1
|
Salazar IL, Curcio M, Mele M, Vetrone R, Frisari S, Costa RO, Caldeira MV, Trader DJ, Duarte CB. Activation of the 20S proteasome core particle prevents cell death induced by oxygen- and glucose deprivation in cultured cortical neurons. Apoptosis 2025:10.1007/s10495-025-02097-x. [PMID: 40095265 DOI: 10.1007/s10495-025-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Neuronal damage in brain ischemia is characterized by a disassembly of the proteasome and a decrease in its proteolytic activity. However, to what extent these alterations are coupled to neuronal death is controversial since proteasome inhibitors were shown to provide protection in different models of stroke in rodents. This question was addressed in the present work using cultured rat cerebrocortical neurons subjected to transient oxygen- and glucose-deprivation (OGD) as a model for in vitro ischemia. Under the latter conditions there was a time-dependent loss in the proteasome activity, determined by cleavage of the Suc-LLVY-AMC fluorogenic substrate, and the disassembly of the proteasome, as assessed by native-polyacrylamide gel electrophoresis followed by western blot against Psma2 and Rpt6, which are components of the catalytic core and regulatory particle, respectively. Immunocytochemistry experiments against the two proteins also showed differential effects on their dendritic distribution. OGD also downregulated the protein levels of Rpt3 and Rpt10, two components of the regulatory particle, by a mechanism dependent on the activity of NMDA receptors and mediated by calpains. Activation of the proteasome activity, using an inhibitor of USP14, a deubiquitinase enzyme, inhibited OGD-induced cell death, and decreased calpain activity as determined by analysis of spectrin cleavage. Similar results were obtained in the presence of two oleic amide derivatives (B12 and D3) which directly activate the 20S proteasome core particle. Together, these results show that proteasome activation prevents neuronal death in cortical neurons subjected to in vitro ischemia, indicating that inhibition of the proteasome is a mediator of neuronal death in brain ischemia.
Collapse
Affiliation(s)
- Ivan L Salazar
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing-MIA Portugal, University of Coimbra, Coimbra, Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miranda Mele
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rossela Vetrone
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simone Frisari
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Margarida V Caldeira
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Darci J Trader
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, USA
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Departament of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-hydroxyecdysone Upregulates Ecdysone Receptor (ECR) Gene to Promote Pupation in the Honeybee, Apis mellifera Ligustica. Integr Comp Biol 2023; 63:288-303. [PMID: 37365683 DOI: 10.1093/icb/icad077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
3
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Bolobolova EU, Dorogova NV, Fedorova SA. Major Scenarios of Genetically Regulated Cell Death during Oogenesis in Drosophilamelanogaster. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
6
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 750] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo Y, Huang Y, Tian S, Xie X, Xing G, Fu J. Genetically engineered drug rhCNB induces apoptosis and cell cycle arrest in both gastric cancer cells and hepatoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2567-2575. [PMID: 30154649 PMCID: PMC6108332 DOI: 10.2147/dddt.s171675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objectives Calcineurin B (CNB) is a regulatory subunit of calcineurin, and it has antitumor activity. In this study, we aimed to investigate the effect of recombinant human calcineurin B (rhCNB) on the proliferation of gastric cancer cells and hepatoma cells both in vitro and in vivo. Materials and methods Cell viability and cell proliferation were detected by MTT and BrdU assay. Flow cytometry, Western blot and immunohistochemistry were performed to determine rhCNB-induced apoptosis and cell cycle arrest. The antitumor activities of rhCNB were observed in mice tumor models. Results We demonstrated that rhCNB inhibits the proliferation of gastric cancer cells and hepatoma cells both in vitro and in vivo. We showed that the inhibition of cell proliferation by rhCNB is associated with apoptosis and cell cycle arrest in both tumor cell lines. Furthermore, we indicated that rhCNB promotes p53 protein expression, a potent proapoptotic factor. Meanwhile, we also exhibited that rhCNB decreases the expression of both cyclin B1 and CDK1 proteins, two proteins associated with G2/M arrest. Conclusion Together, these findings suggest that rhCNB markedly inhibits tumor growth and provides guidance for its drug development.
Collapse
Affiliation(s)
- Yanzi Guo
- Key Laboratory of Preclinical Pharmacology and Toxicology of Hainan Province, Hainan Medical College, Haikou 571199, China,
| | - Yonghao Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Shuhong Tian
- Key Laboratory of Preclinical Pharmacology and Toxicology of Hainan Province, Hainan Medical College, Haikou 571199, China,
| | - Xueli Xie
- Key Laboratory of Preclinical Pharmacology and Toxicology of Hainan Province, Hainan Medical College, Haikou 571199, China,
| | - Guilan Xing
- Key Laboratory of Preclinical Pharmacology and Toxicology of Hainan Province, Hainan Medical College, Haikou 571199, China,
| | - Jian Fu
- Key Laboratory of Preclinical Pharmacology and Toxicology of Hainan Province, Hainan Medical College, Haikou 571199, China,
| |
Collapse
|
9
|
Hartupee J, Szalai GD, Wang W, Ma X, Diwan A, Mann DL. Impaired Protein Quality Control During Left Ventricular Remodeling in Mice With Cardiac Restricted Overexpression of Tumor Necrosis Factor. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004252. [PMID: 29203562 DOI: 10.1161/circheartfailure.117.004252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sustained inflammation in the heart is sufficient to provoke left ventricular dysfunction and left ventricular remodeling. Although inflammation has been linked to many of the biological changes responsible for adverse left ventricular remodeling, the relationship between inflammation and protein quality control in the heart is not well understood. METHODS AND RESULTS To study the relationship between chronic inflammation and protein quality control, we used a mouse model of dilated cardiomyopathy driven by cardiac restricted overexpression of TNF (tumor necrosis factor; Myh6-sTNF). Myh6-sTNF mice develop protein aggregates containing ubiquitin-tagged proteins within cardiac myocytes related to proteasome dysfunction and impaired autophagy. The 26S proteasome was dysfunctional despite normal function of the core 20S subunit. We found an accumulation of autophagy substrates in Myh6-sTNF mice, which were also seen in tissue from patients with end-stage heart failure. Moreover, there was evidence of impaired autophagosome clearance after chloroquine administration in these mice indicative of impaired autophagic flux. Finally, there was increased mammalian target of rapamycin complex 1 (mTORC1) activation, which has been linked to inhibition of both the proteasome and autophagy. CONCLUSIONS Myh6-sTNF mice with sustained inflammatory signaling develop proteasome dysfunction and impaired autophagic flux that is associated with enhanced mTORC1 activation.
Collapse
Affiliation(s)
- Justin Hartupee
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.)
| | - Gabor D Szalai
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.)
| | - Wei Wang
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.)
| | - Xiucui Ma
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.)
| | - Abhinav Diwan
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.)
| | - Douglas L Mann
- From the Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (J.H., X.M., A.D., D.L.M.); John Cochran VA Medical Center, St. Louis, MO (A.D.); and Winters Center for Heart Failure Research, Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (G.D.S., W.W.).
| |
Collapse
|
10
|
Tyro3 carboxyl terminal region confers stability and contains the autophosphorylation sites. Biochem Biophys Res Commun 2017; 490:1074-1079. [PMID: 28668391 DOI: 10.1016/j.bbrc.2017.06.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Tyro3, a member of TAM receptor tyrosine kinase family has been suggested to be autophosphorylated upon activation. In the current study we mapped the autophosphorylation sites of murine Tyro3 to tyrosine 723 and 756, with K540 being required for its kinase activity. Knockdown of Axl significantly decreases the tyrosyl-phosphorylation of Tyro3 in fibroblasts NR6WT, suggesting an interaction among the TAM family members. Interestingly, the carboxyl terminal region of Tyro3 is required for its stability in cells with a minimal length of 1-778 amino acids which is not conserved in murine Axl, a member of TAM. These data suggest that the autophosphorylation sites of TAM RTK members are unique although they share high similarity in amino acids within their carboxyl kinase domain.
Collapse
|
11
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
12
|
Abstract
Programmed cell death (PCD) is essential for health and development. Generally, the last step of PCD is clearance, or engulfment, by phagocytes. Engulfment can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification of the engulfed material. The Drosophila melanogaster ovary serves as an excellent model to study diverse types of PCD and engulfment by epithelial cells. Here, we describe several methods to detect and analyze multiple steps of engulfment in the Drosophila ovary: recognition, vesicle uptake, phagosome maturation, and acidification. Annexin V detects phosphatidylserine, which is flipped to the outer leaflet of the plasma membrane of apoptotic cells, serving as an "eat me" signal. Several germline markers including tral-GFP, Orb, and cleaved Dcp-1 can all be used to label the germline and visualize its uptake into engulfing follicle cells. Drosophila strains expressing GFP and mCherry protein fusions can enable a detailed analysis of phagosome maturation. LysoTracker labels highly acidified compartments, marking phagolysosomes. Together these labels can be used to mark the progression of engulfment in Drosophila follicle cells.
Collapse
|
13
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
14
|
Pitcher DS, de Mattos-Shipley K, Tzortzis K, Auner HW, Karadimitris A, Kleijnen MF. Bortezomib Amplifies Effect on Intracellular Proteasomes by Changing Proteasome Structure. EBioMedicine 2015; 2:642-8. [PMID: 26288836 PMCID: PMC4534688 DOI: 10.1016/j.ebiom.2015.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022] Open
Abstract
The proteasome inhibitor Bortezomib is used to treat multiple myeloma (MM). Bortezomib inhibits protein degradation by inactivating proteasomes' active-sites. MM cells are exquisitely sensitive to Bortezomib - exhibiting a low-nanomolar IC(50) - suggesting that minimal inhibition of degradation suffices to kill MM cells. Instead, we report, a low Bortezomib concentration, contrary to expectation, achieves severe inhibition of proteasome activity in MM cells: the degree of inhibition exceeds what one would expect from the small proportion of active-sites that Bortezomib inhibits. Our data indicate that Bortezomib achieves this severe inhibition by triggering secondary changes in proteasome structure that further inhibit proteasome activity. Comparing MM cells to other, Bortezomib-resistant, cancer cells shows that the degree of proteasome inhibition is the greatest in MM cells and only there leads to proteasome stress, providing an explanation for why Bortezomib is effective against MM but not other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Maurits F. Kleijnen
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
Pitcher DS, de Mattos-Shipley K, Wang Z, Tzortzis K, Goudevenou K, Flynn H, Bohn G, Rahemtulla A, Roberts I, Snijders AP, Karadimitris A, Kleijnen MF. Nuclear proteasomes carry a constitutive posttranslational modification which derails SDS-PAGE (but not CTAB-PAGE). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2222-8. [PMID: 25192768 DOI: 10.1016/j.bbapap.2014.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 12/23/2022]
Abstract
We report that subunits of human nuclear proteasomes carry a previously unrecognised, constitutive posttranslational modification. Subunits with this modification are not visualised by SDS-PAGE, which is used in almost all denaturing protein gel electrophoresis. In contrast, CTAB-PAGE readily visualises such modified subunits. Thus, under most experimental conditions, with identical samples, SDS-PAGE yielded gel electrophoresis patterns for subunits of nuclear proteasomes which were misleading and strikingly different from those obtained with CTAB-PAGE. Initial analysis indicates a novel modification of a high negative charge with some similarity to polyADP-ribose, possibly explaining compatibility with (positively-charged) CTAB-PAGE but not (negatively-charged) SDS-PAGE and providing a mechanism for how nuclear proteasomes may interact with chromatin, DNA and other nuclear components.
Collapse
Affiliation(s)
- David S Pitcher
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Kate de Mattos-Shipley
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Ziming Wang
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Konstantinos Tzortzis
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Katerina Goudevenou
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Helen Flynn
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar EN6 3LD, United Kingdom
| | - Georg Bohn
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Amin Rahemtulla
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Irene Roberts
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Ambrosius P Snijders
- London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar EN6 3LD, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom
| | - Maurits F Kleijnen
- Centre for Haematology, Division of Experimental Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Commonwealth Building 4th Floor, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
16
|
Lopez J, Tait SWG. Killing the Killer: PARC/CUL9 promotes cell survival by destroying cytochrome C. Sci Signal 2014; 7:pe17. [PMID: 25028716 DOI: 10.1126/scisignal.2005619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Balanced amounts of apoptotic cell death are essential for health; its deregulation plays key roles in neurodegeneration, autoimmunity, and cancer. Mitochondria orchestrate apoptosis through a process called mitochondrial outer-membrane permeabilization (MOMP). After MOMP, mitochondrial cytochrome c is released into the cytoplasm, where it binds the adaptor molecule APAF1, triggering caspase protease activation and cell death. In this issue of Science Signaling, Deshmukh and colleagues define a new survival mechanism downstream of mitochondrial permeabilization. Specifically, they identify proteasomal degradation of cytochrome c as a major determinant of cell survival. In an unbiased approach, PARC (also known as CUL9) was found to be the ubiquitin ligase responsible for the ubiquitination and proteasomal degradation of cytochrome c. The consequences of this survival process may be double-edged because both cancer cells and postmitotic cells use PARC/CUL9-mediated cytochrome c degradation to ensure cell survival. Ultimately, differential targeting of this process may promote survival of postmitotic tissue or enhance tumor-specific killing.
Collapse
Affiliation(s)
- Jonathan Lopez
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
17
|
Johnson JG, Janech MG, Van Dolah FM. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. HARMFUL ALGAE 2014; 31:41-53. [PMID: 28040110 DOI: 10.1016/j.hal.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 06/06/2023]
Abstract
The observation of caspase-like activity during cell death has provided a new framework for understanding the evolutionary and ecological contexts of programmed cell death in phytoplankton. However, additional roles for this caspase-like activity, the enzymes responsible, and the targets of this enzyme activity in phytoplankton remain largely undefined. In the present study, the role of caspase-like activity in aging and ROS-mediated cell death were investigated and death programs both dependent on and independent of caspase-like activity were observed in the toxic dinoflagellate, Karenia brevis. The dual use of in situ caspase 3/7 and TUNEL staining identified previously undescribed death-associated morphotypes in K. brevis. In silico motif analysis identified several enzymes with predicted caspase-like activity in the K. brevis transcriptome, although bona fide caspases are absent. Lastly, computational prediction of downstream caspase substrates, using sequence context and predicted secondary structure, identified proteins involved in a wide range of biological processes including regulation of protein turnover, cell cycle progression, lipid metabolism, coenzyme metabolism, apoptotic and autophagic death. To confirm the computational predictions, a short peptide was designed around the predicated caspase cleavage site in a predicted novel K. brevis caspase 3/7-like target, S-adenosylmethionine synthetase (KbAdoMetS). Cleavage of the peptide substrate with recombinant caspase 3 enzyme was determined by MALDI-TOF MS, confirming that KbAdoMetS is indeed a bona fide caspase substrate. These data identify the involvement of caspase-like activity in both aging and cell death in K. brevis and identify novel executioner enzymes and downstream targets that may be important for bloom termination.
Collapse
Affiliation(s)
- Jillian G Johnson
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA; Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael G Janech
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA.
| | - Frances M Van Dolah
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA; Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
18
|
Jenkins VK, Timmons AK, McCall K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol 2013; 23:567-74. [PMID: 23968895 PMCID: PMC3839102 DOI: 10.1016/j.tcb.2013.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms.
Collapse
Affiliation(s)
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, USA
| |
Collapse
|
19
|
Carter BZ, Mak DH, Wang Z, Ma W, Mak PY, Andreeff M, Davis RE. XIAP downregulation promotes caspase-dependent inhibition of proteasome activity in AML cells. Leuk Res 2013; 37:974-9. [PMID: 23669290 DOI: 10.1016/j.leukres.2013.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 12/29/2022]
Abstract
To further understand the role of XIAP in acute myeloid leukemia (AML), we suppressed XIAP expression by antisense oligonucleotides and determined the effect on gene expression profiles and biological pathways. XIAP inhibition upregulated expression of proteasome genes in a manner similar to the proteasome inhibitor bortezomib or MG132; decreased 20S proteasome activity, an effect which was diminished in the presence of a pan-caspase inhibitor; and increased IκBα, Mcl-1, and HSP70 in AML cells. In addition to multiple functions already described, XIAP contributes to increased proteasome activity in AML cells, and the antitumor effect of XIAP inhibition may be mediated in part through caspase-dependent proteasome inhibition.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
McPhee CK, Balgley BM, Nelson C, Hill JH, Batlevi Y, Fang X, Lee CS, Baehrecke EH. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics. Cell Death Differ 2012; 20:218-25. [PMID: 22935612 DOI: 10.1038/cdd.2012.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.
Collapse
Affiliation(s)
- C K McPhee
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zheng J, Dasgupta A, Bizzozero OA. Changes in 20S subunit composition are largely responsible for altered proteasomal activities in experimental autoimmune encephalomyelitis. J Neurochem 2012; 121:486-94. [PMID: 22353035 DOI: 10.1111/j.1471-4159.2012.07699.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We recently reported that the proteasomal peptidase activities are altered in the cerebellum of mice with myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). To determine whether these fluctuations are caused by proteasome activation/inactivation and/or changes in the levels of individual β subunits, we characterized the proteasome subunit composition by western blotting. The results show that the rise in proteasomal peptidase activity in acute EAE correlates with an augmented expression of inducible β subunits whereas the decline in activity in chronic EAE correlates with a reduction in the amount of standard β subunits. Using pure standard (s) and immuno (i) 20S particles for calibration, we determined that the changes in the levels of catalytic subunits account for all of the fluctuations in peptidase activities in EAE. The i-20S and s-20S proteasome were found to degrade carbonylated β-actin with similar efficiency, suggesting that the amount of protein carbonyls in EAE may be controlled by the activity of both core particles. We also found an increase in proteasome activator 11S regulatory particle and a decrease in inhibitor proteasome inhibitor with molecular mass of 31 kDa levels in acute EAE, reflecting a response to inflammation. Elevated levels of 19S regulatory particle and 11S regulatory particle in chronic EAE, however, may occur in response to diminished proteasomal activity in this phase. These findings are central towards understanding the altered proteasomal physiology in inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Jianzheng Zheng
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
22
|
Arntzen MØ, Thiede B. ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells. Mol Cell Proteomics 2011; 11:M111.010447. [PMID: 22067098 DOI: 10.1074/mcp.m111.010447] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway
| | | |
Collapse
|
23
|
Abstract
The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2330, USA.
| | | |
Collapse
|
24
|
Sakurai T, Kudo M, Itoh K, Ryu U, Higashitsuji H, Fujita J. Adriamycin Enhances Proteasome-Mediated Generation of the Proapoptotic Processed Form of MAGE-A4 in Hepatoma Cells. Oncology 2011; 81 Suppl 1:30-5. [DOI: 10.1159/000334307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. INSECT MOLECULAR BIOLOGY 2010; 19:695-705. [PMID: 20738426 PMCID: PMC2975901 DOI: 10.1111/j.1365-2583.2010.01031.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of Anopheles gambiae molecular biology has mainly been based on studies using inbred laboratory strains. Differences in the environmental exposure of these and natural field mosquitoes have inevitably led to physiological divergences. We have used global transcript abundance analyses to probe into this divergence, and identified transcript abundance patterns of genes that provide insight on specific adaptations of caged and field mosquitoes. We also compared the gene transcript abundance profiles of field mosquitoes belonging to the two morphologically indistinguishable but reproductively isolated sympatric molecular forms, M and S, from two different locations in the Yaoundé area of Cameroon. This analysis suggested that environmental exposure has a greater influence on the transcriptome than does the mosquito's molecular form-specific genetic background.
Collapse
Affiliation(s)
- Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Frederic Simard
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
- Institut de Recherche pour le Développement (IRD), Research Unit #016, 911 Avenue Agropolis, 34 394 Montpellier, France
| | - Colince Kamdem
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
| | - Tim Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Gregory E. Glass
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| |
Collapse
|
26
|
Gray DC, Mahrus S, Wells JA. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 2010; 142:637-46. [PMID: 20723762 DOI: 10.1016/j.cell.2010.07.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/06/2010] [Accepted: 06/18/2010] [Indexed: 12/23/2022]
Abstract
Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus (TEV) protease under small-molecule control, which we call the SNIPer, with caspase alleles containing genetically encoded TEV cleavage sites. These studies reveal that all three caspases are transiently activated but only activation of caspase-3 or -7 is sufficient to induce apoptosis. Proteomic analysis shown here and from others reveals that 20 of the 33 subunits of the 26S proteasome can be cut by caspases, and we demonstrate synergy between proteasome inhibition and dose-dependent caspase activation. We propose a model of proteolytic reciprocal negative regulation with mechanistic implications for the combined clinical use of proteasome inhibitors and proapoptotic drugs.
Collapse
Affiliation(s)
- Daniel C Gray
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
27
|
Voutsadakis IA, Patrikidou A, Tsapakidis K, Karagiannaki A, Hatzidaki E, Stathakis NE, Papandreou CN. Additive inhibition of colorectal cancer cell lines by aspirin and bortezomib. Int J Colorectal Dis 2010; 25:795-804. [PMID: 20397022 DOI: 10.1007/s00384-010-0939-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2010] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the effect of cyclooxygenase-2 (Cox-2) inhibitor aspirin (acetylsalicylic acid, ASA) and proteasome inhibitor bortezomib in the proliferation and apoptosis of colorectal cancer cell lines. METHODS MTT assay, trypan blue exclusion and DNA fragmentation have been used to investigate cell proliferation and apoptosis in the presence of drugs. For the determination of Cox activity a colorimetric method was used. Western blotting was used for the measurement of the effect of the drugs in different proteins expression. RESULTS Bortezomib together with aspirin inhibit the growth of colorectal cancer cell lines HCT116, HT-29, and CaCo2 more than each drug alone. In the first two cell lines ASA inhibitory effects are Cox-2 independent because HCT116 cells do not express the enzyme while in HT-29 cells, Cox-2 has no activity as shown by a Cox activity assay. In CaCo2 cells that express enzymatically active Cox-2 this activity is inhibited by ASA. ASA is also able to suppress the increase in Cox-2 activity induced by bortezomib in these cells. Cell cycle inhibitors p21 and p27 are induced in the three cell lines by bortezomib and the combination treatment. Akt1 kinase is down-regulated in all three lines by the same treatments. Transcription factor NF-kappaB is retained in the cytoplasm by drug treatment in cell lines HCT116 and HT-29, a fact that may play a role in their pro-apoptotic activity. Pro-apoptotic bcl-2 family member, bad is down-regulated in cell lines HCT116 and CaCo2 by bortezomib treatment, a neoplasia-promoting event that is reversed by combination treatment. CONCLUSION The combination of bortezomib and ASA cooperates to decrease proliferation and induce apoptosis in three human colorectal cell lines with different genetic lesions. These effects are at least in some cases Cox-2 independent and involve common and diverse mechanisms in the three lines.
Collapse
|
28
|
The ubiquitin-proteasome system in prostate cancer and its transition to castration resistance. Urol Oncol 2010; 30:752-61. [PMID: 20580272 DOI: 10.1016/j.urolonc.2010.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the most common carcinoma in the male population. In its initial stage, the disease is androgen-dependent and responds therapeutically to androgen deprivation treatment but it usually progresses after a few years to an androgen-independent phase that is refractory to hormonal manipulations. The proteasome is a multi-unit protease system that regulates the abundance and function of a significant number of cell proteins, and its inhibition results in cancer cell growth inhibition and apoptosis and is already exploited in the clinic with the use of proteasome inhibitor bortezomib in multiple myeloma. In order to be recognized by the proteasome, a target protein needs to be linked to a chain of the small protein ubiquitin. In this paper, we review the role of ubiquitin-proteasome system (UPS) in androgen receptor-dependent transcription as well as in the castration resistant stage of the disease, and we discuss therapeutic opportunities that UPS inhibition offers in prostate cancer.
Collapse
|
29
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC, Lee CK, Park BC, Bae KH, Park SG. Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity. Mol Cells 2009; 28:559-63. [PMID: 19937139 DOI: 10.1007/s10059-009-0151-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.
Collapse
Affiliation(s)
- Mi Jang
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 2009; 16:991-1005. [PMID: 19229247 DOI: 10.1038/cdd.2009.8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cross-presentation of cell-associated antigen is important in the priming of CD8(+) T-cell responses to proteins that are not expressed by antigen-presenting cells (APCs). In vivo, dendritic cells are the main cross-presenting APC, and much is known regarding their ability to capture and process cell-associated antigen. In contrast, little is known about the way death effector pathways influence the efficiency of cross-priming. Here, we compared two important mechanisms of programmed cell death: classical apoptosis, as it occurs in wild-type (WT) fibroblasts, and caspase-independent cell death, which occurs with increased features of autophagy in Bax/Bak(-/-) fibroblasts. We assessed virally infected WT and Bax/Bak(-/-) fibroblasts as a source of cell-associated antigen. We found that immunization with cells undergoing autophagy before cell death was superior in facilitating the cross-priming of antigen-specific CD8(+) T cells. Strikingly, silencing of Atg5 expression inhibited priming. We interpret this to be a novel form of 'immunogenic death' with the enhanced priming efficiency being a result of persistent MHC I cross-presentation and the induction of type I interferons. These results offer the first molecular evidence that catabolic pathways, including autophagy, influence the efficiency of cross-priming. We predict that targeting the autophagy cascade may provide a therapeutic strategy for achieving robust cross-priming of viral and tumor-specific CD8(+) T cells.
Collapse
|
32
|
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:800-8. [PMID: 18619533 DOI: 10.1016/j.bbadis.2008.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023]
Abstract
The proteasome is a multiprotein complex that regulates the stability of hundreds of cellular proteins and thus, it is implicated in virtually all cellular functions. Most of the time, to be recognized and processed by the proteasome, a protein has to be linked to a chain of ubiquitin molecules. Cell proliferation, apoptosis, angiogenesis and motility, processes with particular importance for carcinogenesis are regulated by the ubiquitin-proteasome system (UPS). In colorectal epithelium, UPS plays a role in the regulation of the Wnt/beta-catenin/APC/TCF4 signaling which regulates proliferation of colorectal epithelial cells in the bottom of the crypts and the inhibition of this proliferation as cells move towards colon villi tips. In most colorectal cancers APC (Adenomatous Polyposis Coli) disabling mutations interfere with the ability of the proteasome to degrade beta-catenin leading to uninhibited cell proliferation. Other key molecules in colorectal carcinogenesis such as p53, Smad4 and components of the k-ras pathways are also regulated by the UPS. In this review I discuss the role of UPS in colorectal carcinogenesis and colorectal cancer prognosis and aspects of its inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
33
|
Brennan LJ, Keddie BA, Braig HR, Harris HL. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One 2008; 3:e2083. [PMID: 18461124 PMCID: PMC2324199 DOI: 10.1371/journal.pone.0002083] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/14/2008] [Indexed: 01/13/2023] Open
Abstract
Wolbachia are obligate intracellular bacteria which commonly infect arthropods. They are maternally inherited and capable of altering host development, sex determination, and reproduction. Reproductive manipulations include feminization, male-killing, parthenogenesis, and cytoplasmic incompatibility. The mechanism by which Wolbachia avoid destruction by the host immune response is unknown. Generation of antimicrobial peptides (AMPs) and reactive oxygen species (ROS) by the host are among the first lines of traditional antimicrobial defense. Previous work shows no link between a Wolbachia infection and the induction of AMPs. Here we compare the expression of protein in a cell line naturally infected with Wolbachia and an identical cell line cured of the infection through the use of antibiotics. Protein extracts of each cell line were analyzed by two dimensional gel electrophoresis and LC/MS/MS. Our results show the upregulation of host antioxidant proteins, which are active against ROS generated by aerobic cell metabolism and during an immune response. Furthermore, flow cytometric and microscopic analysis demonstrates that ROS production is significantly greater in Wolbachia-infected mosquito cells and is associated with endosymbiont-containing vacuoles located in the host cell cytoplasm. This is the first empirical data supporting an association between Wolbachia and the insect antioxidant system.
Collapse
Affiliation(s)
- Lesley J. Brennan
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Biology and Environmental Science, Concordia University College of Alberta, Edmonton, Canada
| | - B. Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Henk R. Braig
- School of Biological Sciences, University of Wales, Bangor, United Kingdom
| | - Harriet L. Harris
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Biology and Environmental Science, Concordia University College of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
34
|
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9:231-41. [PMID: 18073771 DOI: 10.1038/nrm2312] [Citation(s) in RCA: 1916] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Apoptosis is characterized by a series of dramatic perturbations to the cellular architecture that contribute not only to cell death, but also prepare cells for removal by phagocytes and prevent unwanted immune responses. Much of what happens during the demolition phase of apoptosis is orchestrated by members of the caspase family of cysteine proteases. These proteases target several hundred proteins for restricted proteolysis in a controlled manner that minimizes damage and disruption to neighbouring cells and avoids the release of immunostimulatory molecules.
Collapse
Affiliation(s)
- Rebecca C Taylor
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
35
|
Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:59-124. [PMID: 18544497 DOI: 10.1016/s1937-6448(08)00602-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 26S proteasome is the key enzyme of the ubiquitin-dependent pathway of protein degradation. This energy-dependent nanomachine is composed of a 20S catalytic core and associated regulatory complexes. The eukaryotic 20S proteasomes demonstrate besides several kinds of peptidase activities, the endoribonuclease, protein-chaperone and DNA-helicase activities. Ubiquitin-proteasome pathway controls the levels of the key regulatory proteins in the cell and thus is essential for life and is involved in regulation of crucial cellular processes. Proteasome population in the cell is structurally and functionally heterogeneous. These complexes are subjected to tightly organized regulation, particularly, to a variety of posttranslational modifications. In this review we will summarize the current state of knowledge regarding proteasome participation in the control of cell cycle, apoptosis, differentiation, modulation of immune responses, reprogramming of these particles during these processes, their heterogeneity and involvement in the main levels of gene expression.
Collapse
|
36
|
Lüthi AU, Cullen SP, Martin SJ. Chapter Seventeen Two‐Dimensional Gel‐Based Analysis of the Demolition Phase of Apoptosis. Methods Enzymol 2008; 442:343-54. [DOI: 10.1016/s0076-6879(08)01417-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Cross-presentation of caspase-cleaved apoptotic self antigens in HIV infection. Nat Med 2007; 13:1431-9. [PMID: 18026114 DOI: 10.1038/nm1679] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/08/2007] [Indexed: 12/20/2022]
Abstract
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.
Collapse
|
38
|
Uchio N, Oma Y, Toriumi K, Sasagawa N, Tanida I, Fujita E, Kouroku Y, Kuroda R, Momoi T, Ishiura S. Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids. FEBS J 2007; 274:5619-27. [DOI: 10.1111/j.1742-4658.2007.06085.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Jang M, Park BC, Lee AY, Na KS, Kang S, Bae KH, Myung PK, Chung BC, Cho S, Lee DH, Park SG. Caspase-7 mediated cleavage of proteasome subunits during apoptosis. Biochem Biophys Res Commun 2007; 363:388-94. [PMID: 17880920 DOI: 10.1016/j.bbrc.2007.08.183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/30/2007] [Indexed: 11/28/2022]
Abstract
Caspase-3 and caspase-7 are structurally closely related and demonstrate overlapping substrate specificity. However, during apoptosis, they are differentially regulated and show distinct subcellular localizations, implying the presence of specific substrates. In this study, to identify caspase-7 substrates, we treated the lysates derived from caspase-3-deficient MCF-7 cells with purified caspase-7 and analyzed decreased proteins by 2-DE. Intriguingly, several proteasome subunits such as alpha2, alpha6, and Rpt1 are degraded by caspase-7 during apoptosis in vitro and in vivo. Caspase-7 mediated cleavage of proteasome subunits results in the reduction of proteasome activity and thereby increases the accumulation of ubiquitinated proteins in cells. These findings suggest that caspase-7 facilitates the execution of apoptosis through down-regulation of the 26S proteasome, which regulates the turnover of proteins involved in the apoptotic process.
Collapse
Affiliation(s)
- Mi Jang
- Translational Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chandraratna D, Lawrence N, Welchman DP, Sanson B. An in vivo model of apoptosis: linking cell behaviours and caspase substrates in embryos lacking DIAP1. J Cell Sci 2007; 120:2594-608. [PMID: 17636001 DOI: 10.1242/jcs.03472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The apoptotic phenotype is characterised by dynamic changes in cell behaviours such as cell rounding and blebbing, followed by chromatin condensation and cell fragmentation. Whereas the biochemical pathways leading to caspase activation have been actively studied, much less is known about how caspase activity changes cell behaviours during apoptosis. Here, we address this question using early Drosophila melanogaster embryos lacking DIAP1. Reflecting its central role in the inhibition of apoptosis, loss of DIAP1 causes massive caspase activation. We generated DIAP1-depleted embryos by either using homozygous null mutants for thread, the gene coding DIAP1, or by ectopically expressing in early embryos the RGH protein Reaper, which inhibits DIAP1. We show that (1) all cells in embryos lacking DIAP1 follow synchronously the stereotypic temporal sequence of behaviours described for apoptotic mammalian cells and (2) these cell behaviours specifically require caspase activity and are not merely a consequence of cellular stress. Next, we analyse the dynamic changes in the localisation of actomyosin, Discs large, Bazooka and DE-cadherin in the course of apoptosis. We show that early changes in Bazooka and Discs large correlate with early processing of these proteins by caspases. DE-cadherin and Myosin light chain do not appear to be cleaved, but their altered localisation can be explained by cleavage of known regulators. This illustrates how embryos lacking DIAP1 can be used to characterise apoptotic changes in the context of an embryo, thus providing an unprecedented in vivo model in which thousands of cells initiate apoptosis simultaneously.
Collapse
|
41
|
Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med 2007; 11:252-85. [PMID: 17488476 PMCID: PMC3822826 DOI: 10.1111/j.1582-4934.2007.00032.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathways of the molecular pathogenesis of colorectal carcinoma have been extensively studied and molecular lesions during the development of the disease have been revealed. High up in the list of colorectal cancer lesions are APC (adenomatous polyposis coli), K-ras, Smad4 (or DPC4-deleted in pancreatic cancer 4) and p53 genes. All these molecules are part of important pathways for the regulation of cell proliferation and apoptosis and as a result perturbation of these processes lead to carcinogenesis. The ubiquitin-proteasome system (UPS) is comprised of a multi-unit cellular protease system that regulates several dozens of cell proteins after their ligation with the protein ubiquitin. Given that among these proteins are regulators of the cell cycle, apoptosis, angiogenesis, adhesion and cell signalling, this system plays a significant role in cell fate and carcinogenesis. UPS inhibition has been found to be a pre-requisite for apoptosis and is already clinically exploited with the proteasome inhibitor bortezomib in multiple myeloma. Cyclooxygenase-2 (Cox-2) is the inducible form of the enzyme that metabolizes the lipid arachidonic acid to prostaglandin H2, the first step of prostaglandins production. This enzyme is up-regulated in colorectal cancer and in several other cancers. Inhibition of Cox-2 by aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been found to inhibit proliferation of colorectal cancer cells and in epidemiologic studies has been shown to reduce colon polyp formation in genetically predisposed populations and in the general population. NSAIDs have also Cox-independent anti-proliferative effects. Targeted therapies, the result of increasingly understanding carcinogenesis in the molecular level, have entered the field of anti-neoplastic treatment and are used by themselves and in combination with chemotherapy drugs. Combinations of targeted drugs have started also to be investigated. This article reviews the molecular pathogenesis of colorectal cancer, the roles of UPS and Cox-2 in it and puts forward a rational for their combined inhibition in colorectal cancer treatment.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
42
|
O'Duffy AE, Bordelon YM, McLaughlin B. Killer proteases and little strokes--how the things that do not kill you make you stronger. J Cereb Blood Flow Metab 2007; 27:655-68. [PMID: 16896349 PMCID: PMC2881558 DOI: 10.1038/sj.jcbfm.9600380] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of ischemic preconditioning was initially observed over 20 years ago. The basic tenant is that if stimuli are applied at a subtoxic level, cells upregulate endogenous protective mechanisms to block injury induced by subsequent stress. Since this discovery, many conserved signaling mechanisms that contribute to activation of this potent protective program have been identified in the brain. A clinical correlate of this basic research finding can be found in patients with a history of transient ischemic attack (TIA), who have a decreased morbidity after stroke. In spite of multidisciplinary efforts to design safer, more effective stroke therapies, we have thus far failed to translate our understanding of endogenous protective pathways to treatments for neurodegeneration. This review is designed to provide clinicians and basic scientists with an overview of stress biology after TIA and preconditioning, discuss new therapeutic strategies to target the protein dysfunction that follows ischemic injury, and propose enhanced biochemical profiling to identify individuals at risk of stroke after TIA. We pay particular attention to the unanticipated consequences of overly aggressive intervention after TIA in which we have found that traditional cytotoxic agents such as free radicals and apoptosis associated proteases is essential for neuroprotection and communication in the stressed brain. These data emphasize the importance of understanding the complex interplay between chaperones, apoptotic proteases including caspases, and the proteolytic degradation machinery in adaptation to neurological injury.
Collapse
Affiliation(s)
- Anne E O'Duffy
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA
| | | | | |
Collapse
|
43
|
Taylor RC, Brumatti G, Ito S, Hengartner MO, Derry WB, Martin SJ. Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. J Biol Chem 2007; 282:15011-21. [PMID: 17371877 DOI: 10.1074/jbc.m611051200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genetic studies have established that the cysteine protease CED-3 plays a central role in coordinating programmed cell death in Caenorhabditis elegans. However, it remains unclear how CED-3 activation results in cell death because few substrates for this protease have been described. We have used a global proteomics approach to seek substrates for CED-3 and have identified 22 worm proteins that undergo CED-3-dependent proteolysis. Proteins that were found to be substrates for CED-3 included the cytoskeleton proteins actin, myosin light chain, and tubulin, as well as proteins involved in ATP synthesis, cellular metabolism, and chaperone function. We estimate that approximately 3% of the C. elegans proteome is susceptible to CED-3-dependent proteolysis. Notably, the endoplasmic reticulum chaperone calreticulin, which has been implicated in the recognition of apoptotic cells by phagocytes, was cleaved by CED-3 and was also cleaved by human caspases during apoptosis. Inhibitors of caspase activity blocked the appearance of calreticulin on the surface of apoptotic cells, suggesting a mechanism for the surface display of calreticulin during apoptosis. Further analysis of these substrates is likely to yield important insights into the mechanism of killing by CED-3 and its human caspase counterparts.
Collapse
Affiliation(s)
- Rebecca C Taylor
- Molecular Cell Biology Laboratory, The Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
44
|
da Silva Correia J, Miranda Y, Leonard N, Ulevitch RJ. The subunit CSN6 of the COP9 signalosome is cleaved during apoptosis. J Biol Chem 2007; 282:12557-65. [PMID: 17337451 DOI: 10.1074/jbc.m609587200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The COP9 signalosome is a large multiprotein complex that consists of eight subunits termed CSN1-CSN8. The diverse functions of the COP9 complex include regulation of several important intracellular pathways, including the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. Nod1 is also thought to be an important cytoplasmic receptor involved in innate immune responses. It detects specific motifs of bacterial peptidoglycan, and this results in activation of multiple signaling pathways and changes in cell function. In this report, we performed a yeast two-hybrid screening and discovered that Nod1 interacts with several components of the COP9 signalosome through its CARD domain. Moreover, we observed that activation of the Nod1 apoptotic pathway leads to specific cleavage of the subunit CSN6. This cleavage is concomitant with caspase processing and generates a short amino-terminal peptide of 3 kDa. A complete inhibition of this cleavage was achieved in the presence of the broad spectrum pharmacological inhibitor of apoptosis, Z-VAD. Furthermore, overexpression of CLARP, a specific caspase 8 inhibitor, completely blocked cleavage of CSN6. Taken together, these results suggest a critical role of caspase 8 in the processing of CSN6. Moreover, these findings suggest that CSN6 cleavage may result in modifications of functions of the COP9 complex that are involved in apoptosis.
Collapse
Affiliation(s)
- Jean da Silva Correia
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Lee Y, Park HW, Park SG, Cho S, Myung PK, Park BC, Lee DH. Proteomic analysis of glutamate-induced toxicity in HT22 cells. Proteomics 2007; 7:185-93. [PMID: 17146837 DOI: 10.1002/pmic.200600644] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we have investigated the proteome changes associated with glutamate-induced HT22 cell death, a model system to study oxidative stress-mediated toxicity. Among a number of HT22 proteins exhibiting altered expression, several molecular chaperones demonstrated substantial changes. For example, the levels of Hsp90 and Hsp70 decreased as cell death progressed whereas that of Hsp60 increased dramatically. Interestingly, cytosolic Hsp60 increased more prominently than mitochondrial Hsp60. Concomitantly, the accumulation of poly-ubiquitylated proteins and differential regulation of the peptidase activities and the subunits of 26S proteasomes were observed in glutamate-treated HT22 cells. Our findings that the molecular chaperones and the ubiquitin-proteasome system undergo changes during glutamate-induced HT22 cell death may suggest the importance of a protein quality control system in oxidative damage-mediated toxicity.
Collapse
Affiliation(s)
- Youra Lee
- Protein Therapeutics Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cell death plays many roles during development, in the adult, and in the genesis of many pathological states. Much of this death is apoptotic in nature and requires the activity of members of the caspase family of proteases. It is now possible uniquely in Drosophila to carry out genetic screens for genes that determine the fate-life or death-of any population of cells during development and adulthood. This, in conjunction with the ability to obtain biochemical quantities of material, has made Drosophila a useful organism for exploring the mechanisms by which apoptosis is carried out and regulated. This review summarizes our knowledge of caspase-dependent cell death in Drosophila and compares that knowledge with what is known in worms and mammals. We also discuss the significance of recent work showing that a number of key cell death activators also play nonapoptotic roles. We highlight opportunities and outstanding questions along the way.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
47
|
Gabellini C, Pucci B, Valdivieso P, D'Andrilli G, Tafani M, De Luca A, Masciullo V. p27kip1 overexpression promotes paclitaxel-induced apoptosis in pRb-defective SaOs-2 cells. J Cell Biochem 2006; 98:1645-52. [PMID: 16598766 DOI: 10.1002/jcb.20900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
p27kip1 is a cyclin-dependent kinase (CDK) inhibitor, which controls several cellular processes in strict collaboration with pRb. We evaluated the role of p27kip1 in paclitaxel-induced apoptosis in the pRb-defective SaOs-2 cells. Following 48 h of exposure of SaOs-2 cells to 100 nM paclitaxel, we observed an increase in p27kip1 expression caused by the decrease of the ubiquitin-proteasome activity. Such increase was not observed in SaOs-2 cells treated with the caspase inhibitors Z-VAD-FMK, suggesting that p27kip1 enhancement at 48 h is strictly related to apoptosis. Finally, we demonstrated that SaOs-2 cells transiently overexpressing the p27kip1 protein are more susceptible to paclitaxel-induced apoptosis than SaOs-2 cells transiently transfected with the empty vector. Indeed, after 48 h of paclitaxel treatment, 41.8% of SaOs-2 cells transiently transfected with a pcDNA3-p27kip1 construct were Annexin V-positive compared to 30.6% of SaOs-2 cells transfected with the empty vector (P < 0.05). In conclusion, we demonstrated that transfection of the pRb-defective SaOs-2 cells with the p27kip1 gene via plasmid increases their susceptibility to paclitaxel-induced apoptosis. The promoting effect of p27kip1 overexpression on apoptosis makes p27kip1 and proteasomal inhibitors interesting tools for therapy in patients with pRb-defective cancers.
Collapse
Affiliation(s)
- Chiara Gabellini
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The ubiquitin-proteasome system (UPS) is the major nonlysosomal pathway for intracellular protein degradation, generally requiring a covalent linkage of one or more chains of polyubiquitins to the protein intended for degradation. It has become clear that the UPS plays major roles in regulating many cellular processes, including the cell cycle, immune responses, apoptosis, cell signaling, and protein turnover under normal and pathological conditions, as well as in protein quality control by removal of damaged, oxidized, and/or misfolded proteins. This review will present an overview of the structure, biochemistry, and physiology of the UPS with emphasis on its role in the heart, if known. In addition, evidence will be presented supporting the role of certain muscle-specific ubiquitin protein ligases, key regulatory components of the UPS, in regulation of sarcomere protein turnover and cardiomyocyte size and how this might play a role in induction of the hypertrophic phenotype. Moreover, this review will present the evidence suggesting that proteasomal dysfunction may play a role in cardiac pathologies such as myocardial ischemia, congestive heart failure, and myofilament-related and idiopathic-dilated cardiomyopathies, as well as cardiomyocyte loss in the aging heart. Finally, certain pitfalls of proteasome studies will be described with the intent of providing investigators with enough information to avoid these problems. This review should provide current investigators in the field with an up-to-date analysis of the literature and at the same time provide an impetus for new investigators to enter this important and rapidly changing area of research.
Collapse
Affiliation(s)
- Saul R Powell
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
49
|
Abstract
The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first 'tagged' by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore.
| | | | | | | |
Collapse
|
50
|
Cathelin S, Rébé C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S, Mayeux P, Solary E. Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation. J Biol Chem 2006; 281:17779-88. [PMID: 16636047 DOI: 10.1074/jbc.m600537200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown previously that caspases were specifically involved in the differentiation of peripheral blood monocytes into macrophages while not required for monocyte differentiation into dendritic cells. To identify caspase targets in monocytes undergoing macrophagic differentiation, we used the human monocytic leukemic cell line U937, whose macrophagic differentiation induced by exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) can be prevented by expression of the baculovirus caspase-inhibitory protein p35. A comparative two-dimensional gel proteomic analysis of empty vector- and p35-transfected cells after 12 h of exposure to 20 nm TPA, followed by mass spectrometry analysis, identified 38 differentially expressed proteins. Those overexpressed in p35-expressing cells (n = 16) were all full-length, whereas half of those overexpressed in control cells (n = 22) were N- or C-terminal cleavage fragments. The cleavage or degradation of seven of these proteins was confirmed in peripheral blood monocytes undergoing macrophage colony-stimulating factor-induced macrophagic differentiation. In U937 cells exposed to TPA, these proteolytic events can be inhibited by expression of a caspase-8 dominant negative mutant or the cowpox virus CrmA caspase inhibitor. These cleavages provide new insights to analyze the role of caspases in this specific differentiation program.
Collapse
Affiliation(s)
- Séverine Cathelin
- INSERM UMR 517, IFR 100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, F-21079 Dijon Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|