1
|
Donvil L, Housmans JAJ, Peeters E, Vranken W, Orlando G. In silico identification of archaeal DNA-binding proteins. Bioinformatics 2025; 41:btaf169. [PMID: 40315131 PMCID: PMC12065626 DOI: 10.1093/bioinformatics/btaf169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 05/04/2025] Open
Abstract
MOTIVATION The rapid advancement of next-generation sequencing technologies has generated an immense volume of genetic data. However, these data are unevenly distributed, with well-studied organisms being disproportionately represented, while other organisms, such as from archaea, remain significantly underexplored. The study of archaea is particularly challenging due to the extreme environments they inhabit and the difficulties associated with culturing them in the laboratory. Despite these challenges, archaea likely represent a crucial evolutionary link between eukaryotic and prokaryotic organisms, and their investigation could shed light on the early stages of life on Earth. Yet, a significant portion of archaeal proteins are annotated with limited or inaccurate information. Among the various classes of archaeal proteins, DNA-binding proteins are of particular importance. While they represent a large portion of every known proteome, their identification in archaea is complicated by the substantial evolutionary divergence between archaeal and the other better studied organisms. RESULTS To address the challenges of identifying DNA-binding proteins in archaea, we developed Xenusia, a neural network-based tool capable of screening entire archaeal proteomes to identify DNA-binding proteins. Xenusia has proven effective across diverse datasets, including metagenomics data, successfully identifying novel DNA-binding proteins, with experimental validation of its predictions. AVAILABILITY AND IMPLEMENTATION Xenusia is available as a PyPI package, with source code accessible at https://github.com/grogdrinker/xenusia, and as a Google Colab web server application at xenusia.ipynb.
Collapse
Affiliation(s)
- Linus Donvil
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels B-1050, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Research Group Experimental Pharmacology (EFAR), Jette 1050, Belgium
| | - Joëlle A J Housmans
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Research Unit VEG-i-TEC, Ghent University, Kortrijk 8500, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
- AI Lab, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Gabriele Orlando
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS and INSERM, Montpellier 34095, France
| |
Collapse
|
2
|
Liu Y, Wang L, Zhang Q, Fu P, Zhang L, Yu Y, Zhang H, Zhu H. Structural basis for RNA-guided DNA degradation by Cas5-HNH/Cascade complex. Nat Commun 2025; 16:1335. [PMID: 39904990 PMCID: PMC11794572 DOI: 10.1038/s41467-024-55716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated proteins) system is one of the most extensively studied RNA-guided adaptive immune systems in prokaryotes, providing defense against foreign genetic elements. Unlike the previously characterized Cas3 nuclease, which exhibits progressive DNA cleavage in the typical type I-E system, a recently identified HNH-comprising Cascade system enables precise DNA cleavage. Here, we present several near-atomic cryo-electron microscopy (cryo-EM) structures of the Candidatus Cloacimonetes bacterium Cas5-HNH/Cascade complex, both in its DNA-bound and unbound states. Our analysis reveals extensive interactions between the HNH domain and adjacent subunits, including Cas6 and Cas11, with mutations in these key interactions significantly impairing enzymatic activity. Upon DNA binding, the Cas5-HNH/Cascade complex adopts a more compact conformation, with subunits converging toward the center of nuclease, leading to its activation. Notably, we also find that divalent ions such as zinc, cobalt, and nickel down-regulate enzyme activity by destabilizing the Cascade complex. Together, these findings offer structural insights into the assembly and activation of the Cas5-HNH/Cascade complex.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pengyu Fu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Singh AK, Chinnasamy K, Pahelkar NR, Gopal B. A physicochemical rationale for the varied catalytic efficiency in RNase J paralogues. J Biol Chem 2025; 301:108152. [PMID: 39742998 PMCID: PMC11815676 DOI: 10.1016/j.jbc.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Paralogs of the bifunctional nuclease, Ribonuclease J (RNase J), demonstrate varied catalytic efficiencies despite extensive sequence and structural similarity. Of the two Staphylococcus aureus RNase J paralogues, RNase J1 is substantially more active than RNase J2. Mutational analysis of active site residues revealed that only H80 and E166 were critical for nuclease activity. Electronic properties of active site residues were further evaluated using density functional theory in conjunction with molecular mechanics. This analysis suggested that multiple residues at the active site can function as Lewis bases or acids in RNase J2. The bond dissociation energy, on the other hand, suggested that the Mn ion in RNase J2, located at a structurally identical location to that in RNase J1, is crucial for overall structural integrity. Structures of mutant enzymes lacking the metal ion were seen to adopt a different orientation between the substrate binding and catalytic domain than wild-type RNase J2. A surprising finding was that the RNase J2 H78 A mutant was five-fold more active than the wild-type enzyme. Structural and biochemical experiments performed in light of this observation revealed that the RNase J2 catalytic mechanism is distinct from both two-metal ion and one-metal ion reaction mechanisms proposed for RNase J nucleases. Different activity levels in RNase J paralogues can thus be ascribed to the diversity in catalytic mechanisms.
Collapse
Affiliation(s)
- Ankur Kumar Singh
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kalaiarasi Chinnasamy
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Balasubramanian Gopal
- Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Tang Y, Wu D, Zhang Y, Liu X, Chu H, Tan Q, Jiang L, Chen S, Wu G, Wang L. Molecular basis of the phosphorothioation-sensing antiphage defense system IscS-DndBCDE-DndI. Nucleic Acids Res 2024; 52:13594-13604. [PMID: 39611571 DOI: 10.1093/nar/gkae1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Phosphorothioation serves as a DNA backbone modification mechanism, wherein a sulfur atom substitutes the nonbridging oxygen atom within the phosphodiester, facilitated by the gene products of dndABCDE or sspABCD. The combination of dndABCDE with dndFGH forms a bona fide defense system, where the DndFGH protein complex exhibits DNA nickase and DNA translocase activities to prevent phage invasion. In this study, we identified that dndI, co-transcribed with dndFGH, can independently couple with iscS-dndBCDE as an anti-phage defense system. Moreover, we resolved the crystal structure of DndI from Salmonella at a resolution of 3.10 Å. We discovered that its residue Y25, residing within a hydrophobic region of DndI, is involved in phosphorothioate (PT) sensing. Upon sensing PT modifications at 5'-GPSAAC-3'/5'-GPSTTC-3', the ATPase activity of DndI is stimulated, which subsequently triggers a conformational transition, facilitating the dissociation of DndI from self-DNA, thereby allowing DndI to avoid cleaving self-DNA while restricting PT-deficient phage DNA. This research broadens the knowledge of the mechanistic diversity underlying PT-based defense systems and highlights their complexity in the course of evolution.
Collapse
Affiliation(s)
- Yaqian Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| | - Dan Wu
- Senior Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Fuxing road 28, Haidian District, Beijing 100853, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Xuan Liu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Hui Chu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Qian Tan
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Lixu Jiang
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen University Medical School, The First Affiliated Hospital of Shenzhen University, Guanguang Road 1301, Longhua District, Shenzhen 518035, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, 200240, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Yitian Road 7019, Futian District, Shenzhen 518026, China
| |
Collapse
|
5
|
Rechkoblit O, Sciaky D, Kreitler DF, Buku A, Kottur J, Aggarwal AK. Activation of CBASS Cap5 endonuclease immune effector by cyclic nucleotides. Nat Struct Mol Biol 2024; 31:767-776. [PMID: 38321146 PMCID: PMC11849724 DOI: 10.1038/s41594-024-01220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.
Collapse
Affiliation(s)
- Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniela Sciaky
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dale F Kreitler
- Center for BioMolecular Structure NSLS‑II, Brookhaven National Laboratory, Upton, NY, USA
| | - Angeliki Buku
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, India
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Pastor M, Czapinska H, Helbrecht I, Krakowska K, Lutz T, Xu SY, Bochtler M. Crystal structures of the EVE-HNH endonuclease VcaM4I in the presence and absence of DNA. Nucleic Acids Res 2021; 49:1708-1723. [PMID: 33450012 PMCID: PMC7897488 DOI: 10.1093/nar/gkaa1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Many modification-dependent restriction endonucleases (MDREs) are fusions of a PUA superfamily modification sensor domain and a nuclease catalytic domain. EVE domains belong to the PUA superfamily, and are present in MDREs in combination with HNH nuclease domains. Here, we present a biochemical characterization of the EVE-HNH endonuclease VcaM4I and crystal structures of the protein alone, with EVE domain bound to either 5mC modified dsDNA or to 5mC/5hmC containing ssDNA. The EVE domain is moderately specific for 5mC/5hmC containing DNA according to EMSA experiments. It flips the modified nucleotide, to accommodate it in a hydrophobic pocket of the enzyme, primarily formed by P24, W82 and Y130 residues. In the crystallized conformation, the EVE domain and linker helix between the two domains block DNA binding to the catalytic domain. Removal of the EVE domain and inter-domain linker, but not of the EVE domain alone converts VcaM4I into a non-specific toxic nuclease. The role of the key residues in the EVE and HNH domains of VcaM4I is confirmed by digestion and restriction assays with the enzyme variants that differ from the wild-type by changes to the base binding pocket or to the catalytic residues.
Collapse
Affiliation(s)
- Michal Pastor
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Igor Helbrecht
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Katarzyna Krakowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Thomas Lutz
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Wu CC, Lin JL, Yuan HS. Structures, Mechanisms, and Functions of His-Me Finger Nucleases. Trends Biochem Sci 2020; 45:935-946. [DOI: 10.1016/j.tibs.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
9
|
Molecular Structure and Functional Analysis of Pyocin S8 from Pseudomonas aeruginosa Reveals the Essential Requirement of a Glutamate Residue in the H-N-H Motif for DNase Activity. J Bacteriol 2020; 202:JB.00346-20. [PMID: 32817098 DOI: 10.1128/jb.00346-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023] Open
Abstract
Multidrug resistance (MDR) is a serious threat to public health, making the development of new antimicrobials an urgent necessity. Pyocins are protein antibiotics produced by Pseudomonas aeruginosa strains to kill closely related cells during intraspecific competition. Here, we report an in-depth biochemical, microbicidal, and structural characterization of a new S-type pyocin, named S8. Initially, we described the domain organization and secondary structure of S8. Subsequently, we observed that a recombinant S8 composed of the killing subunit in complex with the immunity (ImS8) protein killed the strain PAO1. Furthermore, mutation of a highly conserved glutamic acid to alanine (Glu100Ala) completely inhibited this antimicrobial activity. The integrity of the H-N-H motif is probably essential in the killing activity of S8, as Glu100 is a highly conserved residue of this motif. Next, we observed that S8 is a metal-dependent endonuclease, as EDTA treatment abolished its ability to cleave supercoiled pUC18 plasmid. Supplementation of apo S8 with Ni2+ strongly induced this DNase activity, whereas Mn2+ and Mg2+ exhibited moderate effects and Zn2+ was inhibitory. Additionally, S8 bound Zn2+ with a higher affinity than Ni2+ and the Glu100Ala mutation decreased the affinity of S8 for these metals, as shown by isothermal titration calorimetry (ITC). Finally, we describe the crystal structure of the Glu100Ala S8 DNase-ImS8 complex at 1.38 Å, which gave us new insights into the endonuclease activity of S8. Our results reinforce the possibility of using pyocin S8 as an alternative therapy for infections caused by MDR strains, while leaving commensal human microbiota intact.IMPORTANCE Pyocins are proteins produced by Pseudomonas aeruginosa strains that participate in intraspecific competition and host-pathogen interactions. They were first described in the 1950s and since then have gained attention as possible new antibiotics. However, there is still only scarce information about the molecular mechanisms by which these molecules induce cell death. Here, we show that the metal-dependent endonuclease activity of pyocin S8 is involved with its antimicrobial action against strain PAO1. We also describe that this killing activity is dependent on a conserved Glu residue within the H-N-H motif. The potency and selectivity of pyocin S8 toward a narrow spectrum of P. aeruginosa strains make this protein an attractive antimicrobial alternative for combatting MDR strains, while leaving commensal human microbiota intact.
Collapse
|
10
|
HK97 gp74 Possesses an α-Helical Insertion in the ββα Fold That Affects Its Metal Binding, cos Site Digestion, and In Vivo Activities. J Bacteriol 2020; 202:JB.00644-19. [PMID: 31988081 DOI: 10.1128/jb.00644-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
The last gene in the genome of the bacteriophage HK97 encodes gp74, an HNH endonuclease. HNH motifs contain two conserved His residues and an invariant Asn residue, and they adopt a ββα structure. gp74 is essential for phage head morphogenesis, likely because gp74 enhances the specific endonuclease activity of the HK97 terminase complex. Notably, the ability of gp74 to enhance the terminase-mediated cleavage of the phage cos site requires an intact HNH motif in gp74. Mutation of H82, the conserved metal-binding His residue in the HNH motif, to Ala abrogates gp74-mediated stimulation of terminase activity. Here, we present nuclear magnetic resonance (NMR) studies demonstrating that gp74 contains an α-helical insertion in the Ω-loop, which connects the two β-strands of the ββα fold, and a disordered C-terminal tail. NMR data indicate that the Ω-loop insert makes contacts to the ββα fold and influences the ability of gp74 to bind divalent metal ions. Further, the Ω-loop insert and C-terminal tail contribute to gp74-mediated DNA digestion and to gp74 activity in phage morphogenesis. The data presented here enrich our molecular-level understanding of how HNH endonucleases enhance terminase-mediated digestion of the cos site and contribute to the phage replication cycle.IMPORTANCE This study demonstrates that residues outside the canonical ββα fold, namely, the Ω-loop α-helical insert and a disordered C-terminal tail, regulate the activity of the HNH endonuclease gp74. The increased divalent metal ion binding when the Ω-loop insert is removed compared to reduced cos site digestion and phage formation indicates that the Ω-loop insert plays multiple regulatory roles. The data presented here provide insights into the molecular basis of the involvement of HNH proteins in phage DNA packing.
Collapse
|
11
|
Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Systematic classification of the His-Me finger superfamily. Nucleic Acids Res 2017; 45:11479-11494. [PMID: 29040665 PMCID: PMC5714182 DOI: 10.1093/nar/gkx924] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins.
Collapse
Affiliation(s)
- Jagoda Jablonska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
12
|
Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using Hidden Markov Models. PLoS Comput Biol 2017; 13:e1005652. [PMID: 28715501 PMCID: PMC5536347 DOI: 10.1371/journal.pcbi.1005652] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/31/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022] Open
Abstract
Bacteria exploit an arsenal of antimicrobial peptides and proteins to compete with each other. Three main competition systems have been described: type six secretion systems (T6SS); contact dependent inhibition (CDI); and bacteriocins. Unlike T6SS and CDI systems, bacteriocins do not require contact between bacteria but are diffusible toxins released into the environment. Identified almost a century ago, our understanding of bacteriocin distribution and prevalence in bacterial populations remains poor. In the case of protein bacteriocins, this is because of high levels of sequence diversity and difficulties in distinguishing their killing domains from those of other competition systems. Here, we develop a robust bioinformatics pipeline exploiting Hidden Markov Models for the identification of nuclease bacteriocins (NBs) in bacteria of which, to-date, only a handful are known. NBs are large (>60 kDa) toxins that target nucleic acids (DNA, tRNA or rRNA) in the cytoplasm of susceptible bacteria, usually closely related to the producing organism. We identified >3000 NB genes located on plasmids or on the chromosome from 53 bacterial species distributed across different ecological niches, including human, animals, plants, and the environment. A newly identified NB predicted to be specific for Pseudomonas aeruginosa (pyocin Sn) was produced and shown to kill P. aeruginosa thereby validating our pipeline. Intriguingly, while the genes encoding the machinery needed for NB translocation across the cell envelope are widespread in Gram-negative bacteria, NBs are found exclusively in γ-proteobacteria. Similarity network analysis demonstrated that NBs fall into eight groups each with a distinct arrangement of protein domains involved in import. The only structural feature conserved across all groups was a sequence motif critical for cell-killing that is generally not found in bacteriocins targeting the periplasm, implying a specific role in translocating the nuclease to the cytoplasm. Finally, we demonstrate a significant association between nuclease colicins, NBs specific for Escherichia coli, and virulence factors, suggesting NBs play a role in infection processes, most likely by enabling pathogens to outcompete commensal bacteria. Bacteria deploy a variety of antimicrobials to kill competing bacteria. Nuclease bacteriocins are a miscellaneous group of protein toxins that target closely related species, cleaving nucleic acids in the cytoplasm. It has proved difficult to establish how widespread bacteriocins are in bacterial populations due to the high diversity of bacteriocin-encoding genes. Here, we describe an in silico approach to identify nuclease bacteriocin genes in bacterial genomes and to distinguish them from other competition toxins. Bacteria that contain nuclease bacteriocin genes are found in many different types of environment but are prevalent in niches where interbacterial competition is likely to be high. Nuclease bacteriocins are found exclusively in γ-proteobacteria and are particularly abundant in the Enterobacteriaceae and Pseudomonadaceae families. Although the sequences we identify are indeed diverse (<20% sequence identity between protein families) we show that all nuclease bacteriocins contain an invariant motif, usually within a common structural scaffold, that is implicated in translocating the cytotoxic nuclease to the cytoplasm. Finally, we show that nuclease bacteriocins in pathogenic E. coli are strongly associated with virulence factors suggesting they play a role in pathogenicity mechanisms.
Collapse
|
13
|
Structural and biophysical analysis of nuclease protein antibiotics. Biochem J 2016; 473:2799-812. [PMID: 27402794 PMCID: PMC5264503 DOI: 10.1042/bcj20160544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 01/28/2023]
Abstract
Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.
Collapse
|
14
|
Joshi A, Grinter R, Josts I, Chen S, Wojdyla JA, Lowe ED, Kaminska R, Sharp C, McCaughey L, Roszak AW, Cogdell RJ, Byron O, Walker D, Kleanthous C. Structures of the Ultra-High-Affinity Protein-Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. J Mol Biol 2015; 427:2852-66. [PMID: 26215615 PMCID: PMC4548480 DOI: 10.1016/j.jmb.2015.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022]
Abstract
How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.
Collapse
Affiliation(s)
- Amar Joshi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rhys Grinter
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Inokentijs Josts
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sabrina Chen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Justyna A Wojdyla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Connor Sharp
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura McCaughey
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksander W Roszak
- WestCHEM, School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Olwyn Byron
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel Walker
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
15
|
Németh E, Schilli GK, Nagy G, Hasenhindl C, Gyurcsik B, Oostenbrink C. Design of a colicin E7 based chimeric zinc-finger nuclease. J Comput Aided Mol Des 2014; 28:841-50. [PMID: 24952471 PMCID: PMC4104000 DOI: 10.1007/s10822-014-9765-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/13/2014] [Indexed: 12/02/2022]
Abstract
Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity-offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
| | - Gabriella K. Schilli
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
| | - Gábor Nagy
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Hasenhindl
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
- MTA-SzTE Bioinorganic Chemistry Research Group of Hungarian Academy of Sciences, Dóm tér 7, Szeged, 6720 Hungary
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
16
|
Németh E, Körtvélyesi T, Thulstrup PW, Christensen HEM, Kožíšek M, Nagata K, Czene A, Gyurcsik B. Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations. Protein Sci 2014; 23:1113-22. [PMID: 24895333 DOI: 10.1002/pro.2497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of the highly positive and flexible N-terminus is still missing. Here, we present the study of four mutants, with a decreased activity in the following order: NColE7 >> KGNK > KGNG ∼ GGNK > GGNG. At the same time, the folding, the metal-ion, and the DNA-binding affinity were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, isothermal calorimetric titrations, and gel mobility shift experiments. Semiempirical quantum chemical calculations and molecular dynamics simulations revealed that K446, K449, and/or the N-terminal amino group are able to approach the active centre in the absence of the other positively charged residues. The results suggested a complex role of the N-terminus in the catalytic process that could be exploited in the design of a controlled nuclease.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, 6720, Szeged, Hungary; Department of Physical Chemistry and Material Sciences, University of Szeged, 6720, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Czene A, Tóth E, Németh E, Otten H, Poulsen JCN, Christensen HEM, Rulíšek L, Nagata K, Larsen S, Gyurcsik B. A new insight into the zinc-dependent DNA-cleavage by the colicin E7 nuclease: a crystallographic and computational study. Metallomics 2014; 6:2090-9. [DOI: 10.1039/c4mt00195h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure of a colicin E7 metallonuclease mutant complemented by QM/MM calculations suggests an alternative catalytic mechanism of Zn2+-containing HNH nucleases.
Collapse
Affiliation(s)
- Anikó Czene
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged, Hungary
| | - Eszter Tóth
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| | - Eszter Németh
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| | - Harm Otten
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | | | | | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Kyosuke Nagata
- Nagata Special Laboratory
- Faculty of Medicine
- University of Tsukuba
- Tsukuba 305-8575, Japan
| | - Sine Larsen
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | - Béla Gyurcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| |
Collapse
|
18
|
Ronayne EA, Cox MM. RecA-dependent programmable endonuclease Ref cleaves DNA in two distinct steps. Nucleic Acids Res 2013; 42:3871-83. [PMID: 24371286 PMCID: PMC3973344 DOI: 10.1093/nar/gkt1342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.
Collapse
Affiliation(s)
- Erin A Ronayne
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
19
|
Gyurcsik B, Czene A, Jankovics H, Jakab-Simon NI, Ślaska-Kiss K, Kiss A, Kele Z. Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Expr Purif 2013; 89:210-8. [DOI: 10.1016/j.pep.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
20
|
Czene A, Németh E, Zóka IG, Jakab-Simon NI, Körtvélyesi T, Nagata K, Christensen HEM, Gyurcsik B. The role of the N-terminal loop in the function of the colicin E7 nuclease domain. J Biol Inorg Chem 2013; 18:309-21. [DOI: 10.1007/s00775-013-0975-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/31/2012] [Indexed: 01/10/2023]
|
21
|
Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci U S A 2012; 109:21480-5. [PMID: 23236156 DOI: 10.1073/pnas.1216238110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems encode polymorphic toxin/immunity proteins that mediate competition between neighboring bacterial cells. We present crystal structures of CDI toxin/immunity complexes from Escherichia coli EC869 and Burkholderia pseudomallei 1026b. Despite sharing little sequence identity, the toxin domains are structurally similar and have homology to endonucleases. The EC869 toxin is a Zn(2+)-dependent DNase capable of completely degrading the genomes of target cells, whereas the Bp1026b toxin cleaves the aminoacyl acceptor stems of tRNA molecules. Each immunity protein binds and inactivates its cognate toxin in a unique manner. The EC869 toxin/immunity complex is stabilized through an unusual β-augmentation interaction. In contrast, the Bp1026b immunity protein exploits shape and charge complementarity to occlude the toxin active site. These structures represent the initial glimpse into the CDI toxin/immunity network, illustrating how sequence-diverse toxins adopt convergent folds yet retain distinct binding interactions with cognate immunity proteins. Moreover, we present visual demonstration of CDI toxin delivery into a target cell.
Collapse
|
22
|
Moodley S, Maxwell KL, Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci 2012; 21:809-18. [PMID: 22434504 DOI: 10.1002/pro.2064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 11/10/2022]
Abstract
The last gene in the genome of the bacteriophage HK97 encodes the protein gp74. We present data in this article that demonstrates, for the first time, that gp74 possesses HNH endonuclease activity. HNH endonucleases are small DNA binding and digestion proteins characterized by two His residues and an Asn residue. We demonstrate that gp74 cleaves lambda phage DNA at multiple sites and that gp74 requires divalent metals for its endonuclease activity. We also present intrinsic tryptophan fluorescence data that show direct binding of Ni(2+) to gp74. The activity of gp74 in the presence of Ni(2+) is significantly decreased below neutral pH, suggesting the presence of one or more His residues in metal binding and/or DNA digestion. Surprisingly, this pH-dependence of activity is not seen with Zn(2+) , suggesting a different mode of binding of Zn(2+) and Ni(2+) . This difference in activity may result from binding of a second Zn(2+) ion by a putative zinc finger in gp74 in addition to binding of a Zn(2+) ion by the HNH motif. These studies define the biochemical function of gp74 as an HNH endonuclease and provide a platform for determining the role of gp74 in life cycle of the bacteriophage HK97.
Collapse
Affiliation(s)
- Serisha Moodley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
23
|
Wojdyla JA, Fleishman SJ, Baker D, Kleanthous C. Structure of the ultra-high-affinity colicin E2 DNase--Im2 complex. J Mol Biol 2012; 417:79-94. [PMID: 22306467 DOI: 10.1016/j.jmb.2012.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/10/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
How proteins achieve high-affinity binding to a specific protein partner while simultaneously excluding all others is a major biological problem that has important implications for protein design. We report the crystal structure of the ultra-high-affinity protein-protein complex between the endonuclease domain of colicin E2 and its cognate immunity (Im) protein, Im2 (K(d)∼10(-)(15) M), which, by comparison to previous structural and biophysical data, provides unprecedented insight into how high affinity and selectivity are achieved in this model family of protein complexes. Our study pinpoints the role of structured water molecules in conjoining hotspot residues that govern stability with residues that control selectivity. A key finding is that a single residue, which in a noncognate context massively destabilizes the complex through frustration, does not participate in specificity directly but rather acts as an organizing center for a multitude of specificity interactions across the interface, many of which are water mediated.
Collapse
|
24
|
The binding process of a nonspecific enzyme with DNA. Biophys J 2011; 101:1139-47. [PMID: 21889451 DOI: 10.1016/j.bpj.2011.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/20/2011] [Accepted: 07/05/2011] [Indexed: 11/22/2022] Open
Abstract
Protein-DNA recognition of a nonspecific complex is modeled to understand the nature of the transient encounter states. We consider the structural and energetic features and the role of water in the DNA grooves in the process of protein-DNA recognition. Here we have used the nuclease domain of colicin E7 (N-ColE7) from Escherichia coli in complex with a 12-bp DNA duplex as the model system to consider how a protein approaches, encounters, and associates with DNA. Multiscale simulation studies using Brownian dynamics and molecular-dynamics simulations were performed to provide the binding process on multiple length- and timescales. We define the encounter states and identified the spatial and orientational aspects. For the molecular length-scales, we used molecular-dynamics simulations. Several intermediate binding states were found, which have different positions and orientations of protein around DNA including major and minor groove orientations. The results show that the contact number and the hydrated interfacial area are measures that facilitate better understanding of sequence-independent protein-DNA binding landscapes and pathways.
Collapse
|
25
|
Gomzi V. Modeling of the bis(glycinato)copper(ii) cis-trans isomerization process: Theoretical analysis. J STRUCT CHEM+ 2011. [DOI: 10.1134/s0022476611050052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
27
|
Gruenig MC, Lu D, Won SJ, Dulberger CL, Manlick AJ, Keck JL, Cox MM. Creating directed double-strand breaks with the Ref protein: a novel RecA-dependent nuclease from bacteriophage P1. J Biol Chem 2010; 286:8240-8251. [PMID: 21193392 DOI: 10.1074/jbc.m110.205088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 Å resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded β-hairpin that is sandwiched between several α-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.
Collapse
Affiliation(s)
| | - Duo Lu
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Sang Joon Won
- From the Department of Biochemistry, University of Wisconsin and
| | | | - Angela J Manlick
- From the Department of Biochemistry, University of Wisconsin and
| | - James L Keck
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Michael M Cox
- From the Department of Biochemistry, University of Wisconsin and.
| |
Collapse
|
28
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
29
|
Midon M, Schäfer P, Pingoud A, Ghosh M, Moon AF, Cuneo MJ, London RE, Meiss G. Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. Nucleic Acids Res 2010; 39:623-34. [PMID: 20846957 PMCID: PMC3025545 DOI: 10.1093/nar/gkq802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.
Collapse
Affiliation(s)
- Marika Midon
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferro N, Bredow T, Jacobsen HJ, Reinard T. Route to Novel Auxin: Auxin Chemical Space toward Biological Correlation Carriers. Chem Rev 2010; 110:4690-708. [DOI: 10.1021/cr800229s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noel Ferro
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Bredow
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Hans-Jorg Jacobsen
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Reinard
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| |
Collapse
|
31
|
Chan SH, Opitz L, Higgins L, O'loane D, Xu SY. Cofactor requirement of HpyAV restriction endonuclease. PLoS One 2010; 5:e9071. [PMID: 20140205 PMCID: PMC2816704 DOI: 10.1371/journal.pone.0009071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/14/2010] [Indexed: 01/28/2023] Open
Abstract
Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.
Collapse
Affiliation(s)
- Siu-Hong Chan
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Lars Opitz
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Lauren Higgins
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Diana O'loane
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Shuang-yong Xu
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat Struct Mol Biol 2009; 16:1049-55. [PMID: 19749752 DOI: 10.1038/nsmb.1670] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/04/2009] [Indexed: 11/08/2022]
Abstract
How do intricate multi-residue features such as protein-protein interfaces evolve? To address this question, we evolved a new colicin-immunity binding interaction. We started with Im9, which inhibits its cognate DNase ColE9 at 10(-14) M affinity, and evolved it toward ColE7, which it inhibits promiscuously (Kd > 10(-8) M). Iterative rounds of random mutagenesis and selection toward higher affinity for ColE7, and selectivity (against ColE9 inhibition), led to an approximately 10(5)-fold increase in affinity and a 10(8)-fold increase in selectivity. Analysis of intermediates along the evolved variants revealed that changes in the binding configuration of the Im protein uncovered a latent set of interactions, thus providing the key to the rapid divergence of new Im7 variants. Overall, protein-protein interfaces seem to share the evolvability features of enzymes, that is, the exploitation of promiscuous interactions and alternative binding configurations via 'generalist' intermediates, and the key role of compensatory stabilizing mutations in facilitating the divergence of new functions.
Collapse
|
33
|
Corina LE, Qiu W, Desai A, Herrin DL. Biochemical and mutagenic analysis of I-CreII reveals distinct but important roles for both the H-N-H and GIY-YIG motifs. Nucleic Acids Res 2009; 37:5810-21. [PMID: 19651876 PMCID: PMC2761285 DOI: 10.1093/nar/gkp624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homing endonucleases typically contain one of four conserved catalytic motifs, and other elements that confer tight DNA binding. I-CreII, which catalyzes homing of the Cr.psbA4 intron, is unusual in containing two potential catalytic motifs, H-N-H and GIY-YIG. Previously, we showed that cleavage by I-CreII leaves ends (2-nt 3' overhangs) that are characteristic of GIY-YIG endonucleases, yet it has a relaxed metal requirement like H-N-H enzymes. Here we show that I-CreII can bind DNA without an added metal ion, and that it binds as a monomer, akin to GIY-YIG enzymes. Moreover, cleavage of supercoiled DNA, and estimates of strand-specific cleavage rates, suggest that I-CreII uses a sequential cleavage mechanism. Alanine substitution of a number of residues in the GIY-YIG motif, however, did not block cleavage activity, although DNA binding was substantially reduced in several variants. Substitution of conserved histidines in the H-N-H motif resulted in variants that did not promote DNA cleavage, but retained high-affinity DNA binding-thus identifying it as the catalytic motif. Unlike the non-specific H-N-H colicins, however; substitution of the conserved asparagine substantially reduced DNA binding (though not the ability to promote cleavage). These results indicate that, in I-CreII, two catalytic motifs have evolved to play important roles in specific DNA binding. The data also indicate that only the H-N-H motif has retained catalytic ability.
Collapse
Affiliation(s)
| | | | | | - David L. Herrin
- *To whom correspondence should be addressed. Tel/Fax: +1 512 471 3843;
| |
Collapse
|
34
|
Sokolowska M, Czapinska H, Bochtler M. Crystal structure of the beta beta alpha-Me type II restriction endonuclease Hpy99I with target DNA. Nucleic Acids Res 2009; 37:3799-810. [PMID: 19380375 PMCID: PMC2699513 DOI: 10.1093/nar/gkp228] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ββα-Me restriction endonuclease (REase) Hpy99I recognizes the CGWCG target sequence and cleaves it with unusual stagger (five nucleotide 5′-recessed ends). Here we present the crystal structure of the specific complex of the dimeric enzyme with DNA. The Hpy99I protomer consists of an antiparallel β-barrel and two β4α2 repeats. Each repeat coordinates a structural zinc ion with four cysteine thiolates in two CXXC motifs. The ββα-Me region of the second β4α2 repeat holds the catalytic metal ion (or its sodium surrogate) via Asp148 and Asn165 and activates a water molecule with the general base His149. In the specific complex, Hpy99I forms a ring-like structure around the DNA that contacts DNA bases on the major and minor groove sides via the first and second β4α2 repeats, respectively. Hpy99I interacts with the central base pair of the recognition sequence only on the minor groove side, where A:T resembles T:A and G:C is similar to C:G. The Hpy99I–DNA co-crystal structure provides the first detailed illustration of the ββα-Me site in REases and complements structural information on the use of this active site motif in other groups of endonucleases such as homing endonucleases (e.g. I-PpoI) and Holliday junction resolvases (e.g. T4 endonuclease VII).
Collapse
Affiliation(s)
- Monika Sokolowska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|
35
|
Chen C, Krause K, Pettitt BM. Advantage of being a dimer for Serratia marcescens endonuclease. J Phys Chem B 2009; 113:511-21. [PMID: 19053714 DOI: 10.1021/jp8057838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The monomer and dimer of the bacterium Serratia marcescens endonuclease (SMnase) are each catalytically active, and the two subunits of the dimer function independently of each other. Nature, however, chooses the dimer form instead of the monomer. In order to explain this, we performed molecular dynamics (MD) simulations of both model-built complexes of a subunit of SMnase and the dimer with DNA in aqueous solution. We estimated the electrostatic binding energy, analyzed the distribution and dynamics of water around the complexes, identified water clusters in the protein, and related the dynamics of water to the protein's function. We find that the dimer form has an electrostatic advantage over the monomer to associate with DNA. Although Mg(2+) remains hexa-coordinated during the simulation, the binding pathway of DNA to Mg(2+) changes from inner-sphere binding in the monomer to outer-sphere in the dimer, which may be more energetically favorable. In addition, two water clusters in the active site of each monomer and in the dimer complex were identified and localized in two regions, named the "stabilizing" and "working" regions. Water in the "working" region in the dimer complex has larger fluctuations than that in the monomer.
Collapse
Affiliation(s)
- Chuanying Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | | | | |
Collapse
|
36
|
Wu SL, Li CC, Chen JC, Chen YJ, Lin CT, Ho TY, Hsiang CY. Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity. J Biomed Sci 2009; 16:6. [PMID: 19272175 PMCID: PMC2653514 DOI: 10.1186/1423-0127-16-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 01/15/2009] [Indexed: 11/29/2022] Open
Abstract
Background Endonuclease G (EndoG), a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. Methods To identify the critical amino acid residues of human EndoG, we replaced the conserved histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-expressed EndoG variants were further analyzed by kinetic studies. Results Diethyl pyrocarbonate modification assay revealed that histidine residues were involved in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for catalysis and substrate specificity. H141A mutant required a higher magnesium concentration to achieve its activity, suggesting the unique role of His-141 in both catalysis and magnesium coordination. Furthermore, an additional catalytic residue (Asn-251) and an additional metal ion binding site (Glu-271) of human EndoG were identified. Conclusion Based on the mutational analysis and homology modeling, we proposed that human EndoG shared a similar catalytic mechanism with nuclease A from Anabaena.
Collapse
Affiliation(s)
- Shih-Lu Wu
- Department of Biochemistry, China Medical University, Taichung 40402, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
37
|
An equivalent metal ion in one- and two-metal-ion catalysis. Nat Struct Mol Biol 2008; 15:1228-31. [PMID: 18953336 DOI: 10.1038/nsmb.1502] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/24/2008] [Indexed: 11/08/2022]
Abstract
Nucleotidyl-transfer enzymes, which synthesize, degrade and rearrange DNA and RNA, often depend on metal ions for catalysis. All DNA and RNA polymerases, MutH-like or RNase H-like nucleases and recombinases, and group I introns seem to require two divalent cations to form a complete active site. The two-metal-ion mechanism has been proposed to orient the substrate, facilitate acid-base catalysis and allow catalytic specificity to exceed substrate binding specificity attributable to the stringent metal-ion (Mg2+ in particular) coordination. Not all nucleotidyl-transfer enzymes use two metal ions for catalysis, however. The betabetaalpha-Me and HUH nucleases depend on a single metal ion in the active site for the catalysis. All of these one- and two metal ion-dependent enzymes generate 5'-phosphate and 3'-OH products. Structural and mechanistic comparisons show that these seemingly unrelated nucleotidyl-transferases share a functionally equivalent metal ion.
Collapse
|
38
|
The major apoptotic endonuclease DFF40/CAD is a deoxyribose-specific and double-strand-specific enzyme. Apoptosis 2008; 13:377-82. [PMID: 18283539 DOI: 10.1007/s10495-008-0183-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DFF40/CAD endonuclease is primarily responsible for internucleosomal DNA cleavage during the terminal stages of apoptosis. The nuclease specifically introduces DNA double strand breaks into chromatin substrates. Here we performed a detailed study on the specificity of the nuclease using synthetic single-stranded and double-stranded ribo- and deoxyribo-oligonucleotides as substrates. We have found that neither single-stranded DNA, single-stranded RNA, double-stranded RNA nor RNA-DNA heteroduplexes are cleaved by the DFF40/CAD nuclease. Noteworthy, all types of oligonucleotides that are not cleaved by the nuclease inhibit cleavage of double-stranded DNA. We have also observed that in cells undergoing apoptosis in vivo neither the activation of DFF40/CAD nor oligonucleosomal chromatin fragmentation was temporally correlated with either total cellular or nuclear RNA degradation. We conclude that DFF40/CAD is exclusively specific for double-stranded DNA.
Collapse
|
39
|
Keeble AH, Joachimiak LA, Maté MJ, Meenan N, Kirkpatrick N, Baker D, Kleanthous C. Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases. J Mol Biol 2008; 379:745-59. [PMID: 18471830 DOI: 10.1016/j.jmb.2008.03.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Colicin endonucleases (DNases) are bound and inactivated by immunity (Im) proteins. Im proteins are broadly cross-reactive yet specific inhibitors binding cognate and non-cognate DNases with K(d) values that vary between 10(-4) and 10(-14) M, characteristics that are explained by a 'dual-recognition' mechanism. In this work, we addressed for the first time the energetics of Im protein recognition by colicin DNases through a combination of E9 DNase alanine scanning and double-mutant cycles (DMCs) coupled with kinetic and calorimetric analyses of cognate Im9 and non-cognate Im2 binding, as well as computational analysis of alanine scanning and DMC data. We show that differential DeltaDeltaGs observed for four E9 DNase residues cumulatively distinguish cognate Im9 association from non-cognate Im2 association. E9 DNase Phe86 is the primary specificity hotspot residue in the centre of the interface, which is coordinated by conserved and variable hotspot residues of the cognate Im protein. Experimental DMC analysis reveals that only modest coupling energies to Im9 residues are observed, in agreement with calculated DMCs using the program ROSETTA and consistent with the largely hydrophobic nature of E9 DNase-Im9 specificity contacts. Computed values for the 12 E9 DNase alanine mutants showed reasonable agreement with experimental DeltaDeltaG data, particularly for interactions not mediated by interfacial water molecules. DeltaDeltaG predictions for residues that contact buried water molecules calculated using solvated rotamer models met with mixed success; however, we were able to predict with a high degree of accuracy the location and energetic contribution of one such contact. Our study highlights how colicin DNases are able to utilise both conserved and variable amino acids to distinguish cognate from non-cognate Im proteins, with the energetic contributions of the conserved residues modulated by neighbouring specificity sites.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Dupureur CM. Roles of metal ions in nucleases. Curr Opin Chem Biol 2008; 12:250-5. [PMID: 18261473 DOI: 10.1016/j.cbpa.2008.01.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
The hydrolysis of phosphodiester bonds by metallonucleases is crucial to most aspects of nucleic acid processing. In recent years, studies of the classical restriction endonucleases have given way to the characterization of metallonucleases with widely divergent active site motifs. These developments fuel debates regarding the roles of metal ions in these enzymes. It is fortuitous that the current literature also includes the increased application of a variety of computational techniques to test the roles of metal ions in nucleic acid hydrolysis by these systems. This includes recent proposals and indirect evidence that these enzymes utilize metal ion movement in these reactions.
Collapse
Affiliation(s)
- Cynthia M Dupureur
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri-St. Louis, MC 27, One University Boulevard, St. Louis, MO 63121, United States.
| |
Collapse
|
41
|
Walker D, Mosbahi K, Vankemmelbeke M, James R, Kleanthous C. The Role of Electrostatics in Colicin Nuclease Domain Translocation into Bacterial Cells. J Biol Chem 2007; 282:31389-97. [PMID: 17720814 DOI: 10.1074/jbc.m705883200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism(s) by which nuclease colicins translocate distinct cytotoxic enzymes (DNases, rRNases, and tRNases) to the cytoplasm of Escherichia coli is unknown. Previous in vitro investigations on isolated colicin nuclease domains have shown that they have a strong propensity to associate with anionic phospholipid vesicles, implying that electrostatic interactions with biological membranes play a role in their import. In the present work we set out to test this hypothesis in vivo. We show that cell killing by the DNase toxin colicin E9 of E. coli HDL11, a strain in which the level of anionic phospholipid and hence inner membrane charge is regulated by isopropyl beta-D-thiogalactopyranoside induction, is critically dependent on the level of inducer, whereas this is not the case for pore-forming colicins that take the same basic route into the periplasm. Moreover, there is a strong correlation between the level and rate of HDL11 cell killing and the net positive charge on a colicin DNase, with similar effects seen for wild type E. coli cells, data that are consistent with a direct, electrostatically mediated interaction between colicin nucleases and the bacterial inner membrane. We next sought to identify how membrane-associated colicin nucleases might be translocated into the cell. We show that neither the Sec or Tat systems are involved in nuclease colicin uptake but that nuclease colicin toxicity is instead dependent on functional FtsH, an inner membrane AAA(+) ATPase and protease that dislocates misfolded membrane proteins to the cytoplasm for destruction.
Collapse
Affiliation(s)
- Daniel Walker
- Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Larkin C, Haft RJF, Harley MJ, Traxler B, Schildbach JF. Roles of active site residues and the HUH motif of the F plasmid TraI relaxase. J Biol Chem 2007; 282:33707-33713. [PMID: 17890221 DOI: 10.1074/jbc.m703210200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial conjugation, transfer of a single strand of a conjugative plasmid between bacteria, requires sequence-specific single-stranded DNA endonucleases called relaxases or nickases. Relaxases contain an HUH (His-hydrophobe-His) motif, part of a three-His cluster that binds a divalent cation required for the cleavage reaction. Crystal structures of the F plasmid TraI relaxase domain, with and without bound single-stranded DNA, revealed an extensive network of interactions involving HUH and other residues. Here we study the roles of these residues in TraI function. Whereas substitutions for the three His residues alter metal-binding properties of the protein, the same substitution at each position elicits different effects, indicating that the residues contribute asymmetrically to metal binding. Substitutions for a conserved Asp that interacts with one HUH His demonstrate that the Asp modulates metal affinity despite its distance from the metal. The bound metal enhances binding of ssDNA to the protein, consistent with a role for the metal in positioning the scissile phosphate for cleavage. Most substitutions tested caused significantly reduced in vitro cleavage activities and in vivo transfer efficiencies. In summary, the results suggest that the metal-binding His cluster in TraI is a finely tuned structure that achieves a sufficient affinity for metal while avoiding the unfavorable electrostatics that would result from placing an acidic residue near the scissile phosphate of the bound ssDNA.
Collapse
Affiliation(s)
- Christopher Larkin
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Rembrandt J F Haft
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Matthew J Harley
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Beth Traxler
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Joel F Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218.
| |
Collapse
|
43
|
Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 2007; 370:157-69. [PMID: 17499273 DOI: 10.1016/j.jmb.2007.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.
Collapse
|
44
|
Huang H, Yuan HS. The Conserved Asparagine in the HNH Motif Serves an Important Structural Role in Metal Finger Endonucleases. J Mol Biol 2007; 368:812-21. [PMID: 17368670 DOI: 10.1016/j.jmb.2007.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 01/10/2023]
Abstract
The HNH motif is a small nucleic acid binding and cleavage module, widespread in metal finger endonucleases in all life kingdoms. Here we studied a non-specific endonuclease, the nuclease domain of ColE7 (N-ColE7), to decipher the role of the conserved asparagine and histidine residues in the HNH motif. We found, using fluorescence resonance energy transfer (FRET) assays, that the DNA hydrolysis activity of H545 N-ColE7 mutants was completely abolished while activities of N560 and H573 mutants varied from 6.9% to 83.2% of the wild-type activity. The crystal structures of three N-ColE7 mutants in complex with the inhibitor Im7, N560A-Im7, N560D-Im7 and H573A-Im7, were determined at a resolution of 1.9 A to 2.2 A. H573 is responsible for metal ion binding in the wild-type protein, as the zinc ion is still partially associated in the structure of H573A, suggesting that H573 plays a supportive role in metal binding. Both N560A and N560D contain a disordered loop in the HNH motif due to the disruption of the hydrogen bond network surrounding the side-chain of residue 560, and as a result, the imidazole ring of the general base residue H545 is tilted slightly and the scissile phosphate is shifted, leading to the large reductions in hydrolysis activities. These results suggest that the highly conserved asparagine in the HNH motif, in general, plays a structural role in constraining the loop in the metal finger structure and keeping the general base histidine and scissile phosphate in the correct position for DNA hydrolysis.
Collapse
Affiliation(s)
- Hsinchin Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | |
Collapse
|
45
|
Saravanan M, Vasu K, Kanakaraj R, Rao DN, Nagaraja V. R.KpnI, an HNH superfamily REase, exhibits differential discrimination at non-canonical sequences in the presence of Ca2+ and Mg2+. Nucleic Acids Res 2007; 35:2777-86. [PMID: 17430971 PMCID: PMC1885652 DOI: 10.1093/nar/gkm114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
KpnI REase recognizes palindromic sequence, GGTAC↓C, and forms complex in the absence of divalent metal ions, but requires the ions for DNA cleavage. Unlike most other REases, R.KpnI shows promiscuous DNA cleavage in the presence of Mg2+. Surprisingly, Ca2+ suppresses the Mg2+-mediated promiscuous activity and induces high fidelity cleavage. To further analyze these unique features of the enzyme, we have carried out DNA binding and kinetic analysis. The metal ions which exhibit disparate pattern of DNA cleavage have no role in DNA recognition. The enzyme binds to both canonical and non-canonical DNA with comparable affinity irrespective of the metal ions used. Further, Ca2+-imparted exquisite specificity of the enzyme is at the level of DNA cleavage and not at the binding step. With the canonical oligonucleotides, the cleavage rate of the enzyme was comparable for both Mg2+- and Mn2+-mediated reactions and was about three times slower with Ca2+. The enzyme discriminates non-canonical sequences poorly from the canonical sequence in Mg2+-mediated reactions unlike any other Type II REases, accounting for the promiscuous behavior. R.KpnI, thus displays properties akin to that of typical Type II REases and also endonucleases with degenerate specificity in its DNA recognition and cleavage properties.
Collapse
Affiliation(s)
- Matheshwaran Saravanan
- Department of Microbiology and Cell Biology, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Kommireddy Vasu
- Department of Microbiology and Cell Biology, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Radhakrishnan Kanakaraj
- Department of Microbiology and Cell Biology, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Desirazu N. Rao
- Department of Microbiology and Cell Biology, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
- *To whom correspondence should be addressed +91-80-2360066891-80-23602697
| |
Collapse
|
46
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 811] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ghosh M, Meiss G, Pingoud A, London RE, Pedersen LC. The nuclease a-inhibitor complex is characterized by a novel metal ion bridge. J Biol Chem 2007; 282:5682-90. [PMID: 17138564 PMCID: PMC2072808 DOI: 10.1074/jbc.m605986200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonspecific, extracellular nucleases have received enhanced attention recently as a consequence of the critical role that these enzymes can play in infectivity by overcoming the host neutrophil defense system. The activity of the cyanobacterial nuclease NucA, a member of the betabetaalpha Me superfamily, is controlled by the specific nuclease inhibitor, NuiA. Here we report the 2.3-A resolution crystal structure of the NucA-NuiA complex, showing that NucA inhibition by NuiA involves an unusual divalent metal ion bridge that connects the nuclease with its inhibitor. The C-terminal Thr-135(NuiA) hydroxyl oxygen is directly coordinated with the catalytic Mg(2+) of the nuclease active site, and Glu-24(NuiA) also extends into the active site, mimicking the charge of a scissile phosphate. NuiA residues Asp-75 and Trp-76 form a second interaction site, contributing to the strength and specificity of the interaction. The crystallographically defined interface is shown to be consistent with results of studies using site-directed NuiA mutants. This mode of inhibition differs dramatically from the exosite mechanism of inhibition seen with the DNase colicins E7/E9 and from other nuclease-inhibitor complexes that have been studied. The structure of this complex provides valuable insights for the development of inhibitors for related nonspecific nucleases that share the DRGH active site motif such as the Streptococcus pneumoniae nuclease EndA, which mediates infectivity of this pathogen, and mitochondrial EndoG, which is involved in recombination and apoptosis.
Collapse
Affiliation(s)
- Mahua Ghosh
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Gregor Meiss
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alfred Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars C. Pedersen
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
48
|
Cymerman IA, Obarska A, Skowronek KJ, Lubys A, Bujnicki JM. Identification of a new subfamily of HNH nucleases and experimental characterization of a representative member, HphI restriction endonuclease. Proteins 2007; 65:867-76. [PMID: 17029241 DOI: 10.1002/prot.21156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought.
Collapse
Affiliation(s)
- Iwona A Cymerman
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
49
|
Kriukiene E. Domain organization and metal ion requirement of the Type IIS restriction endonuclease MnlI. FEBS Lett 2006; 580:6115-22. [PMID: 17055493 DOI: 10.1016/j.febslet.2006.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/22/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
A two-domain structure of the Type IIS restriction endonuclease MnlI has been identified by limited proteolysis. An N-terminal domain of the enzyme mediates the sequence-specific interaction with DNA, whereas a monomeric C-terminal domain resembles bacterial colicin nucleases in its requirement for alkaline earth as well as transition metal ions for double- and single-stranded DNA cleavage activities. The results indicate that the fusion of the non-specific HNH-type nuclease to the DNA binding domain had transformed MnlI into a Mg(2+)-, Ni(2+)-, Co(2+)-, Mn(2+)-, Zn(2+)-, Ca(2+)-dependent sequence-specific enzyme. Nevertheless, MnlI retains a residual single-stranded DNA cleavage activity controlled by its C-terminal colicin-like nuclease domain.
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
50
|
Doudeva LG, Huang H, Hsia KC, Shi Z, Li CL, Shen Y, Cheng YS, Yuan HS. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Protein Sci 2006; 15:269-80. [PMID: 16434744 PMCID: PMC2242460 DOI: 10.1110/ps.051903406] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nuclease domain of ColE7 (N-ColE7) contains an H-N-H motif that folds in a beta beta alpha-metal topology. Here we report the crystal structures of a Zn2+-bound N-ColE7 (H545E mutant) in complex with a 12-bp duplex DNA and a Ni2+-bound N-ColE7 in complex with the inhibitor Im7 at a resolution of 2.5 A and 2.0 A, respectively. Metal-dependent cleavage assays showed that N-ColE7 cleaves double-stranded DNA with a single metal ion cofactor, Ni2+, Mg2+, Mn2+, and Zn2+. ColE7 purified from Escherichia coli contains an endogenous zinc ion that was not replaced by Mg2+ at concentrations of <25 mM, indicating that zinc is the physiologically relevant metal ion in N-ColE7 in host E. coli. In the crystal structure of N-ColE7/DNA complex, the zinc ion is directly coordinated to three histidines and the DNA scissile phosphate in a tetrahedral geometry. In contrast, Ni2+ is bound in N-ColE7 in two different modes, to four ligands (three histidines and one phosphate ion), or to five ligands with an additional water molecule. These data suggest that the divalent metal ion in the His-metal finger motif can be coordinated to six ligands, such as Mg2+ in I-PpoI, Serratia nuclease and Vvn, five ligands or four ligands, such as Ni2+ or Zn2+ in ColE7. Universally, the metal ion in the His-metal finger motif is bound to the DNA scissile phosphate and serves three roles during hydrolysis: polarization of the P-O bond for nucleophilic attack, stabilization of the phosphoanion transition state and stabilization of the cleaved product.
Collapse
Affiliation(s)
- Lyudmila G Doudeva
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|