1
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
2
|
Sodani M, Misra CS, Nigam G, Fatima Z, Kulkarni S, Rath D. MSMEG_0311 is a conserved essential polar protein involved in mycobacterium cell wall metabolism. Int J Biol Macromol 2024; 260:129583. [PMID: 38242409 DOI: 10.1016/j.ijbiomac.2024.129583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cell wall synthesis and cell division are two closely linked pathways in a bacterial cell which distinctly influence the growth and survival of a bacterium. This requires an appreciable coordination between the two processes, more so, in case of mycobacteria with an intricate multi-layered cell wall structure. In this study, we investigated a conserved gene cluster using CRISPR-Cas12 based gene silencing technology to show that knockdown of most of the genes in this cluster leads to growth defects. Investigating conserved genes is important as they likely perform vital cellular functions and the functional insights on such genes can be extended to other mycobacterial species. We characterised one of the genes in the locus, MSMEG_0311. The repression of this gene not only imparts severe growth defect but also changes colony morphology. We demonstrate that the protein preferentially localises to the polar region and investigate its influence on the polar growth of the bacillus. A combination of permeability and drug susceptibility assay strongly suggests a cell wall associated function of this gene which is also corroborated by transcriptomic analysis of the knockdown where a number of cell wall associated genes, particularly iniA and sigF regulon get altered. Considering the gene is highly conserved across mycobacterial species and appears to be essential for growth, it may serve as a potential drug target.
Collapse
Affiliation(s)
- Megha Sodani
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| | - Chitra S Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Gaurav Nigam
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India; Department of Laboratory Medicine, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Savita Kulkarni
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India.
| | - Devashish Rath
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India; Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
3
|
Controlled processivity in glycosyltransferases: A way to expand the enzymatic toolbox. Biotechnol Adv 2023; 63:108081. [PMID: 36529206 DOI: 10.1016/j.biotechadv.2022.108081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GT) catalyse the biosynthesis of complex carbohydrates which are the most abundant group of molecules in nature. They are involved in several key mechanisms such as cell signalling, biofilm formation, host immune system invasion or cell structure and this in both prokaryotic and eukaryotic cells. As a result, research towards complete enzyme mechanisms is valuable to understand and elucidate specific structure-function relationships in this group of molecules. In a next step this knowledge could be used in GT protein engineering, not only for rational drug design but also for multiple biotechnological production processes, such as the biosynthesis of hyaluronan, cellooligosaccharides or chitooligosaccharides. Generation of these poly- and/or oligosaccharides is possible due to a common feature of several of these GTs: processivity. Enzymatic processivity has the ability to hold on to the growing polymer chain and some of these GTs can even control the number of glycosyl transfers. In a first part, recent advances in understanding the mechanism of various processive enzymes are discussed. To this end, an overview is given of possible engineering strategies for the purpose of new industrial and fundamental applications. In the second part of this review, we focused on specific chain length-controlling mechanisms, i.e., key residues or conserved regions, and this for both eukaryotic and prokaryotic enzymes.
Collapse
|
4
|
Kurze E, Wüst M, Liao J, McGraphery K, Hoffmann T, Song C, Schwab W. Structure-function relationship of terpenoid glycosyltransferases from plants. Nat Prod Rep 2021; 39:389-409. [PMID: 34486004 DOI: 10.1039/d1np00038a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Matthias Wüst
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany.
| | - Jieren Liao
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Kate McGraphery
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Thomas Hoffmann
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| | - Wilfried Schwab
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany. .,State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
5
|
Cai X, Taguchi T, Wang H, Yuki M, Tanaka M, Gong K, Xu J, Zhao Y, Ichinose K, Li A. Identification of a C-Glycosyltransferase Involved in Medermycin Biosynthesis. ACS Chem Biol 2021; 16:1059-1069. [PMID: 34080843 DOI: 10.1021/acschembio.1c00227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-Glycosylation in the biosynthesis of bioactive natural products is quite unique, which has not been studied well. Medermycin, as an antitumor agent in the family of pyranonaphthoquinone antibiotics, is featured with unique C-glycosylation. Here, a new C-glycosyltransferase (C-GT) Med-8 was identified to be essential for the biosynthesis of medermycin, as the first example of C-GT to recognize a rare deoxyaminosugar (angolosamine). med-8 and six genes (med-14, -15, -16, -17, -18, and -20 located in the medermycin biosynthetic gene cluster) predicted for the biosynthesis of angolosamine were proved to be functional and sufficient for C-glycosylation. A C-glycosylation cassette composed of these seven genes could convert a proposed substrate into a C-glycosylated product. In conclusion, these genes involved in the C-glycosylation of medermycin were functionally identified and biosynthetically engineered, and they provided the possibility of producing new C-glycosylated compounds.
Collapse
Affiliation(s)
- Xiaofeng Cai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- The College of Life Sciences, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Takaaki Taguchi
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Huili Wang
- The College of Life Sciences, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China
| | - Megumi Yuki
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Megumi Tanaka
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jinghua Xu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Koji Ichinose
- Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- The College of Life Sciences, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
7
|
Essential Mycoplasma Glycolipid Synthase Adheres to the Cell Membrane by Means of an Amphipathic Helix. Sci Rep 2019; 9:7085. [PMID: 31068620 PMCID: PMC6506492 DOI: 10.1038/s41598-019-42970-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/29/2019] [Indexed: 11/22/2022] Open
Abstract
Because of the lack of cell wall, Micoplasma species require a fine control of membrane fluidity and integrity. mg517 is an essential gene of Mycoplasma genitalium responsible for the biosynthesis of membrane glycoglycerolipids. It encodes for a unique glycosyltransferase (MG517) with processive activity, transferring activated glycosyl donors to either nude diacylglycerol or already glycosylated diacylglycerol. This dual activity, asserted to different enzymes in other species, is sensitive to and regulated by the presence of anionic lipid vesicles in vitro. We present here a computational model of the C-terminus domain of MG517 that complements a previous structural model of the N-terminus domain. By means of sequence analysis, molecular dynamics and metadynamics simulations, we have identified a short α-helix at the apical C-terminus of MG517 with clear amphipathic character. Binding to a membrane model is thermodynamically favored which suggests that this structural element guides the adhesion of MG517 to the cell membrane. We have experimentally verified that truncation of part of this helix causes a substantial reduction of glycoglycerolipids synthesis. The model proposes that MG517 recognizes and binds the diacylglycerol substrate embedded in the membrane by means of this α-helix at the C-terminus together with a previously identified binding pocket at the N-terminus.
Collapse
|
8
|
Zhang M, Wei F, Guo K, Hu Z, Li Y, Xie G, Wang Y, Cai X, Peng L, Wang L. A Novel FC116/ BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1366. [PMID: 27708650 PMCID: PMC5030303 DOI: 10.3389/fpls.2016.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 05/11/2023]
Abstract
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.
Collapse
Affiliation(s)
- Mingliang Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Feng Wei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Guo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State UniversityFargo, ND, USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
9
|
The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets. Antibiotics (Basel) 2016; 5:antibiotics5030028. [PMID: 27571111 PMCID: PMC5039524 DOI: 10.3390/antibiotics5030028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs), have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated) proteins in bacterial cells and the perspectives on how to overcome the issues.
Collapse
|
10
|
Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Front Microbiol 2016; 7:182. [PMID: 26925049 PMCID: PMC4757703 DOI: 10.3389/fmicb.2016.00182] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial GTs show a higher sequence similarity in comparison to mammalian ones. Even when most GTs are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial GTs, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.
Collapse
Affiliation(s)
- Jochen Schmid
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Dominik Heider
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Norma J Wendel
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Nadine Sperl
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| |
Collapse
|
11
|
Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev 2015; 44:8350-74. [DOI: 10.1039/c5cs00600g] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycosylation reactions mainly catalyzed by glycosyltransferases (Gts) occur almost everywhere in the biosphere, and always play crucial roles in vital processes.
Collapse
Affiliation(s)
- Dong-Mei Liang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jia-Heng Liu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hao Wu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin-Bin Wang
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Hong-Ji Zhu
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jian-Jun Qiao
- Department of Pharmaceutical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
12
|
Brockhausen I. Crossroads between Bacterial and Mammalian Glycosyltransferases. Front Immunol 2014; 5:492. [PMID: 25368613 PMCID: PMC4202792 DOI: 10.3389/fimmu.2014.00492] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022] Open
Abstract
Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Queen's University , Kingston, ON , Canada ; Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| |
Collapse
|
13
|
Ge C, Spånning E, Glaser E, Wieslander A. Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:121-136. [PMID: 24214895 DOI: 10.1093/mp/sst148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed. dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.
Collapse
Affiliation(s)
- Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Malik V, Black GW. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:87-115. [PMID: 22607753 DOI: 10.1016/b978-0-12-398312-1.00004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The biosynthesis of the complex carbohydrates that govern many cellular functions requires the action of a diverse range of selective glycosyltransferases (GTs). Uridine diphosphate sugar-utilizing GTs (UGTs) account for the majority of characterized GTs. GTs have been classified into families (currently 92) based on amino-acid sequence similarity. However, as amino-acid sequence similarity cannot reliable predict catalytic mechanism, GTs have also been grouped into four clans based on catalytic mechanism and structural fold. GTs catalyze glycosidic bond formation with two possible stereochemical outcomes: inversion or retention of anomeric configuration. All UGTs also belong to one of two distinct structural folds, GT-A and GT-B. UGTs have conserved residues that are associated with nucleotide diphosphate sugar recognition and acceptor recognition. UGT diversification has been performed using in vitro DNA recombination, domain swapping, and random mutagenesis.
Collapse
Affiliation(s)
- Vatsala Malik
- School of Life Sciences, Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
15
|
Chang A, Singh S, Phillips GN, Thorson JS. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 2011; 22:800-8. [PMID: 21592771 PMCID: PMC3163058 DOI: 10.1016/j.copbio.2011.04.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 12/19/2022]
Abstract
Glycosyltransferases (GTs) are ubiquitous in nature and are required for the transfer of sugars to a variety of important biomolecules. This essential enzyme family has been a focus of attention from both the perspective of a potential drug target and a catalyst for the development of vaccines, biopharmaceuticals and small molecule therapeutics. This review attempts to consolidate the emerging lessons from Leloir (nucleotide-dependent) GT structural biology studies and recent applications of these fundamentals toward rational engineering of glycosylation catalysts.
Collapse
Affiliation(s)
- Aram Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shanteri Singh
- Pharmaceutical Sciences Division, School of Pharmacy, Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jon S. Thorson
- Pharmaceutical Sciences Division, School of Pharmacy, Center for Natural Products Research, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| |
Collapse
|
16
|
Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B. Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 2011; 10:3617-31. [PMID: 21648951 DOI: 10.1021/pr200268r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are unique eubacteria with an organized subcellular compartmentalization of highly differentiated internal thylakoid membranes (TM), in addition to the outer and plasma membranes (PM). This leads to a complicated system for transport and sorting of proteins into the different membranes and compartments. By shotgun and gel-based proteomics of plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803, a large number of membrane proteins were identified. Proteins localized uniquely in each membrane were used as a platform describing a model for cellular membrane organization and protein intermembrane sorting and were analyzed by multivariate sequence analyses to trace potential differences in sequence properties important for insertion and sorting to the correct membrane. Sequence traits in the C-terminal region, but not in the N-terminal nor in any individual transmembrane segments, were discriminatory between the TM and PM classes. The results are consistent with a contact zone between plasma and thylakoid membranes, which may contain short-lived "hemifusion" protein traffic connection assemblies. Insertion of both integral and peripheral membrane proteins is suggested to occur through common translocons in these subdomains, followed by a potential translation arrest and structure-based sorting into the correct membrane compartment.
Collapse
Affiliation(s)
- Tatiana Pisareva
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Szpryngiel S, Ge C, Iakovleva I, Georgiev A, Lind J, Wieslander Å, Mäler L. Lipid Interacting Regions in Phosphate Stress Glycosyltransferase atDGD2 from Arabidopsis thaliana. Biochemistry 2011; 50:4451-66. [DOI: 10.1021/bi200162f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Irina Iakovleva
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Alexander Georgiev
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Jesper Lind
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Åke Wieslander
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
18
|
Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Exploring genomes for glycosyltransferases. MOLECULAR BIOSYSTEMS 2010; 6:1773-81. [PMID: 20556308 DOI: 10.1039/c000238k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosyltransferases are one of the largest and most diverse enzyme groups in Nature. They catalyse the synthesis of glycosidic linkages by the transfer of a sugar residue from a donor to an acceptor substrate. These enzymes have been classified into families on the basis of amino acid sequence similarity that are kept updated in the Carbohydrate Active enZyme database (CAZy, ). The repertoire of glycosyltransferases in genomes is believed to determine the diversity of cellular glycan structures, and current estimates suggest that for most genomes about 1% of the coding regions are glycosyltransferases. However, plants tend to have far more glycosyltransferase genes than any other organism sequenced to date, and this can be explained by the highly complex polysaccharide network that form the cell wall and also by the numerous glycosylated secondary metabolites. In recent years, various bioinformatics strategies have been used to search bacterial and plant genomes for new glycosyltransferase genes. These are based on the use of remote homology detection methods that act at the 1D, 2D, and 3D level. The combined use of methods such as profile Hidden Markov Model (HMM) and fold recognition appears to be appropriate for this class of enzyme. Chemometric tools are also particularly well suited for obtaining an overview of multivariate data and revealing hidden latent information when dealing with large and highly complex datasets.
Collapse
|
19
|
Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G, Wang X, Li J. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:446-62. [PMID: 18939965 DOI: 10.1111/j.1365-313x.2008.03703.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycosyltransferases (GTs) are one of the largest enzyme groups required for the synthesis of complex wall polysaccharides and glycoproteins in plants. However, due to the limited number of related mutants that have observable phenotypes, the biological function(s) of most GTs in cell-wall biosynthesis and assembly have remained elusive. We report here the isolation and in-depth characterization of a brittle rice mutant, brittle culm 10 (bc10). bc10 plants show pleiotropic phenotypes, including brittleness of the plant body and retarded growth. The BC10 gene was cloned through a map-based approach, and encodes a Golgi-located type II membrane protein that contains a domain designated as 'domain of unknown function 266' (DUF266) and represents a multiple gene family in rice. BC10 has low sequence similarity with the domain to a core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT), and its in vitro enzymatic activity suggests that it functions as a glycosyltransferase. Monosaccharide analysis of total and fractioned wall residues revealed that bc10 showed impaired cellulose biosynthesis. Immunolocalization and isolation of arabinogalactan proteins (AGPs) in the wild-type and bc10 showed that the level of AGPs in the mutant is significantly affected. BC10 is mainly expressed in the developing sclerenchyma and vascular bundle cells, and its deficiency causes a reduction in the levels of cellulose and AGPs, leading to inferior mechanical properties.
Collapse
Affiliation(s)
- Yihua Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Burton RA, Collins HM, Fincher GB. The Role of Endosperm Cell Walls in Barley Malting Quality. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2009. [DOI: 10.1007/978-3-642-01279-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Barreras M, Salinas SR, Abdian PL, Kampel MA, Ielpi L. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. J Biol Chem 2008; 283:25027-35. [PMID: 18596046 DOI: 10.1074/jbc.m801227200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xanthomonas campestris GumK (beta-1,2-glucuronosyltransferase) is a 44-kDa membrane-associated protein that is involved in the biosynthesis of xanthan, an exopolysaccharide crucial for this bacterium's phytopathogenicity. Xanthan also has many important industrial applications. The GumK enzyme is the founding member of the glycosyltransferase family 70 of carbohydrate-active enzymes, which is composed of bacterial glycosyltransferases involved in exopolysaccharide synthesis. No x-ray structures have been reported for this family. To better understand the mechanism of action of the bacterial glycosyltransferases in this family, the x-ray crystal structure of apo-GumK was solved at 1.9 angstroms resolution. The enzyme has two well defined Rossmann domains with a catalytic cleft between them, which is a typical feature of the glycosyltransferase B superfamily. Additionally, the crystal structure of GumK complexed with UDP was solved at 2.28 angstroms resolution. We identified a number of catalytically important residues, including Asp157, which serves as the general base in the transfer reaction. Residues Met231, Met273, Glu272, Tyr292, Met306, Lys307, and Gln310 interact with UDP, and mutation of these residues affected protein activity both in vitro and in vivo. The biological and structural data reported here shed light on the molecular basis for donor and acceptor selectivity in this glycosyltransferase family. These results also provide a rationale to obtain new polysaccharides by varying residues in the conserved alpha/beta/alpha structural motif of GumK.
Collapse
Affiliation(s)
- Máximo Barreras
- Laboratory of Bacterial Genetics, Fundación Instituto Leloir, IIBBA-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BWE, Argentina
| | | | | | | | | |
Collapse
|
22
|
Rajalahti T, Huang F, Klement MR, Pisareva T, Edman M, Sjöström M, Wieslander A, Norling B. Proteins in different Synechocystis compartments have distinguishing N-terminal features: a combined proteomics and multivariate sequence analysis. J Proteome Res 2007; 6:2420-34. [PMID: 17508731 DOI: 10.1021/pr0605973] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteria have a cell envelope consisting of a plasma membrane, a periplasmic space with a peptidoglycan layer, and an outer membrane. A third, separate membrane system, the intracellular thylakoid membranes, is the site for both photosynthesis and respiration. All membranes and luminal spaces have unique protein compositions, which impose an intriguing mechanism for protein sorting of extracytoplasmic proteins due to single sets of translocation protein genes. It is shown here by multivariate sequence analyses of many experimentally identified proteins in Synechocystis, that proteins routed for the different extracytosolic compartments have correspondingly different physicochemical properties in their signal peptide and mature N-terminal segments. The full-length mature sequences contain less significant information. From these multivariate, N-terminal property-profile models for proteins with single experimental localization, proteins with ambiguous localization could, to a large extent, be predicted to a defined compartment. The sequence properties involve amino acids varying especially in volume and polarizability and at certain positions in the sequence segments, in a manner typical for the various compartment classes. Potential means of the cell to recognize the property features are discussed, involving the translocation channels and two Type I signal peptidases with different cellular localization, and charge features at their membrane interfaces.
Collapse
Affiliation(s)
- Tarja Rajalahti
- Department of Chemistry, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lind J, Rämö T, Klement MLR, Bárány-Wallje E, Epand RM, Epand RF, Mäler L, Wieslander A. High Cationic Charge and Bilayer Interface-Binding Helices in a Regulatory Lipid Glycosyltransferase,. Biochemistry 2007; 46:5664-77. [PMID: 17444657 DOI: 10.1021/bi700042x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the prokaryote Acholeplasma laidlawii, membrane bilayer properties are sensed and regulated by two interface glycosyltransferases (GTs), synthesizing major nonbilayer- (alMGS GT) and bilayer-prone glucolipids. These enzymes are of similar structure, as many soluble GTs, but are sensitive to lipid charge and curvature stress properties. Multivariate and bioinformatic sequence analyses show that such interface enzymes, in relation to soluble ones of similar fold, are characterized by high cationic charge, certain distances between small and cationic amino acids, and by amphipathic helices. Varying surface contents of Lys/Arg pairs and Trp indicate different membrane-binding subclasses. A predicted potential (cationic) binding helix from alMGS was structurally verified by solution NMR and CD. The helix conformation was induced by a zwitterionic as well as anionic lipid environment, and the peptide was confined to the bilayer interface. Bilayer affinity of the peptide, analyzed by surface plasmon resonance, was higher than that for soluble membrane-seeking proteins/peptides and rose with anionic lipid content. Interface intercalation was supported by phase equilibria in membrane lipid mixtures, analyzed by 31P NMR and DSC. An analogous, potentially binding helix has a similar location in the structurally determined Escherichia coli cell wall precursor GT MurG. These two helices have little sequence conservation in alMGS and MurG homologues but maintain their amphipathic character. The evolutionary modification of the alMGS binding helix and its location close to the acceptor substrate site imply a functional importance in enzyme catalysis, potentially providing a mechanism by which glycolipid synthesis will be sensitive to membrane surface charge and intrinsic curvature strain.
Collapse
Affiliation(s)
- Jesper Lind
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zhang YH, Ginsberg C, Yuan Y, Walker S. Acceptor substrate selectivity and kinetic mechanism of Bacillus subtilis TagA. Biochemistry 2006; 45:10895-904. [PMID: 16953575 PMCID: PMC2570586 DOI: 10.1021/bi060872z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of Gram-positive bacteria. Because they are essential for survival or virulence in many organisms, the enzymes involved in the biosynthesis of WTAs are attractive antibiotic targets. The first committed step in the WTA biosynthetic pathway in Bacillus subtilis is catalyzed by TagA, which transfers N-acetylmannosamine (ManNAc) to the C4 hydroxyl of a membrane-anchored N-acetylglucosaminyl diphospholipid (GlcNAc-pp-undecaprenyl, lipid I) to make ManNAc-beta-(1,4)-GlcNAc-pp-undecaprenyl (lipid II). We have previously shown that TagA utilizes an alternative substrate containing a saturated C(13)H(27) lipid chain. Here we use unnatural substrates and products to establish the lipid preferences of the enzyme and to characterize the kinetic mechanism. We report that TagA is a metal ion-independent glycosyltransferase that follows a steady-state ordered Bi-Bi mechanism in which UDP-ManNAc binds first and UDP is released last. TagA shares homology with a large family of bacterial glycosyltransferases, and the work described here should facilitate structural analysis of the enzyme in complex with its substrates.
Collapse
Affiliation(s)
| | | | | | - Suzanne Walker
- To whom correspondence should be addressed. Tel: 617−496−0207. Fax: 617−496−0215.
| |
Collapse
|
26
|
Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:145-67. [PMID: 17177793 DOI: 10.1111/j.1467-7652.2005.00169.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cell walls are dynamic structures that represent key determinants of overall plant form, plant growth and development, and the responses of plants to environmental and pathogen-induced stresses. Walls play centrally important roles in the quality and processing of plant-based foods for both human and animal consumption, and in the production of fibres during pulp and paper manufacture. In the future, wall material that constitutes the major proportion of cereal straws and other crop residues will find increasing application as a source of renewable fuel and composite manufacture. Although the chemical structures of most wall constituents have been defined in detail, the enzymes involved in their synthesis and remodelling remain largely undefined, particularly those involved in polysaccharide biosynthesis. There have been real recent advances in our understanding of cellulose biosynthesis in plants, but, with few exceptions, the identities and modes of action of polysaccharide synthases and other glycosyltransferases that mediate the biosynthesis of the major non-cellulosic wall polysaccharides are not known. Nevertheless, emerging functional genomics and molecular genetics technologies are now allowing us to re-examine the central questions related to wall biosynthesis. The availability of the rice, Populus trichocarpa and Arabidopsis genome sequences, a variety of mutant populations, high-density genetic maps for cereals and other industrially important plants, high-throughput genome and transcript analysis systems, extensive publicly available genomics resources and an increasing armoury of analysis systems for the definition of candidate gene function will together allow us to take a systems approach to the description of wall biosynthesis in plants.
Collapse
Affiliation(s)
- Naser Farrokhi
- School of Agriculture and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Hölzl G, Zähringer U, Warnecke D, Heinz E. Glycoengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. PLANT & CELL PHYSIOLOGY 2005; 46:1766-78. [PMID: 16120686 DOI: 10.1093/pcp/pci189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The lipid composition of thylakoid membranes is conserved from cyanobacteria to angiosperms. The predominating components are monogalactosyl- and digalactosyldiacylglycerol. In cyanobacteria, thylakoid membrane biosynthesis starts with the formation of monoglucosyldiacylglycerol which is C4-epimerized to the corresponding galactolipid, whereas in plastids monogalactosyldiacylglycerol is formed at the beginning. This suggests that galactolipids have specific functions in thylakoids. We wanted to investigate whether galactolipids can be replaced by glycosyldiacylglycerols with headgroups differing in their epimeric and anomeric details as well as the attachment point of the terminal hexose in diglycosyldiacylglycerols. For this purpose putative glycosyltransferase sequences were identified in databases to be used for functional expression in various host organisms. From 18 newly identified sequences, four turned out to encode glycosyltransferases catalyzing final steps in glycolipid biosynthesis: two alpha-glucosyltransferases, one beta-galactosyltransferase and one beta-glucosyltransferase. Their functional annotation was based on detailed structural characterization of the new glycolipids formed in the transformant hosts as well as on in vitro enzymatic assays. The expression of alpha-glucosyltransferases in the cyanobacterium Synechococcus resulted in the accumulation of the new alpha-galactosyldiacylglycerol which is ascribed to epimerization of the corresponding glucolipid. The expression of the beta-glucosyltransferase led to a high proportion of new beta-glucosyl-(1-->6)-beta-galactosyldiacylglycerol almost entirely replacing the native digalactosyldiacylglycerol. These results demonstrate that modifications of the glycolipid pattern in thylakoids are possible.
Collapse
Affiliation(s)
- Georg Hölzl
- Biozentrum Klein Flottbek, University of Hamburg, Germany
| | | | | | | |
Collapse
|
28
|
Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology 2005; 16:29R-37R. [PMID: 16037492 DOI: 10.1093/glycob/cwj016] [Citation(s) in RCA: 495] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glycosyltransferases (GTs) catalyze the transfer of a sugar moiety from an activated donor sugar onto saccharide and nonsaccharide acceptors. A sequence-based classification spreads GTs in many families thus reflecting the variety of molecules that can be used as acceptors. In contrast, this enzyme family is characterized by a more conserved three-dimensional architecture. Until recently, only two different folds (GT-A and GT-B) have been identified for solved crystal structures. The recent report of a structure for a bacterial sialyltransferase allows the definition of a new fold family. Progress in the elucidation of the structures and mechanisms of GTs are discussed in this review. To accommodate the growing number of crystal structures, we created the 3D-Glycosyltransferase database to gather structural information concerning this class of enzymes.
Collapse
Affiliation(s)
- Christelle Breton
- CERMAV-CNRS, Université Joseph Fourier, PO Box 53,38041 Grenoble cedex 9 France.
| | | | | | | | | |
Collapse
|