hyuck Lee
- Department of Cancer Biology, Cell Adhesion Laboratory, The Scripps Research Institute, FL 33458, USA
| | - Erumbi S Rangarajan
- Department of Cancer Biology, Cell Adhesion Laboratory, The Scripps Research Institute, FL 33458, USA
| | - Clemens Vonrhein
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - Gerard Bricogne
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - Tina Izard
- Department of Cancer Biology, Cell Adhesion Laboratory, The Scripps Research Institute, FL 33458, USA.
| |
Collapse
|
23
|
Janssen MEW, Liu H, Volkmann N, Hanein D. The C-terminal tail domain of metavinculin, vinculin's splice variant, severs actin filaments. ACTA ACUST UNITED AC 2012; 197:585-93. [PMID: 22613835 PMCID: PMC3365496 DOI: 10.1083/jcb.201111046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Relative to vinculin, a unique 68-residue insert in the C-terminal tail of metavinculin results in a loss of actin filament-bundling activity but gain of actin filament-severing activity. Vinculin and its splice variant, metavinculin (MV), are key elements of multiple protein assemblies linking the extracellular matrix to the actin cytoskeleton. Vinculin is expressed ubiquitously, whereas MV is mainly expressed in smooth and cardiac muscle tissue. The only difference in amino acid sequence between the isoforms is a 68-residue insert in the C-terminal tail domain of MV (MVt). Although the functional role of this insert remains elusive, its importance is exemplified by point mutations that are associated with dilated and hypertrophic cardiomyopathy. In vinculin, the actin binding site resides in the tail domain. In this paper, we show that MVt binds actin filaments similarly to the vinculin tail domain. Unlike its splice variant, MVt did not bundle actin filaments. Instead, MVt promoted severing of actin filaments, most efficiently at substoichiometric concentrations. This surprising and seemingly contradictory alteration of vinculin function by the 68-residue insert may be essential for modulating compliance of vinculin-induced actin bundles when exposed to rapidly increasing external forces.
Collapse
Affiliation(s)
- Mandy E W Janssen
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Rangarajan ES, Izard T. Improving the diffraction of full-length human selenomethionyl metavinculin crystals by streak-seeding. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1617-20. [PMID: 21139209 DOI: 10.1107/s1744309110041059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022]
Abstract
Metavinculin is an alternatively spliced isoform of vinculin that has a 68-residue insert in its tail domain (1134 total residues) and is exclusively expressed in cardiac and smooth muscle tissue, where it plays important roles in myocyte adhesion complexes. Mutations in the metavinculin-specific insert are associated with dilated cardiomyopathy (DCM) in man. Crystals of a DCM-associated mutant of full-length selenomethionine-labeled metavinculin grown by hanging-drop vapor diffusion diffracted poorly and were highly sensitive to radiation, preventing the collection of a complete X-ray diffraction data set at the highest possible resolution. Streak-seeding markedly improved the stability, crystal-growth rate and diffraction quality of DCM-associated mutant metavinculin crystals, allowing complete data collection to 3.9 Å resolution. These crystals belonged to space group P4(3)2(1)2, with two molecules in the asymmetric unit and unit-cell parameters a=b=170, c=211 Å, α=β=γ=90°.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | |
Collapse
|
25
|
Marg S, Winkler U, Sestu M, Himmel M, Schönherr M, Bär J, Mann A, Moser M, Mierke CT, Rottner K, Blessing M, Hirrlinger J, Ziegler WH. The vinculin-DeltaIn20/21 mouse: characteristics of a constitutive, actin-binding deficient splice variant of vinculin. PLoS One 2010; 5:e11530. [PMID: 20644727 PMCID: PMC2904371 DOI: 10.1371/journal.pone.0011530] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/17/2010] [Indexed: 01/13/2023] Open
Abstract
Background The cytoskeletal adaptor protein vinculin plays a fundamental role in cell contact regulation and affects central aspects of cell motility, which are essential to both embryonal development and tissue homeostasis. Functional regulation of this evolutionarily conserved and ubiquitously expressed protein is dominated by a high-affinity, autoinhibitory head-to-tail interaction that spatially restricts ligand interactions to cell adhesion sites and, furthermore, limits the residency time of vinculin at these sites. To date, no mutants of the vinculin protein have been characterized in animal models. Methodology/Principal Findings Here, we investigate vinculin-ΔEx20, a splice variant of the protein lacking the 68 amino acids encoded by exon 20 of the vinculin gene VCL. Vinculin-ΔEx20 was found to be expressed alongside with wild type protein in a knock-in mouse model with a deletion of introns 20 and 21 (VCL-ΔIn20/21 allele) and shows defective head-to-tail interaction. Homozygous VCL-ΔIn20/21 embryos die around embryonal day E12.5 showing cranial neural tube defects and exencephaly. In mouse embryonic fibroblasts and upon ectopic expression, vinculin-ΔEx20 reveals characteristics of constitutive head binding activity. Interestingly, the impact of vinculin-ΔEx20 on cell contact induction and stabilization, a hallmark of the vinculin head domain, is only moderate, thus allowing invasion and motility of cells in three-dimensional collagen matrices. Lacking both F-actin interaction sites of the tail, the vinculin-ΔEx20 variant unveils vinculin's dynamic binding to cell adhesions independent of a cytoskeletal association, and thus differs from head-to-tail binding deficient mutants such as vinculin-T12, in which activated F-actin binding locks the protein variant to cell contact sites. Conclusions/Significance Vinculin-ΔEx20 is an active variant supporting adhesion site stabilization without an enhanced mechanical coupling. Its presence in a transgenic animal reveals the potential of splice variants in the vinculin gene to alter vinculin function in vivo. Correct control of vinculin is necessary for embryonic development.
Collapse
Affiliation(s)
- Susanna Marg
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marcello Sestu
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Mirko Himmel
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Madeleine Schönherr
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Janina Bär
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
| | - Amrit Mann
- Faculty of Veterinary Medicine, Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Claudia T. Mierke
- Centre for Medical Physics and Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Klemens Rottner
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Blessing
- Faculty of Veterinary Medicine, Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Wolfgang H. Ziegler
- Faculty of Medicine, Interdisciplinary Centre for Clinical Research (IZKF) Leipzig, University of Leipzig, Leipzig, Germany
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
26
|
A helix replacement mechanism directs metavinculin functions. PLoS One 2010; 5:e10679. [PMID: 20502710 PMCID: PMC2873289 DOI: 10.1371/journal.pone.0010679] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/15/2010] [Indexed: 11/25/2022] Open
Abstract
Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated ΔLeu954 metavinculin deletion mutant. These structures reveal that an α-helix (H1′) and extended coil of the metavinculin insert replace α-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated ΔLeu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1′ α-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions.
Collapse
|
27
|
A conserved peptide motif in Raver2 mediates its interaction with the polypyrimidine tract-binding protein. Exp Cell Res 2010; 316:966-79. [DOI: 10.1016/j.yexcr.2009.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 11/23/2009] [Accepted: 11/29/2009] [Indexed: 12/29/2022]
|
28
|
Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLoS Comput Biol 2009; 5:e1000553. [PMID: 19893621 PMCID: PMC2764345 DOI: 10.1371/journal.pcbi.1000553] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 10/02/2009] [Indexed: 12/21/2022] Open
Abstract
The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. The reprogramming of pluripotent stem cells from adult cells is a crucial step toward producing patient-specific cells for transplant therapy. Critical to this goal is the ability to reproducibly drive the differentiation of these cells to specific fates, such as cardiac and neural cells. While gene expression is important in tissue specific differentiation, the impact of alternative splicing on the biology of differentiating cells has not been fully realized. To identify specific splicing events that may determine cell-type-specific differentiation, we compared splicing profiles of human embryonic stem cells (ESCs) and derived cardiac and neural precursors using Affymetrix exon tiling arrays. Segregation of splicing profiles into cardiac-restricted and common cardiac/neural differentiation pattern groups revealed unique groups of genes with clear implications for the biology of cardiomyocyte function and the maintenance of pluripotent ESCs. Alternative splicing of many of these genes, notably regulators of cell death and proliferation, were often predicted to impact protein domain or microRNA binding site inclusion, suggesting that the function or expression of these proteins is altered during differentiation. These results provide further evidence that alternative splicing is important in shaping the functional repertoire of ESCs and differentiated cells.
Collapse
|
29
|
Hijikata T, Nakamura A, Isokawa K, Imamura M, Yuasa K, Ishikawa R, Kohama K, Takeda S, Yorifuji H. Plectin 1 links intermediate filaments to costameric sarcolemma through β-synemin, α-dystrobrevin and actin. J Cell Sci 2008; 121:2062-74. [DOI: 10.1242/jcs.021634] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In skeletal muscles, the sarcolemma is possibly stabilized and protected against contraction-imposed stress by intermediate filaments (IFs) tethered to costameric sarcolemma. Although there is emerging evidence that plectin links IFs to costameres through dystrophin-glycoprotein complexes (DGC), the molecular organization from plectin to costameres still remains unclear. Here, we show that plectin 1, a plectin isoform expressed in skeletal muscle, can interact with β-synemin, actin and a DGC component, α-dystrobrevin, in vitro. Ultrastructurally, β-synemin molecules appear to be incorporated into costameric dense plaques, where they seem to serve as actin-associated proteins rather than IF proteins. In fact, they can bind actin and α-dystrobrevin in vitro. Moreover, in vivo immunoprecipitation analyses demonstrated that β-synemin- and plectin-immune complexes from lysates of muscle light microsomes contained α-dystrobrevin, dystrophin, nonmuscle actin, metavinculin, plectin and β-synemin. These findings suggest a model in which plectin 1 interacts with DGC and integrin complexes directly, or indirectly through nonmuscle actin and β-synemin within costameres. The DGC and integrin complexes would cooperate to stabilize and fortify the sarcolemma by linking the basement membrane to IFs through plectin 1, β-synemin and actin. Besides, the two complexes, together with plectin and IFs, might have their own functions as platforms for distinct signal transduction.
Collapse
Affiliation(s)
- Takao Hijikata
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Akio Nakamura
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Ryoki Ishikawa
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Kazuhiro Kohama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Shinichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Hiroshi Yorifuji
- Department of Anatomy, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
30
|
Abstract
Anchorage of the contractile actomyosin apparatus to the plasma membrane at discrete sites in muscle and non-muscle cells enables the transmission and conversion of force into work, such as muscle contraction and membrane deformation to regulate cell and tissue shape. Assembly, stabilization and turnover of adhesion sites are complex processes that involve structural components, a variety of signalling and adapter molecules, diverse kinases and phosphatases, and phospholipids. The dynamic turnover of adhesions also requires the frequent interaction with other filament systems of the cytoskeleton, in particular with microtubules. How the delivery and activation of all the required components is co-ordinated, however, remains to be fully understood. In the current issue of Biochemical Journal, Sun et al. provide evidence that a specific exon that is exclusively present in the alpha variant of the type IV intermediate filament protein synemin interacts directly with the focal adhesion protein vinculin in its active state. Interaction of adhesion components with intermediate filaments could serve as a general mechanism to regulate cell- and tissue-specific cytoskeleton-membrane attachment.
Collapse
|
31
|
Lahmann I, Fabienke M, Henneberg B, Pabst O, Vauti F, Minge D, Illenberger S, Jockusch BM, Korte M, Arnold HH. The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity. Exp Cell Res 2007; 314:1048-60. [PMID: 18061163 DOI: 10.1016/j.yexcr.2007.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/26/2007] [Accepted: 10/31/2007] [Indexed: 12/18/2022]
Abstract
Raver1 is an hnRNP protein that interacts with the ubiquitous splicing regulator PTB and binds to cytoskeletal components like alpha-actinin and vinculin/metavinculin. Cell culture experiments suggested that raver1 functions as corepressor in PTB-regulated splicing reactions and may thereby increase proteome complexity. To determine the role of raver1 in vivo, we inactivated the gene by targeted disruption in the mouse. Here we report that raver1-deficient mice develop regularly to adulthood and show no obvious anatomical or behavioral defects. In keeping with this notion, cells from raver1-null mice were indistinguishable from wild type cells and displayed normal growth, motility, and cytoskeletal architecture in culture. Moreover, alternative splicing of exons, including the model exon 3 of alpha-tropomyosin, was not markedly changed in mutant mice, suggesting that the role of raver1 for PTB-mediated exon repression is not absolutely required to generate splice variants during mouse development. Interestingly however, loss of raver1 caused significantly reduced plasticity of synapses on acute hippocampal slices, as elicited by electrophysiological measurements of markedly lower LTP and LTD in mutant neurons. Our results provide evidence that raver1 may play an important role for the regulation of neuronal synaptic plasticity, possibly by controlling especially the late LTP via posttranscriptional mechanisms.
Collapse
Affiliation(s)
- Ines Lahmann
- Cell and Molecular Biology, Institute for Biochemistry and Biotechnology, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol Cell Biol 2007; 27:7522-37. [PMID: 17785437 PMCID: PMC2169049 DOI: 10.1128/mcb.00728-07] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/17/2007] [Accepted: 08/24/2007] [Indexed: 11/20/2022] Open
Abstract
Vinculin is a ubiquitously expressed multiliganded protein that links the actin cytoskeleton to the cell membrane. In myocytes, it is localized in protein complexes which anchor the contractile apparatus to the sarcolemma. Its function in the myocardium remains poorly understood. Therefore, we developed a mouse model with cardiac-myocyte-specific inactivation of the vinculin (Vcl) gene by using Cre-loxP technology. Sudden death was found in 49% of the knockout (cVclKO) mice younger than 3 months of age despite preservation of contractile function. Conscious telemetry documented ventricular tachycardia as the cause of sudden death, while defective myocardial conduction was detected by optical mapping. cVclKO mice that survived through the vulnerable period of sudden death developed dilated cardiomyopathy and died before 6 months of age. Prior to the onset of cardiac dysfunction, ultrastructural analysis of cVclKO heart tissue showed abnormal adherens junctions with dissolution of the intercalated disc structure, expression of the junctional proteins cadherin and beta1D integrin were reduced, and the gap junction protein connexin 43 was mislocalized to the lateral myocyte border. This is the first report of tissue-specific inactivation of the Vcl gene and shows that it is required for preservation of normal cell-cell and cell-matrix adhesive structures.
Collapse
|
33
|
Pieperhoff S, Franke WW. The area composita of adhering junctions connecting heart muscle cells of vertebrates - IV: coalescence and amalgamation of desmosomal and adhaerens junction components - late processes in mammalian heart development. Eur J Cell Biol 2007; 86:377-91. [PMID: 17532539 DOI: 10.1016/j.ejcb.2007.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 12/17/2022] Open
Abstract
In the adult mammalian heart, the cardiomyocytes and thus their terminally anchored myofibrillar bundles are connected by large arrays of closely spaced or even fused adhering junctions (AJs), termed "intercalated disks" (IDs). In recent years, the ID complex has attracted special attention as it has become clear that several human hereditary cardiomyopathies are caused by mutations of genes encoding ID marker proteins, in particular some that are also known as constituents of epithelial desmosomes. Previously, we have shown that in the mature myocardial ID the compositional differences between desmosome-like and adhaerens junctions are, by and large, lost and a composite hybrid structure, the area composita, is formed. We now report results from immunofluorescence and (immuno-)electron microscopic studies of heart formation during mouse embryogenesis and postnatal growth and show that the formation of the IDs with extended area composita structures is a late, primarily postnatal process. While up to birth small distinct desmosomes and AJs are resolved as predominant ID structures, areae compositae of increasing sizes and merged marker protein patterns occupy most of the IDs in the mature heart. Differences in the patterns of ID formation and amalgamation of the two ensembles of junction proteins in time and space are also demonstrated. Together with corresponding observations during rat and human heart development our results indicate that ID topogenesis and area composita formation are also late developmental processes in other mammals. We discuss the importance of the ID and the areae compositae in cardiac functions and, consequently, in cardiomyopathies and possible myocardial regeneration processes.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Senetar MA, Moncman CL, McCann RO. Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle. CELL MOTILITY AND THE CYTOSKELETON 2007; 64:157-73. [PMID: 17183545 DOI: 10.1002/cm.20173] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytoskeletal protein talin serves as an essential link between integrins and the actin cytoskeleton in several similar, but functionally distinct, adhesion complexes, including focal adhesions, costameres, and intercalated disks. Vertebrates contain two talin genes, TLN1 and TLN2, but the different roles of Talin1 and Talin2 in cell adhesion are unclear. In this report we have analyzed Talin1 and Talin2 in striated muscle. Using isoform-specific antibodies, we found that Talin2 is highly expressed in mature striated muscle. Using mouse C2C12 cells and primary human skeletal muscle myoblasts as models of muscle differentiation, we show that Talin1 is expressed in undifferentiated myoblasts and that Talin2 expression is upregulated during muscle differentiation at both the mRNA and protein levels. We have also identified regulatory sequences that may be responsible for the differential expression of Talin1 and Talin2. Using GFP-tagged Talin1 and Talin2 constructs, we found that GFP-Talin1 targets to focal adhesions while GFP-Talin2 targets to abnormally large adhesions in myoblasts. We also found that ectopic expression of Talin2 in myoblasts, which do not contain appreciable levels of Talin2, dysregulates the actin cytoskeleton. Finally we demonstrate that Talin2, but not Talin1, localizes to costameres and intercalated disks, which are stable adhesions required for the assembly of mature striated muscle. Our results suggest that Talin1 is the primary link between integrins and actin in dynamic focal adhesions in undifferentiated, motile cells, but that Talin2 may serve as the link between integrins and the sarcomeric cytoskeletonin stable adhesion complexes in mature striated muscle.
Collapse
Affiliation(s)
- Melissa A Senetar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
35
|
Zieseniss A, Schroeder U, Buchmeier S, Schoenenberger CA, van den Heuvel J, Jockusch BM, Illenberger S. Raver1 is an integral component of muscle contractile elements. Cell Tissue Res 2006; 327:583-94. [PMID: 17096167 DOI: 10.1007/s00441-006-0322-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 08/04/2006] [Indexed: 01/25/2023]
Abstract
Raver1, a ubiquitously expressed protein, was originally identified as a ligand for metavinculin, the muscle-specific isoform of the microfilament-associated protein vinculin. The protein resides primarily in the nucleus, where it colocalises and may interact with polypyrimidine-tract-binding protein, which is involved in alternative splicing processes. During skeletal muscle differentiation, raver1 translocates to the cytoplasm and eventually targets the Z-line of sarcomeres. Here, it colocalises with metavinculin, vinculin and alpha-actinin, all of which have biochemically been identified as raver1 ligands. To obtain more information about the potential role of raver1 in muscle structure and function, we have investigated its distribution and fine localisation in mouse striated and smooth muscle, by using three monoclonal antibodies that recognise epitopes in different regions of the raver1 protein. Our immunofluorescence and immunoelectron-microscopic results indicate that the cytoplasmic accumulation of raver1 is not confined to skeletal muscle but also occurs in heart and smooth muscle. Unlike vinculin and metavinculin, cytoplasmic raver1 is not restricted to costameres but additionally represents an integral part of the sarcomere. In isolated myofibrils and in ultrathin sections of skeletal muscle, raver1 has been found concentrated at the I-Z-I band. A minor fraction of raver1 is present in the nuclei of all three types of muscle. These data indicate that, during muscle differentiation, raver1 might link gene expression with structural functions of the contractile machinery of muscle.
Collapse
Affiliation(s)
- Anke Zieseniss
- Cell Biology, Zoological Institute, Technical University of Braunschweig, Biocentre, Spielmannstrasse 7, 38092 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Ziegler WH, Liddington RC, Critchley DR. The structure and regulation of vinculin. Trends Cell Biol 2006; 16:453-60. [PMID: 16893648 DOI: 10.1016/j.tcb.2006.07.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/25/2006] [Accepted: 07/24/2006] [Indexed: 01/09/2023]
Abstract
Vinculin is a ubiquitously expressed actin-binding protein frequently used as a marker for both cell-cell and cell-extracellular matrix (focal adhesion) adherens-type junctions, but its function has remained elusive. Vinculin is made up of a globular head linked to a tail domain by a short proline-rich sequence, and an intramolecular interaction between the head and tail masks the numerous ligand-binding sites in the protein. Determination of the crystal structure of vinculin has shed new light on the way that these ligand-binding sites are regulated. The picture that emerges is one in which vinculin stabilizes focal adhesions and thereby suppresses cell migration, an effect that is relieved by transient changes in the local concentrations of inositol phospholipids. However, the finding that vinculin modulates the signalling pathways involved in apoptosis suggests that additional roles for vinculin remain to be discovered.
Collapse
Affiliation(s)
- Wolfgang H Ziegler
- IZKF Leipzig, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Jeffrey A Towbin
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA.
| | | |
Collapse
|
38
|
Kleinhenz B, Fabienke M, Swiniarski S, Wittenmayer N, Kirsch J, Jockusch BM, Arnold HH, Illenberger S. Raver2, a new member of the hnRNP family. FEBS Lett 2005; 579:4254-8. [PMID: 16051233 DOI: 10.1016/j.febslet.2005.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/04/2005] [Accepted: 07/05/2005] [Indexed: 01/22/2023]
Abstract
Raver2 was identified as a novel member of the hnRNP family based on sequence homology within three RNA recognition motifs and its general domain organization reminiscent of the previously described raver1 protein. Like raver1, raver2 contains two putative nuclear localization signals and a potential nuclear export sequence, and also displays nucleo-cytoplasmic shuttling in a heterokaryon assay. In glia cells and neurons, raver2 localizes to the nucleus. Moreover, the protein interacts with polypyrimidine tract binding protein (PTB) suggesting that it may participate in PTB-mediated nuclear functions. In contrast to ubiquitously expressed raver1, raver2 exerts a distinct spatio-temporal expression pattern during embryogenesis and is essentially restricted to brain, lung, and kidney in the adult mouse.
Collapse
Affiliation(s)
- Berenike Kleinhenz
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|