1
|
Hu B, Yin Y, Zhang B, Li S, Li K, Zhou Y, Huang Q. Villin-1 regulates ferroptosis in colorectal cancer progression. FEBS J 2025; 292:1710-1725. [PMID: 39658274 DOI: 10.1111/febs.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 12/12/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite extensive research, the mechanistic underpinnings driving CRC progression remain largely unknown. As a fundamental component of the brush border cytoskeleton, villin-1 (VIL1) acts as a marker for intestinal cell differentiation and maturation. Through a comprehensive transcriptomics analysis of eight studies (total sample: n = 1952), we consistently observed significant upregulation of VIL1 expression in CRC tumors compared with adjacent normal tissue. In our independent cohort, this notable upregulation has been further validated at both mRNA and protein levels in colon tumor tissues, relative not only to adjacent normal tissue but also to normal controls. Our data show that VIL1 promotes proliferation and migration while inhibiting apoptosis. Conversely, knockout of VIL1 suppresses proliferation and migration while inducing apoptosis. Mechanistically, we reveal that knocking out VIL1 activates ferroptosis and inhibits the migration of CRC cells, while overexpressing VIL1 yields the opposite effects, and vice versa. Additionally, VIL1 binds to Nuclear factor NF-kappa-B p105 subunit (NF-κB) and controls NF-κB expression. In vivo, overexpressing VIL1 inhibits ferroptosis, and induces the expression of NF-κB and lipocalin 2 (LCN2), thereby promoting CRC tumor growth. Thus, we have identified the VIL1/NF-κB axis as a pivotal regulator of CRC progression through ferroptosis modulation, unveiling VIL1 as a promising therapeutic target for CRC treatment via ferroptosis. Our study offers novel avenues for exploring the therapeutic potential of ferroptosis in CRC management, emphasizing the high potential of VIL1 in regulating colorectal tumorigenesis.
Collapse
Affiliation(s)
- Bangli Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yixin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Siqi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Kezhi Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Qinghua Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Breast Surgery, Wuzhou Red Cross Hospital, Wuzhou, China
| |
Collapse
|
2
|
Li X, Zhuang Y, Zhao W, Qu X, Wang J, Chang M, Shen J, Chen N, Huang S. Molecular and functional adaption of Arabidopsis villins. THE NEW PHYTOLOGIST 2025; 245:1158-1179. [PMID: 39574358 DOI: 10.1111/nph.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Villins are versatile, multifunctional actin regulatory proteins. They promote actin stabilization and remodeling mainly via their actin bundling and Ca2+-dependent severing activities, respectively. Arabidopsis subclass II and III villins normally coexist in cells, but the biological significance of their coexistence remains unknown. Here we demonstrate that subclass II villin binds to Ca2+ with high affinity and exhibits strong severing but weak bundling activity compared to subclass III villin. Subclass II villin plays a dominant role in promoting actin remodeling, which requires its Ca2+-dependent severing activity. Subclass II villin is also strictly required for physiological processes including oriented organ growth and stress tolerance. By comparison, subclass III villin binds to Ca2+ with low affinity and exhibits weak severing but strong bundling activity, and acts as the major player in controlling actin stabilization and organization. Thus, we demonstrate that multifunctional villin isovariants have diverged biochemically to ensure exquisite control of the actin cytoskeleton to meet different cellular needs in plants. This study provides new insights into the role of villins in fine-tuning actin dynamics and plant development.
Collapse
Affiliation(s)
- Xin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ming Chang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Naizhi Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Deep A, Pandey DK. Genome-Wide Analysis of VILLIN Gene Family Associated with Stress Responses in Cotton ( Gossypium spp.). Curr Issues Mol Biol 2024; 46:2278-2300. [PMID: 38534762 DOI: 10.3390/cimb46030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The VILLIN (VLN) protein plays a crucial role in regulating the actin cytoskeleton, which is involved in numerous developmental processes, and is crucial for plant responses to both biotic and abiotic factors. Although various plants have been studied to understand the VLN gene family and its potential functions, there has been limited exploration of VLN genes in Gossypium and fiber crops. In the present study, we characterized 94 VLNs from Gossypium species and 101 VLNs from related higher plants such as Oryza sativa and Zea mays and some fungal, algal, and animal species. By combining these VLN sequences with other Gossypium spp., we classified the VLN gene family into three distinct groups, based on their phylogenetic relationships. A more in-depth examination of Gossypium hirsutum VLNs revealed that 14 GhVLNs were distributed across 12 of the 26 chromosomes. These genes exhibit specific structures and protein motifs corresponding to their respective groups. GhVLN promoters are enriched with cis-elements related to abiotic stress responses, hormonal signals, and developmental processes. Notably, a significant number of cis-elements were associated with the light responses. Additionally, our analysis of gene-expression patterns indicated that most GhVLNs were expressed in various tissues, with certain members exhibiting particularly high expression levels in sepals, stems, and tori, as well as in stress responses. The present study potentially provides fundamental insights into the VLN gene family and could serve as a valuable reference for further elucidating the diverse functions of VLN genes in cotton.
Collapse
Affiliation(s)
- Akash Deep
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| | - Dhananjay K Pandey
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 835303, India
| |
Collapse
|
4
|
Zhou Y, He L, Zhou S, Wu Q, Zhou X, Mao Y, Zhao B, Wang D, Zhao W, Wang R, Hu H, Chen J. Genome-Wide Identification and Expression Analysis of the VILLIN Gene Family in Soybean. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112101. [PMID: 37299081 DOI: 10.3390/plants12112101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The VILLIN (VLN) protein is an important regulator of the actin cytoskeleton, which orchestrates many developmental processes and participates in various biotic and abiotic responses in plants. Although the VLN gene family and their potential functions have been analyzed in several plants, knowledge of VLN genes in soybeans and legumes remains rather limited. In this study, a total of 35 VLNs were characterized from soybean and five related legumes. Combining with the VLN sequences from other nine land plants, we categorized the VLN gene family into three groups according to phylogenetic relationships. Further detailed analysis of the soybean VLNs indicated that the ten GmVLNs were distributed on 10 of the 20 chromosomes, and their gene structures and protein motifs showed high group specificities. The expression pattern analysis suggested that most GmVLNs are widely expressed in various tissues, but three members have a very high level in seeds. Moreover, we observed that the cis-elements enriched in the promoters of GmVLNs are mainly related to abiotic stresses, hormone signals, and developmental processes. The largest number of cis-elements were associated with light responses, and two GmVLNs, GmVLN5a, and GmVLN5b were significantly increased under the long light condition. This study not only provides some basic information about the VLN gene family but also provides a good reference for further characterizing the diverse functions of VLN genes in soybeans.
Collapse
Affiliation(s)
- Yueqiong Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- College of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ruoruo Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Huabin Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- College of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650106, China
| |
Collapse
|
5
|
MicroRNA Omics Analysis of Camellia sinesis Pollen Tubes in Response to Low-Temperature and Nitric Oxide. Biomolecules 2021; 11:biom11070930. [PMID: 34201466 PMCID: PMC8301950 DOI: 10.3390/biom11070930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) as a momentous signal molecule participates in plant reproductive development and responds to various abiotic stresses. Here, the inhibitory effects of the NO-dominated signal network on the pollen tube growth of Camellia sinensis under low temperature (LT) were studied by microRNA (miRNA) omics analysis. The results showed that 77 and 71 differentially expressed miRNAs (DEMs) were induced by LT and NO treatment, respectively. Gene ontology (GO) analysis showed that DEM target genes related to microtubules and actin were enriched uniquely under LT treatment, while DEM target genes related to redox process were enriched uniquely under NO treatment. In addition, the target genes of miRNA co-regulated by LT and NO are only located on the cell membrane and cell wall, and most of them are enriched in metal ion binding and/or transport and cell wall organization. Furthermore, DEM and its target genes related to metal ion binding/transport, redox process, actin, cell wall organization and carbohydrate metabolism were identified and quantified by functional analysis and qRT-PCR. In conclusion, miRNA omics analysis provides a complex signal network regulated by NO-mediated miRNA, which changes cell structure and component distribution by adjusting Ca2+ gradient, thus affecting the polar growth of the C. sinensis pollen tube tip under LT.
Collapse
|
6
|
Montenegro M, Bayonés L, Moya-Díaz J, Borassi C, Martín Toscani A, Gallo LI, Marengo FD. Rapid vesicle replenishment after the immediately releasable pool exocytosis is tightly linked to fast endocytosis, and depends on basal calcium and cortical actin in chromaffin cells. J Neurochem 2021; 157:1069-1085. [PMID: 33338257 DOI: 10.1111/jnc.15276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 01/06/2023]
Abstract
The maintenance of the secretory response requires a continuous replenishment of releasable vesicles. It was proposed that the immediately releasable pool (IRP) is important in chromaffin cell secretion during action potentials applied at basal physiological frequencies, because of the proximity of IRP vesicles to voltage-dependent Ca2+ channels. However, previous reports showed that IRP replenishment after depletion is too slow to manage such a situation. In this work, we used patch-clamp measurements of membrane capacitance, confocal imaging of F-actin distribution, and cytosolic Ca2+ measurements with Fura-2 to re-analyze this problem in primary cultures of mouse chromaffin cells. We provide evidence that IRP replenishment has one slow (time constant between 5 and 10 s) and one rapid component (time constant between 0.5 and 1.5 s) linked to a dynamin-dependent fast endocytosis. Both, the fast endocytosis and the rapid replenishment component were eliminated when 500 nM Ca2+ was added to the internal solution during patch-clamp experiments, but they became dominant and accelerated when the cytosolic Ca2+ buffer capacity was increased. In addition, both rapid replenishment and fast endocytosis were retarded when cortical F-actin cytoskeleton was disrupted with cytochalasin D. Finally, in permeabilized chromaffin cells stained with rhodamine-phalloidin, the cortical F-actin density was reduced when the Ca2+ concentration was increased in a range of 10-1000 nM. We conclude that low cytosolic Ca2+ concentrations, which favor cortical F-actin stabilization, allow the activation of a fast endocytosis mechanism linked to a rapid replenishment component of IRP.
Collapse
Affiliation(s)
- Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Moya-Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Cecilia Borassi
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Buenos Aires, Argentina
| | - Andrés Martín Toscani
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). CONICET, Departamento de Química Biológica. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico -, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE). CONICET, Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Zhao W, Qu X, Zhuang Y, Wang L, Bosch M, Franklin-Tong VE, Xue Y, Huang S. Villin controls the formation and enlargement of punctate actin foci in pollen tubes. J Cell Sci 2020; 133:jcs237404. [PMID: 32051284 DOI: 10.1242/jcs.237404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/01/2020] [Indexed: 11/20/2022] Open
Abstract
Self-incompatibility (SI) in the poppy Papaver rhoeas triggers dramatic alterations in actin within pollen tubes. However, how these actin alterations are mechanistically achieved remains largely unexplored. Here, we used treatment with the Ca2+ ionophore A23187 to mimic the SI-induced elevation in cytosolic Ca2+ and trigger formation of the distinctive F-actin foci. Live-cell imaging revealed that this remodeling involves F-actin fragmentation and depolymerization, accompanied by the rapid formation of punctate actin foci and subsequent increase in their size. We established that actin foci are generated and enlarged from crosslinking of fragmented actin filament structures. Moreover, we show that villins associate with actin structures and are involved in this actin reorganization process. Notably, we demonstrate that Arabidopsis VILLIN5 promotes actin depolymerization and formation of actin foci by fragmenting actin filaments, and controlling the enlargement of actin foci via bundling of actin filaments. Our study thus uncovers important novel insights about the molecular players and mechanisms involved in forming the distinctive actin foci in pollen tubes.
Collapse
Affiliation(s)
- Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Markovic MA, Brubaker PL. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci Rep 2019; 9:13010. [PMID: 31506583 PMCID: PMC6737075 DOI: 10.1038/s41598-019-49510-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Microvilli are tiny projections on the apical end of enterocytes, aiding in the digestion and absorption of nutrients. One of their key features is uniform length, but how this is regulated is poorly understood. Glucagon-like peptide-2 (GLP-2) has been shown to increase microvillus length but, the requirement of its downstream mediator, the intestinal epithelial insulin-like growth factor-1 receptor (IE-IGF-1R), and the microvillus proteins acted upon by GLP-2, remain unknown. Using IE-IGF-1R knockout (KO) mice, treated with either long-acting human (h) (GLY2)GLP-2 or vehicle for 11d, it was found that the h(GLY2)GLP-2-induced increase in microvillus length required the IE-IGF-1R. Furthermore, IE-IGF-1R KO alone resulted in a significant decrease in microvillus length. Examination of the brush border membrane proteome as well as of whole jejunal mucosa demonstrated that villin was increased with h(GLY2)GLP-2 treatment in an IE-IGF-1R-dependent manner. Under both basal conditions and with h(GLY2)GLP-2 treatment of the IE-IGF-1R KO mice, changes in villin, IRTKS-1, harmonin, β-actin, and myosin-1a did not explain the decrease in microvillus length, in either the brush border or jejunal mucosa of KO animals. Collectively, these studies define a new role for the IE-IGF-1R within the microvillus, in both the signaling cascade induced by GLP-2, as well as endogenously.
Collapse
Affiliation(s)
- Melanie A Markovic
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
10
|
Lhocine N, Arena ET, Bomme P, Ubelmann F, Prévost MC, Robine S, Sansonetti PJ. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe 2015; 17:164-77. [PMID: 25600187 PMCID: PMC4346658 DOI: 10.1016/j.chom.2014.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/16/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023]
Abstract
Salmonella invasion of intestinal epithelial cells requires extensive, though transient, actin modifications at the site of bacterial entry. The actin-modifying protein villin is present in the brush border where it participates in the constitution of microvilli and in epithelial restitution after damage through its actin-severing activity. We investigated a possible role for villin in Salmonella invasion. The absence of villin, which is normally located at the bacterial entry site, leads to a decrease in Salmonella invasion. Villin is necessary for early membrane-associated processes and for optimal ruffle assembly by balancing the steady-state level of actin. The severing activity of villin is important for Salmonella invasion in vivo. The bacterial phosphatase SptP tightly regulates villin phosphorylation, while the actin-binding effector SipA protects F-actin and counterbalances villin-severing activity. Thus, villin plays an important role in establishing the balance between actin polymerization and actin severing to facilitate the initial steps of Salmonella entry. The host actin-binding protein villin is required for Salmonella apical invasion Villin plays a role in Salmonella ruffle formation and actin dynamics Villin-severing activity promotes Salmonella invasion in cells and in vivo The bacterial effectors SipA and SptP regulate villin activities
Collapse
Affiliation(s)
- Nouara Lhocine
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Ellen T Arena
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Perrine Bomme
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Florent Ubelmann
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France; Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciencias Médicas, Universidade Nova de Lisboa, 1169-056, Portugal
| | - Marie-Christine Prévost
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Sylvie Robine
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
11
|
Huang S, Qu X, Zhang R. Plant villins: versatile actin regulatory proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:40-9. [PMID: 25294278 DOI: 10.1111/jipb.12293] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/01/2014] [Indexed: 05/03/2023]
Abstract
Regulation of actin dynamics is a central theme in cell biology that is important for different aspects of cell physiology. Villin, a member of the villin/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Villins contain six gelsolin homology domains (G1-G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant villins are expressed widely, implying that plant villins play a more general role in regulating actin dynamics. Some plant villins have a defined role in modifying actin dynamics in the pollen tube; most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant villins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cells. In this review, we focus on discussing the biochemical activities and modes of regulation of plant villins. Here, we present current understanding of the functions of plant villins. Finally, we highlight some of the key unanswered questions regarding the functions and regulation of plant villins for future research.
Collapse
Affiliation(s)
- Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | |
Collapse
|
12
|
Abstract
Although constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is not known. Previously we reported that Jak3 interactions with adapter protein p52ShcA (Shc) facilitate mucosal homeostasis. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and Shc and demonstrate the trans-molecular mechanism of regulation of Jak3 activation by Shc. We show that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated two tyrosine residues in Src homology 2 (SH2) domain and one tyrosine residue each in calponin homology 1 (CH1) domain and phosphotyrosine interaction domain (PID) of Shc. Direct interactions between mutants of Jak3 and Shc showed that although FERM domain of Jak3 was sufficient for binding to Shc, CH1 and PID domains of Shc were responsible for binding to Jak3. Functionally Jak3 was autophosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatases SHP2 and PTP1B to Jak3 and thereby dephosphorylated Jak3. Thus we not only characterize Jak3 interaction with Shc, but also demonstrate the molecular mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as regulators of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases.
Collapse
Affiliation(s)
- Jayshree Mishra
- From the Department of Pharmaceutical Sciences, Irma Lerma Rangel (ILR) College of Pharmacy Texas A&M Health Science Center, Kingsville, Texas 78363
| | - Narendra Kumar
- From the Department of Pharmaceutical Sciences, Irma Lerma Rangel (ILR) College of Pharmacy Texas A&M Health Science Center, Kingsville, Texas 78363
| |
Collapse
|
13
|
Kruer MC, Jepperson T, Dutta S, Steiner RD, Cottenie E, Sanford L, Merkens M, Russman BS, Blasco PA, Fan G, Pollock J, Green S, Woltjer RL, Mooney C, Kretzschmar D, Paisán-Ruiz C, Houlden H. Mutations in γ adducin are associated with inherited cerebral palsy. Ann Neurol 2014; 74:805-14. [PMID: 23836506 PMCID: PMC3952628 DOI: 10.1002/ana.23971] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 06/07/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Cerebral palsy is estimated to affect nearly 1 in 500 children, and although prenatal and perinatal contributors have been well characterized, at least 20% of cases are believed to be inherited. Previous studies have identified mutations in the actin-capping protein KANK1 and the adaptor protein-4 complex in forms of inherited cerebral palsy, suggesting a role for components of the dynamic cytoskeleton in the genesis of the disease. METHODS We studied a multiplex consanguineous Jordanian family by homozygosity mapping and exome sequencing, then used patient-derived fibroblasts to examine functional consequences of the mutation we identified in vitro. We subsequently studied the effects of adducin loss of function in Drosophila. RESULTS We identified a homozygous c.1100G>A (p.G367D) mutation in ADD3, encoding gamma adducin in all affected members of the index family. Follow-up experiments in patient fibroblasts found that the p.G367D mutation, which occurs within the putative oligomerization critical region, impairs the ability of gamma adducin to associate with the alpha subunit. This mutation impairs the normal actin-capping function of adducin, leading to both abnormal proliferation and migration in cultured patient fibroblasts. Loss of function studies of the Drosophila adducin ortholog hts confirmed a critical role for adducin in locomotion. INTERPRETATION Although likely a rare cause of cerebral palsy, our findings indicate a critical role for adducins in regulating the activity of the actin cytoskeleton, suggesting that impaired adducin function may lead to neuromotor impairment and further implicating abnormalities of the dynamic cytoskeleton as a pathogenic mechanism contributing to cerebral palsy.
Collapse
|
14
|
Fedechkin SO, Brockerman J, Pfaff DA, Burns L, Webb T, Nelson A, Zhang F, Sabantsev AV, Melnikov AS, McKnight CJ, Smirnov SL. Gelsolin-like activation of villin: calcium sensitivity of the long helix in domain 6. Biochemistry 2013; 52:7890-900. [PMID: 24070253 DOI: 10.1021/bi400699s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 μM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- Department of Chemistry, Western Washington University , 516 High Street, Bellingham, Washington 98225-9150, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gyger M, Stange R, Kießling TR, Fritsch A, Kostelnik KB, Beck-Sickinger AG, Zink M, Käs JA. Active contractions in single suspended epithelial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 43:11-23. [PMID: 24196420 DOI: 10.1007/s00249-013-0935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Investigations of active contractions in tissue cells to date have been focused on cells that exert forces via adhesion sites to substrates or to other cells. In this study we show that also suspended epithelial cells exhibit contractility, revealing that contractions can occur independently of focal adhesions. We employ the Optical Stretcher to measure adhesion-independent mechanical properties of an epithelial cell line transfected with a heat-sensitive cation channel. During stretching the heat transferred to the ion channel causes a pronounced Ca(2+) influx through the plasma membrane that can be blocked by adequate drugs. This way the contractile forces in suspended cells are shown to be partially triggered by Ca(2+) signaling. A phenomenological mathematical model is presented, incorporating a term accounting for the active stress exerted by the cell, which is both necessary and sufficient to describe the observed increase in strain when the Ca(2+) influx is blocked. The median and the shape of the strain distributions depend on the activity of the cells. Hence, it is unlikely that they can be described by a simple Gaussian or log normal distribution, but depend on specific cellular properties such as active contractions. Our results underline the importance of considering activity when measuring cellular mechanical properties even in the absence of measurable contractions. Thus, the presented method to quantify active contractions of suspended cells offers new perspectives for a better understanding of cellular force generation with possible implications for medical diagnosis and therapy.
Collapse
Affiliation(s)
- Markus Gyger
- Abteilung für Physik der weichen Materie, Institut für Experimentelle Physik I, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
17
|
Solaymani-Mohammadi S, Singer SM. Regulation of intestinal epithelial cell cytoskeletal remodeling by cellular immunity following gut infection. Mucosal Immunol 2013; 6:369-78. [PMID: 22910215 PMCID: PMC4094376 DOI: 10.1038/mi.2012.80] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gut infections often lead to epithelial cell damage followed by a healing response. We examined changes in the epithelial cell cytoskeleton and the involvement of host adaptive immunity in these events using an in vivo model of parasitic infection. We found that both ezrin and villin, key components of the actin cytoskeleton comprising the brush border (BB) of intestinal epithelial cells (IECs), underwent significant post-translational changes following gut infection and during the recovery phase of gut infection. Intriguingly, using mice lacking either CD4(+) or CD8(+) T-cell responses, we demonstrated that the mechanisms by which ezrin and villin are regulated in response to infection are different. Both ezrin and villin undergo proteolysis during the recovery phase of infection. Cleavage of ezrin requires CD4(+) but not CD8(+) T cells, whereas cleavage of villin requires both CD4(+) and CD8(+) T-cell responses. Both proteins were also regulated by phosphorylation; reduced levels of phosphorylated ezrin and increased levels of villin phosphorylation were observed at the peak of infection and correlated with reduced BB enzyme activity. Finally, we show that infection also leads to enhanced proliferation of IECs in this model. Cytoskeletal remodeling in IECs can have critical roles in the immunopathology and healing responses observed during many infectious and non-infectious intestinal conditions. These data indicate that cellular immune responses can be significant drivers of these processes.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Department of Biology and Center for Infectious Disease, Georgetown University, Washington, DC, 20057, USA,Correspondence should be addressed to Shahram Solaymani-Mohammadi or Steven M. Singer, Mailing address: Shahram Solaymani-Mohammadi, University of California, San Diego, 9500 Gilman Drive, Mail Code 0623D, La Jolla CA 92093-0623 USA; Phone (858)534-4625; Fax: 858-534-5691; ; Steven M. Singer, Georgetown University, 406 Reiss Building, 37th and O Streets, NW, Washington, DC 20057 USA; Phone (202)-687-9884; Fax: (202)-687-5662;
| | - Steven M. Singer
- Department of Biology and Center for Infectious Disease, Georgetown University, Washington, DC, 20057, USA,Correspondence should be addressed to Shahram Solaymani-Mohammadi or Steven M. Singer, Mailing address: Shahram Solaymani-Mohammadi, University of California, San Diego, 9500 Gilman Drive, Mail Code 0623D, La Jolla CA 92093-0623 USA; Phone (858)534-4625; Fax: 858-534-5691; ; Steven M. Singer, Georgetown University, 406 Reiss Building, 37th and O Streets, NW, Washington, DC 20057 USA; Phone (202)-687-9884; Fax: (202)-687-5662;
| |
Collapse
|
18
|
Fan J, Dong L, Mishra S, Chen Y, FitzGerald P, Wistow G. A role for γS-crystallin in the organization of actin and fiber cell maturation in the mouse lens. FEBS J 2012; 279:2892-904. [PMID: 22715935 PMCID: PMC3429115 DOI: 10.1111/j.1742-4658.2012.08669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Xiao Y, Du F, Cao L, Dong H, Ren H. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. THE NEW PHYTOLOGIST 2011; 190:667-82. [PMID: 21275995 DOI: 10.1111/j.1469-8137.2010.03632.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Villin is one of the major actin filament bundling proteins in plants. The function of Arabidopsis VILLINs (AtVLNs) is still poorly understood in living cells. In this report, the biochemical activity and cellular function of AtVLN4 were examined. • The biochemical property of AtVLN4 was characterized by co-sedimentation assays, fluorescence microscopy and spectroscopy of pyrene fluorescence. The in vivo function of AtVLN4 was analysed by ectopically expressing it in tobacco pollen and examining the phenotypes of its T-DNA insertional plants. • Recombinant AtVLN4 protein exhibited multiple activities on actin, including actin filament bundling, calcium (Ca(2+))-dependent filament severing and barbed end capping. Expression of AtVLN4 in tobacco pollen induced the formation of supernumerary actin cables and reduced pollen tube growth. Loss of function of AtVLN4 resulted in slowing of root hair growth, alteration in cytoplasmic streaming routes and rate, and reduction of both axial and apical actin bundles. • Our results demonstrated that AtVLN4 is involved in root hair growth through regulating actin organization in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Khurana P, Henty JL, Huang S, Staiger AM, Blanchoin L, Staiger CJ. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. THE PLANT CELL 2010; 22:2727-48. [PMID: 20807878 PMCID: PMC2947172 DOI: 10.1105/tpc.110.076240] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/29/2010] [Accepted: 08/17/2010] [Indexed: 05/20/2023]
Abstract
Actin filament bundles are higher-order cytoskeletal structures that are crucial for the maintenance of cellular architecture and cell expansion. They are generated from individual actin filaments by the actions of bundling proteins like fimbrins, LIMs, and villins. However, the molecular mechanisms of dynamic bundle formation and turnover are largely unknown. Villins belong to the villin/gelsolin/fragmin superfamily and comprise at least five isovariants in Arabidopsis thaliana. Different combinations of villin isovariants are coexpressed in various tissues and cells. It is not clear whether these isovariants function together and act redundantly or whether they have unique activities. VILLIN1 (VLN1) is a simple filament-bundling protein and is Ca(2+) insensitive. Based on phylogenetic analyses and conservation of Ca(2+) binding sites, we predict that VLN3 is a Ca(2+)-regulated villin capable of severing actin filaments and contributing to bundle turnover. The bundling activity of both isovariants was observed directly with time-lapse imaging and total internal reflection fluorescence (TIRF) microscopy in vitro, and the mechanism mimics the "catch and zipper" action observed in vivo. Using time-lapse TIRF microscopy, we observed and quantified the severing of individual actin filaments by VLN3 at physiological calcium concentrations. Moreover, VLN3 can sever actin filament bundles in the presence of VLN1 when calcium is elevated to micromolar levels. Collectively, these results demonstrate that two villin isovariants have overlapping and distinct activities.
Collapse
Affiliation(s)
- Parul Khurana
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Jessica L. Henty
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Shanjin Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Andrew M. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l’Energie Atomique Grenoble, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
21
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
22
|
Wang H, Chumnarnsilpa S, Loonchanta A, Li Q, Kuan YM, Robine S, Larsson M, Mihalek I, Burtnick LD, Robinson RC. Helix straightening as an activation mechanism in the gelsolin superfamily of actin regulatory proteins. J Biol Chem 2009; 284:21265-9. [PMID: 19491107 PMCID: PMC2755850 DOI: 10.1074/jbc.m109.019760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 05/11/2009] [Indexed: 11/06/2022] Open
Abstract
Villin and gelsolin consist of six homologous domains of the gelsolin/cofilin fold (V1-V6 and G1-G6, respectively). Villin differs from gelsolin in possessing at its C terminus an unrelated seventh domain, the villin headpiece. Here, we present the crystal structure of villin domain V6 in an environment in which intact villin would be inactive, in the absence of bound Ca(2+) or phosphorylation. The structure of V6 more closely resembles that of the activated form of G6, which contains one bound Ca(2+), rather than that of the calcium ion-free form of G6 within intact inactive gelsolin. Strikingly apparent is that the long helix in V6 is straight, as found in the activated form of G6, as opposed to the kinked version in inactive gelsolin. Molecular dynamics calculations suggest that the preferable conformation for this helix in the isolated G6 domain is also straight in the absence of Ca(2+) and other gelsolin domains. However, the G6 helix bends in intact calcium ion-free gelsolin to allow interaction with G2 and G4. We suggest that a similar situation exists in villin. Within the intact protein, a bent V6 helix, when triggered by Ca(2+), straightens and helps push apart adjacent domains to expose actin-binding sites within the protein. The sixth domain in this superfamily of proteins serves as a keystone that locks together a compact ensemble of domains in an inactive state. Perturbing the keystone initiates reorganization of the structure to reveal previously buried actin-binding sites.
Collapse
Affiliation(s)
- Hui Wang
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sakesit Chumnarnsilpa
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
- the Institutionen för Medicinsk Biokemi och Mikrobiologi, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Anantasak Loonchanta
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qiang Li
- the Bioinformatics Institute, A*STAR, 30 Biopolis Drive, Matrix, Singapore 138671, and
| | - Yang-Mei Kuan
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sylvie Robine
- UMR 144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Mårten Larsson
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Ivana Mihalek
- the Bioinformatics Institute, A*STAR, 30 Biopolis Drive, Matrix, Singapore 138671, and
| | - Leslie D. Burtnick
- From the Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Robert C. Robinson
- the Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673
| |
Collapse
|
23
|
Walsh N, Dowling P, O'Donovan N, Henry M, Meleady P, Clynes M. Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. J Proteomics 2008; 71:561-71. [DOI: 10.1016/j.jprot.2008.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/13/2008] [Accepted: 09/16/2008] [Indexed: 01/03/2023]
|
24
|
Khurana S, George SP. Regulation of cell structure and function by actin-binding proteins: villin's perspective. FEBS Lett 2008; 582:2128-39. [PMID: 18307996 PMCID: PMC2680319 DOI: 10.1016/j.febslet.2008.02.040] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 02/19/2008] [Indexed: 12/23/2022]
Abstract
Villin is a tissue-specific actin modifying protein that is associated with actin filaments in the microvilli and terminal web of epithelial cells. It belongs to a large family of actin-binding proteins which includes actin-capping, -nucleating and/or -severing proteins such as gelsolin, severin, fragmin, adseverin/scinderin and actin crosslinking proteins such as dematin and supervillin. Studies done in epithelial cell lines and villin knock-out mice have demonstrated the function of villin in regulating actin dynamics, cell morphology, epithelial-to-mesenchymal transition, cell migration and cell survival. In addition, the ligand-binding properties of villin (F-actin, G-actin, calcium, phospholipids and phospholipase C-gamma1) are mechanistically important for the crosstalk between signaling pathways and actin reorganization in epithelial cells.
Collapse
Affiliation(s)
- Seema Khurana
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 402, Memphis, TN 38163, United States.
| | | |
Collapse
|
25
|
Kumar N, Mishra J, Narang VS, Waters CM. Janus kinase 3 regulates interleukin 2-induced mucosal wound repair through tyrosine phosphorylation of villin. J Biol Chem 2007; 282:30341-5. [PMID: 17537734 DOI: 10.1074/jbc.c600319200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Janus kinase 3 (Jak3) is a non-receptor tyrosine kinase known to be expressed in hematopoietic cells. Studies of whole organ homogenates show that Jak3 is also expressed in the intestines of both human and mice. However, neither its expression nor its function has been defined in intestinal epithelial enterocytes. The present studies demonstrate that functional Jak3 is expressed in human intestinal enterocytes HT-29 Cl-19A and Caco-2 and plays an essential role in the intestinal epithelial wound repair process in response to interleukin 2 (IL-2). Exogenous IL-2 enhanced the wound repair of intestinal enterocytes in a dose-dependent manner. Activation by IL-2 led to rapid tyrosine phosphorylation and redistribution of Jak3. IL-2-stimulated redistribution of Jak3 was inhibited by the Jak3-specific inhibitor WHI-P131. IL-2 also induced Jak3-dependent redistribution of the actin cytoskeleton in migrating cells. In these cells Jak3 interacted with the intestinal and renal epithelial cell-specific cytoskeletal protein villin in an IL-2-dependent manner. Inhibition of Jak3 activation resulted in loss of tyrosine phosphorylation of villin and a significant decrease in wound repair of the intestinal epithelial cells. Previously, we had shown that tyrosine phosphorylation of villin is important for cytoskeletal remodeling and cell migration. The present study demonstrates a novel pathway in intestinal enterocytes in which IL-2 enhances intestinal wound repair through mechanisms involving Jak3 and its interactions with villin.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
26
|
Ghosh JG, Houck SA, Clark JI. Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 2007; 39:1804-15. [PMID: 17590381 PMCID: PMC2743261 DOI: 10.1016/j.biocel.2007.04.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/03/2007] [Accepted: 04/13/2007] [Indexed: 01/29/2023]
Abstract
Molecular chaperones including the small heat shock proteins, alphaB crystallin and sHSP27 participate in the assembly, disassembly, and reorganization of the cytoskeleton during cell development and differentiation. While alphaB crystallin and sHSP27 stabilize and modulate filament assembly and re-organization, the sequences and structural domains mediating interactions between these proteins and filaments are unknown. It is important to define these interactive domains in order to understand differential interactions between chaperones and stable or unfolding filaments and their function in the cellular stress response. Protein pin arrays identified sequences in human alphaB crystallin that selectively interacted with native or partially unfolded filament proteins desmin, glial-fibrillary acidic protein, and actin. Circular dichroism spectroscopy determined differences in the structure of these filaments at 23 and 45 degrees C. Seven alphaB crystallin sequences had stronger interactions with desmin and six sequences had stronger interactions with glial-fibrillary acidic protein at 23 degrees C than at 45 degrees C. The alphaB crystallin sequences (33)LESDLFPTSTSLSPFYLRPPSFLR(56) and (129)DPLTITSSLSSDGV(145) had the strongest interactions with actin at 23 degrees C, while (57)APSWFDTG(64), (111)HGFISREF(118), (145)VNGPRKQVSG(154), and (155)PERTIPITREEK(165) had the strongest interactions with actin at 45 degrees C. The actin interactive sequences of alphaB crystallin overlapped with previously identified alphaB crystallin chaperone sequences and were synthesized to evaluate their effect on the assembly and aggregation of actin. Full-length alphaB crystallin and the core domain chaperone sequence (131)LTITSSLSSDGV(143) promoted actin polymerization at 37 degrees C and inhibited depolymerization and aggregation at 50 degrees C. The results support the hypothesis that interactive domains in alphaB crystallin have multiple functions in stabilizing the cytoskeleton and protecting cytosolic proteins from unfolding.
Collapse
Affiliation(s)
- Joy G. Ghosh
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - Scott A. Houck
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - John I. Clark
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
- Department of Ophthalmology, University of Washington, Seattle, WA 98195-7420
| |
Collapse
|
27
|
Qian Q, Hunter LW, Du H, Ren Q, Han Y, Sieck GC. Pkd2+/- vascular smooth muscles develop exaggerated vasocontraction in response to phenylephrine stimulation. J Am Soc Nephrol 2007; 18:485-93. [PMID: 17202419 DOI: 10.1681/asn.2006050501] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Vascular complications are the leading cause of morbidity and mortality in autosomal dominant polycystic kidney disease. Although evidence suggests an abnormal vascular reactivity, contractile function in Pkd mutant vessels has not been studied previously. Contractile response to phenylephrine (PE; 10(-10) to 10(-4)M), an alpha1-adrenergic receptor agonist, was examined. De-endothelialized Pkd2(+/-) aortic rings generated a higher maximum force (F(max)) than that in wild-type (wt; 5.78 +/- 0.73 versus 2.69 +/- 0.43 mN; P < 0.001) and a significant left shift in PE dosage-response curve. On simultaneous recordings, Pkd2(+/-) aortic helical strips also responded to PE with a greater F(max) but a lesser [Ca(2+)](i) rise, resulting in a greatly enhanced Deltaforce/DeltaCa(2+) ratio than that in wt. At F(max), a higher elevation in the phosphorylated regulatory myosin light chain was observed in Pkd2(+/-) strips. Ca(2+)-dependent calmodulin/myosin light-chain kinase-mediated contraction was examined by direct Ca(2+) (pCa8-5) stimulation to beta-escin permeabilized aortic strips; the pCa-force curve in Pkd2(+/-) strips was not shifted, thereby indicating that PE induced dosage-response alteration that resulted from Ca(2+)-independent mechanisms. Quantitative analyses of contractile proteins demonstrated elevated expressions in smooth muscle alpha-actin and myosin heavy chain in Pkd2(+/-) arteries, changes that likely contribute to the higher F(max). Similar to those in aortas, de-endothelialized Pkd2(+/-) resistance (fourth-order mesenteric) arteries responded to PE with a stronger contraction but a lesser [Ca(2+)](i) rise than in wt. Taken together, the arterial vasculature in Pkd2(+/-) mice exhibits an exaggerated contractile response and increased sensitivity to PE. An enhanced Ca(2+)-independent force generation and elevated contractile protein expression likely contribute to these abnormalities.
Collapse
Affiliation(s)
- Qi Qian
- Department of Medicine and Physiology, Eisenberg S-24, Nephrology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Revenu C, Courtois M, Michelot A, Sykes C, Louvard D, Robine S. Villin severing activity enhances actin-based motility in vivo. Mol Biol Cell 2006; 18:827-38. [PMID: 17182858 PMCID: PMC1805090 DOI: 10.1091/mbc.e06-05-0423] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.
Collapse
Affiliation(s)
- Céline Revenu
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| | - Matthieu Courtois
- Laboratoire Physico-Chimie Curie, Unité Mixte de Recherche 168, Institut Curie/Centre National de la Recherche Scientifique/Universités Paris 6 and 7, 75231 Paris Cedex 05, France; and
| | - Alphée Michelot
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Commissariat à l'Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, 38054 Grenoble Cedex 9, France
| | - Cécile Sykes
- Laboratoire Physico-Chimie Curie, Unité Mixte de Recherche 168, Institut Curie/Centre National de la Recherche Scientifique/Universités Paris 6 and 7, 75231 Paris Cedex 05, France; and
| | - Daniel Louvard
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| | - Sylvie Robine
- *Laboratoire de Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris Cedex 05, France
| |
Collapse
|
29
|
Affiliation(s)
- Thomas P Stossel
- Hematology Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
30
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of Phospholipase C-γ1 with Villin Regulates Epithelial Cell Migration. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Tomar A, George S, Kansal P, Wang Y, Khurana S. Interaction of phospholipase C-gamma1 with villin regulates epithelial cell migration. J Biol Chem 2006; 281:31972-86. [PMID: 16921170 DOI: 10.1074/jbc.m604323200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tyrosine-phosphorylated villin regulates actin dynamics, cell morphology, and cell migration. Previously, we identified four tyrosine phosphorylation sites in the amino-terminal domain of villin. In this study we report six new sites in the carboxyl-terminal region of the villin core. With this study we document all phosphorylatable tyrosine residues in villin and map them to functions of villin. In this study, we identify for the first time the functional relevance of the carboxyl-terminal domains of the villin core. Expression of the carboxyl-terminal phosphorylation site mutant, as well as the villin truncation mutant S1-S3, inhibited cell migration in HeLa and Madin-Darby canine kidney Tet-Off cells, confirming the role of the carboxyl-terminal phosphorylation sites in villin-induced cell migration. The carboxyl-terminal phosphorylation sites were found to be critical for the interaction of villin with its ligand phospholipase C-gamma1 and for its localization to the developing lamellipodia in a motile cell. The results presented here elucidate the molecular basis for tyrosine-phosphorylated villin-induced changes in cell motility.
Collapse
Affiliation(s)
- Alok Tomar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|