1
|
Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. The selectivity filter of the mitochondrial protein import machinery. BMC Biol 2020; 18:156. [PMID: 33121519 PMCID: PMC7596997 DOI: 10.1186/s12915-020-00888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background The uptake of newly synthesized nuclear-encoded mitochondrial proteins from the cytosol is mediated by a complex of mitochondrial outer membrane proteins comprising a central pore-forming component and associated receptor proteins. Distinct fractions of proteins initially bind to the receptor proteins and are subsequently transferred to the pore-forming component for import. The aim of this study was the identification of the decisive elements of this machinery that determine the specific selection of the proteins that should be imported. Results We identified the essential internal targeting signal of the members of the mitochondrial metabolite carrier proteins, the largest protein family of the mitochondria, and we investigated the specific recognition of this signal by the protein import machinery at the mitochondrial outer surface. We found that the outer membrane import receptors facilitated the uptake of these proteins, and we identified the corresponding binding site, marked by cysteine C141 in the receptor protein Tom70. However, in tests both in vivo and in vitro, the import receptors were neither necessary nor sufficient for specific recognition of the targeting signals. Although these signals are unrelated to the amino-terminal presequences that mediate the targeting of other mitochondrial preproteins, they were found to resemble presequences in their strict dependence on a content of positively charged residues as a prerequisite of interactions with the import pore. Conclusions The general import pore of the mitochondrial outer membrane appears to represent not only the central channel of protein translocation but also to form the decisive general selectivity filter in the uptake of the newly synthesized mitochondrial proteins.
Collapse
Affiliation(s)
- Sebastian Kreimendahl
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Schwichtenberg
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kathrin Günnewig
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lukas Brandherm
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
2
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
3
|
Li ZY, Li QZ, Chen L, Chen BD, Zhang C, Wang X, Li WP. HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway. Neurochem Int 2016; 99:239-251. [PMID: 27522966 DOI: 10.1016/j.neuint.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023]
Abstract
High levels of glucocorticoids (GCs) have been reported to damage normal hippocampal neurons, and such damage has been positively correlated with major depression (MD) and chronic stress. Our previous study showed that HDAC6 might be a potential target to regulate GC-induced glucocorticoid receptor (GR) translocation to the mitochondria and subsequent apoptosis. In the present study, we investigated the effect of HPOB, a selective HDAC6 inhibitor, on corticosterone (Cort)-induced apoptosis and explored the possible mechanism of action of HPOB in rat adrenal pheochromocytoma (PC12) cells, which possesses typical neuron features and expresses high levels of glucocorticoid receptors. We demonstrated that pre-treatment with HPOB remarkably reduced Cort-induced cytotoxicity and confirmed the anti-apoptotic effect of HPOB via the caspase-3 activity assay and H33342/PI and TUNEL double staining. Mechanistically, we demonstrated that HPOB reversed the Cort-induced elevation of GR levels in the mitochondria and blocked concomitant mitochondrial dysfunction and the intrinsic apoptosis pathway. Furthermore, HPOB was shown to attenuate expression of the multi-chaperone machinery (Hsp90-Hop-Hsp70) and cooperate with mitochondrial translocase of the outer/inner membrane (TOM/TIM) complex recruitment by triggering hyperacetylation of Hsps through HDAC6 inhibition. Considering all of these findings, the neuroprotective effect of HPOB demonstrated the crucial role of HDAC6 inhibition in reducing Cort-induced apoptosis in PC12 cells. The data further suggested that the anti-apoptotic activity of HDAC6 inhibition against the mitochondria-mediated impairment pathway might be mechanistically linked to the hyperacetylation of Hsps and consequent suppression of GR translocation to the mitochondria.
Collapse
Affiliation(s)
- Zong-Yang Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Qing-Zhong Li
- Shantou University Medical College, Shantou, 515041, China
| | - Lei Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Bao-Dong Chen
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Ce Zhang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Xiang Wang
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China
| | - Wei-Ping Li
- Brain Center, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen, 518035, China.
| |
Collapse
|
4
|
A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1850-9. [PMID: 25958336 DOI: 10.1016/j.bbamcr.2015.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/21/2022]
Abstract
The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor.
Collapse
|
5
|
Lee S, Thebault P, Freschi L, Beaufils S, Blundell TL, Landry CR, Bolanos-Garcia VM, Elowe S. Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases. J Biol Chem 2011; 287:5988-6001. [PMID: 22187426 PMCID: PMC3285366 DOI: 10.1074/jbc.m111.307355] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region.
Collapse
Affiliation(s)
- Semin Lee
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fan AC, Young JC. Function of cytosolic chaperones in Tom70-mediated mitochondrial import. Protein Pept Lett 2011; 18:122-31. [PMID: 20955164 PMCID: PMC5026486 DOI: 10.2174/092986611794475020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022]
Abstract
The great majority of mitochondrial proteins are synthesized by cytosolic ribosomes and then imported into the organelle post-translationally. The translocase of the outer membrane (TOM) is a proteinaceous machinery that contains surface receptors for preprotein recognition and also serves as the main entry gateway into mitochondria. Mitochondrial targeting requires various cytosolic factors, in particular the molecular chaperones Hsc70/Hsp70 and Hsp90. The chaperone activity of Hsc70/Hsp70 and Hsp90 occurs in coordinated cycles of ATP hydrolysis and substrate binding, and is regulated by a number of co-chaperone proteins. The import receptor Tom70 is a member of the tetratricopeptide repeat (TPR) co-chaperone family and contains a conserved TPR clamp domain for interaction with Hsc70 and Hsp90. Such interaction is essential for the initiation of the import process. This review will discuss the roles of Hsc70 and Hsp90 in mitochondrial import and summarize recent progress in understanding these pathways.
Collapse
Affiliation(s)
- Anna C.Y. Fan
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1; Groupe de Recherche Axé sur la Structure des Protéines (GRASP)
| | - Jason C. Young
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 0B1; Groupe de Recherche Axé sur la Structure des Protéines (GRASP)
| |
Collapse
|
7
|
Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ. A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 2010; 28:781-91. [PMID: 20871025 DOI: 10.1093/molbev/msq252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Core proteins of mitochondrial protein import are found in all mitochondria, suggesting a common origin of this import machinery. Despite the presence of a universal core import mechanism, there are specific proteins found only in a few groups of organisms. One of these proteins is the translocase of outer membrane 70 (Tom70), a protein that is essential for the import of preproteins with internal targeting sequences into the mitochondrion. Until now, Tom70 has only been found in animals and Fungi. We have identified a tom70 gene in the human parasitic anaerobic stramenopile Blastocystis sp. that is neither an animal nor a fungus. Using a combination of bioinformatics, genetic complementation, and immunofluorescence microscopy analyses, we demonstrate that this protein functions as a typical Tom70 in Blastocystis mitochondrion-related organelles. Additionally, we identified putative tom70 genes in the genomes of other stramenopiles and a haptophyte, that, in phylogenies, form a monophyletic group distinct from the animal and the fungal homologues. The presence of Tom70 in these lineages significantly expands the evolutionary spectrum of eukaryotes that contain this protein and suggests that it may have been part of the core mitochondrial protein import apparatus of the last common ancestral eukaryote.
Collapse
Affiliation(s)
- Anastasios D Tsaousis
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Li J, Cui W, Sha B. The structural plasticity of Tom71 for mitochondrial precursor translocations. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:985-9. [PMID: 20823510 DOI: 10.1107/s1744309110025522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/29/2010] [Indexed: 11/10/2022]
Abstract
Mitochondrial precursors are transported through the translocase of the outer membrane (TOM) complex. Tom70/Tom71 is a major surface receptor of the TOM complex for mitochondrial precursors and facilitates Hsp70/Hsp90-escorted precursor translocation into the mitochondrion. Previous structural studies of Tom71 have revealed that it contains an N-terminal and a C-terminal domain and that the two domains may remain in an open conformation when binding to Hsp70/Hsp90. In a newly obtained crystal form of a complex of Tom71 and the Hsp70 C-terminus, the N-terminal domain was found to have rotated about 12 degrees towards the C-terminal domain compared with the previous determined crystal structure of Tom71 in the open conformation. This newly solved structure is defined as the ;intermediate conformation'. The domain rearrangements in Tom71 significantly change the surface hydrophobicity and the volume of the precursor-binding pocket. This work suggests that Tom70/Tom71-family members may exhibit structural plasticity from the intermediate conformation to the fully open conformation when complexed with Hsp70/Hsp90. This structural plasticity enables the precursor receptors to accommodate different precursor substrates for mitochondrial translocation.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
9
|
Fan ACY, Gava LM, Ramos CHI, Young JC. Human mitochondrial import receptor Tom70 functions as a monomer. Biochem J 2010; 429:553-63. [PMID: 20504278 PMCID: PMC5026490 DOI: 10.1042/bj20091855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitochondrial import receptor Tom70 (translocase of the mitochondrial outer membrane 70) interacts with chaperone-preprotein complexes through two domains: one that binds Hsp70 (heat-shock protein 70)/Hsc70 (heat-shock cognate 70) and Hsp90, and a second that binds preproteins. The oligomeric state of Tom70 has been controversial, with evidence for both monomeric and homodimeric forms. In the present paper, we report that the functional state of human Tom70 appears to be a monomer with mechanistic implications for its function in mitochondrial protein import. Based on analytical ultracentrifugation, cross-linking, size-exclusion chromatography and multi-angle light scattering, we found that the soluble cytosolic fragment of human Tom70 exists in equilibrium between monomer and dimer. A point mutation introduced at the predicted dimer interface increased the percentage of monomeric Tom70. Although chaperone docking to the mutant was the same as to the wild-type, the mutant was significantly more active in preprotein targeting. Cross-linking also demonstrated that the mutant formed stronger contacts with preprotein. However, cross-linking of full-length wild-type Tom70 on the mitochondrial membrane showed little evidence of homodimers. These results indicate that the Tom70 monomers are the functional form of the receptor, whereas the homodimers appear to be a minor population, and may represent an inactive state.
Collapse
Affiliation(s)
- Anna C. Y. Fan
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| | - Lisandra M. Gava
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Carlos H. I. Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jason C. Young
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 0B1
| |
Collapse
|
10
|
The acidic domains of the Toc159 chloroplast preprotein receptor family are intrinsically disordered protein domains. BMC BIOCHEMISTRY 2009; 10:35. [PMID: 20042108 PMCID: PMC2805684 DOI: 10.1186/1471-2091-10-35] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 12/30/2009] [Indexed: 11/26/2022]
Abstract
Background The Toc159 family of proteins serve as receptors for chloroplast-destined preproteins. They directly bind to transit peptides, and exhibit preprotein substrate selectivity conferred by an unknown mechanism. The Toc159 receptors each include three domains: C-terminal membrane, central GTPase, and N-terminal acidic (A-) domains. Although the function(s) of the A-domain remains largely unknown, the amino acid sequences are most variable within these domains, suggesting they may contribute to the functional specificity of the receptors. Results The physicochemical properties of the A-domains are characteristic of intrinsically disordered proteins (IDPs). Using CD spectroscopy we show that the A-domains of two Arabidopsis Toc159 family members (atToc132 and atToc159) are disordered at physiological pH and temperature and undergo conformational changes at temperature and pH extremes that are characteristic of IDPs. Conclusions Identification of the A-domains as IDPs will be important for determining their precise function(s), and suggests a role in protein-protein interactions, which may explain how these proteins serve as receptors for such a wide variety of preprotein substrates.
Collapse
|
11
|
Li J, Qian X, Hu J, Sha B. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J Biol Chem 2009; 284:23852-9. [PMID: 19581297 DOI: 10.1074/jbc.m109.023986] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
12
|
Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. Domain Organization of the Monomeric Form of the Tom70 Mitochondrial Import Receptor. J Mol Biol 2009; 388:1043-58. [DOI: 10.1016/j.jmb.2009.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/24/2009] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
|
13
|
Beaufils S, Grossmann JG, Renault A, Bolanos-Garcia VM. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity. J Phys Chem B 2008; 112:7984-91. [PMID: 18547097 DOI: 10.1021/jp711222s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetratricopeptide motif repeat (TPR) is an alpha-helix-turn-alpha-helix motif that typically mediates protein-protein and, in some cases, protein-lipid interactions. Because of its success, this motif has been preserved through evolution and can be identified in proteins of a wide range of functions in lower and higher organisms. The N-terminal region of BUB1, BUBR1, and protein phosphatase 5 (PP5) contains tandem arrangements of the TPR motif. BUB1 and BUBR1 are conserved multidomain protein kinases that play a key role in the mitotic checkpoint, the mechanism that ensures the synchrony of chromosome segregation. PP5 is an enzyme that targets a wide range of protein substrates including single transmembrane receptors and mammalian cryptochromes. The N-terminal TPR domain of PP5 regulates the activity of the C-terminal catalytic domain through direct interaction with protein and lipid molecules. We portray the biophysical and biochemical properties of the tandem arrangements of the TPR motif of BUB1, BUBR1, and PP5 using far-UV spectroscopy, solution X-ray scattering, null ellipsometry, surface rheology measurements, and Brewster angle microscopy (BAM) observations. We show that, despite the low amino acid sequence conservation and different function, the TPR motif repeats of the three proteins exhibit similar interfacial properties including adsorption kinetics, high surface activity, and the formation of stable, rigid films at the air/water interface. Our studies demonstrate that domain amphiphilicity is of higher importance than amino acid sequence specificity in the determination of protein adsorption and interfacial activity.
Collapse
Affiliation(s)
- Sylvie Beaufils
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
14
|
Perry AJ, Rimmer KA, Mertens HDT, Waller RF, Mulhern TD, Lithgow T, Gooley PR. Structure, topology and function of the translocase of the outer membrane of mitochondria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:265-74. [PMID: 18272380 DOI: 10.1016/j.plaphy.2007.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Indexed: 05/09/2023]
Abstract
Proteins destined for the mitochondria required the evolution of specific and efficient molecular machinery for protein import. The subunits of the import translocases of the inner membrane (TIM) appear homologous and conserved amongst species, however the components of the translocase of the outer membrane (TOM) show extensive differences between species. Recently, bioinformatic and structural analysis of Tom20, an important receptor subunit of the TOM complex, suggests that this protein complex arose from different ancestors for plants compared to animals and fungi, but has subsequently converged to provide similar functions and analogous structures. Here we review the current knowledge of the TOM complex, the function and structure of the various subunits that make up this molecular machine.
Collapse
Affiliation(s)
- Andrew J Perry
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Biotechnology and Molecular Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Proteins 2008; 70:72-82. [PMID: 17634984 DOI: 10.1002/prot.21489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ssn6, a tetratricopeptide repeat (TPR) containing protein, associates with the Tup1 repressor to form a global transcriptional co-repressor complex, which is conserved across species. The three N-terminal TPR repeats of Ssn6, out of a total of 10, are involved in this particular interaction. Our previously reported 3D-modeling and mutagenesis data suggested that the structural integrity of TPR1 and its correct positioning relatively to TPR2 are crucial for Tup1 binding. In this study, we first investigate the structural stability of the Tup1 binding domain of Ssn6, in pure form, through a combination of CD spectroscopy and limited proteolysis mapping. The obtained data were next combined with molecular dynamics simulations and disorder/order predictions. This combined study revealed that, although competent to fold, in the absence of Tup1, TPR1 is partially unfolded with its helix B being highly dynamic exposing an apolar surface to the solvent. Subsequent CD spectroscopy on this domain complexed with a Tup1 fragment comprising its Ssn6 binding region provided strong evidence for a conformational change consisting of acquisition of alpha-helical structure with simultaneous stabilization of a coiled-coil configuration upon complex formation. We propose that this conformational change occurs largely in the TPR1 of Ssn6 and is in accord with the concept of folding coupled to binding, proposed for other TPR domains. A possible implication of the structural flexibility of Ssn6 TPR1 in Tup1 recognition is discussed and a novel mode of interaction is proposed for this particular TPR-mediated complex.
Collapse
Affiliation(s)
- Maria Palaiomylitou
- Institute of Biology, National Centre for Scientific Research Demokritos, 15310 Ag. Paraskevi Attikis, Greece
| | | | | | | | | |
Collapse
|
16
|
Galat A. Involvement of some large immunophilins and their ligands in the protection and regeneration of neurons: a hypothetical mode of action. Comput Biol Chem 2006; 30:348-59. [PMID: 16996313 DOI: 10.1016/j.compbiolchem.2006.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/20/2022]
Abstract
The powerful immunosuppressive drugs such as FK506 and its derivatives induce some regeneration and protection of neurons from ischaemic brain injury and some other neurological disorders. The drugs form complexes with diverse FKBPs but apparently the FKBP52/FK506 complex was shown to be involved in the protection and regeneration of neurons. We used several different sequence attributes in searching diverse genomic databases for similar motifs as those present in the FKBPs. A Fortran library of algorithms (Par_Seq) has been designed and used in searching for the similarity of sequence motifs extracted from the multiple sequence alignments of diverse groups of proteins (query motifs) and the target motifs which are encoded in various genomes. The following sequence attributes were used in the establishment of the degree of convergence between: (A) amino acid (AA) sequence similarity (ID) of the query/target motifs and (B) their: (1) AA composition (AAC); (2) hydrophobicity (HI); (3) Jensen-Shannon entropy; and (4) AA propensity to form a particular secondary structure. The sequence hallmark of two different groups of peptidylprolyl cis/trans isomerases (PPIases), namely tetratricopetide repeat (TPR) motifs, which are present in the heat-shock cyclophilins and in the large FK506-binding proteins (FKBPs) were used to search various genomic databases. The Par_Seq algorithm has revealed that the TPR motifs have similar sequence attributes as a number of hydrophobic sequence segments of functionally unrelated membrane proteins, including some of the TMs from diverse G protein-coupled receptors (GPCRs). It is proposed that binding of the FKBP52/FK506 complex to the membranes via the TPR motifs and its interaction with some membrane proteins could be in part responsible for some neuro-regeneration and neuro-protection of the brain during some ischaemia-induced stresses.
Collapse
Affiliation(s)
- Andrzej Galat
- Departement d'Ingenierie et d'Etudes des Proteines, Bat. 152, DSV/CEA, CE-Saclay, F-91191 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|
17
|
Fan ACY, Bhangoo MK, Young JC. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J Biol Chem 2006; 281:33313-24. [PMID: 16968702 DOI: 10.1074/jbc.m605250200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport.
Collapse
Affiliation(s)
- Anna C Y Fan
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
18
|
Bushell SR, Bottomley SP, Rossjohn J, Beddoe T. Tracking the Unfolding Pathway of a Multirepeat Protein via Tryptophan Scanning. J Biol Chem 2006; 281:24345-50. [PMID: 16803880 DOI: 10.1074/jbc.m602966200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a degenerate 34-amino acid repeating motif that forms a repeating helix-turn-helix structure and is a well characterized mediator of protein-protein interactions. Recently, a biophysical investigation on one naturally occurring TPR protein, Tom70, found that the mitochondrial receptor displayed an unusual three-state unfolding pathway, distinct from the two-state model usually displayed by TPR proteins. To investigate this unusual behavior, we undertook a tryptophan-scanning analysis of Tom70, where both native and engineered tryptophan residues are used as fluorescent reporters to monitor the range of local and global unfolding events that comprise the unfolding pathway of Tom70. Specifically, seven Tom70 variants were constructed, each with a single tryptophan residue in each of the seven TPR repeats of Tom70. By combining equilibrium and kinetic fluorescent unfolding assays, with circular dichroism experiments, our study reveals that the unusual folding pathway of Tom70 is a consequence of the unfolding of two separate, autonomous TPR arrays, with the less stable region appearing to account for the low structural stability of Tom70.
Collapse
Affiliation(s)
- Simon R Bushell
- Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
19
|
Li W, Serpell LC, Carter WJ, Rubinsztein DC, Huntington JA. Expression and Characterization of Full-length Human Huntingtin, an Elongated HEAT Repeat Protein. J Biol Chem 2006; 281:15916-22. [PMID: 16595690 DOI: 10.1074/jbc.m511007200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease is an inherited neurodegenerative disorder that is caused by expanded CAG trinucleotide repeats, resulting in a polyglutamine stretch of >37 on the N terminus of the protein huntingtin (htt). htt is a large (347 kDa), ubiquitously expressed protein. The precise functions of htt are not clear, but its importance is underscored by the embryonic lethal phenotype in htt knock-out mice. Despite the fact that the htt gene was cloned 13 years ago, little is known about the properties of the full-length protein. Here we report the expression and preliminary characterization of recombinant full-length wild-type human htt. Our results support a model of htt composed entirely of HEAT repeats that stack to form an elongated superhelix.
Collapse
Affiliation(s)
- Wei Li
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Chan NC, Likić VA, Waller RF, Mulhern TD, Lithgow T. The C-terminal TPR Domain of Tom70 Defines a Family of Mitochondrial Protein Import Receptors Found only in Animals and Fungi. J Mol Biol 2006; 358:1010-22. [PMID: 16566938 DOI: 10.1016/j.jmb.2006.02.062] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/21/2006] [Accepted: 02/23/2006] [Indexed: 11/15/2022]
Abstract
In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.
Collapse
Affiliation(s)
- Nickie C Chan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
21
|
de Marcos-Lousa C, Sideris DP, Tokatlidis K. Translocation of mitochondrial inner-membrane proteins: conformation matters. Trends Biochem Sci 2006; 31:259-67. [PMID: 16616497 DOI: 10.1016/j.tibs.2006.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/15/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Most of the mitochondrial inner-membrane proteins are generated without a presequence and their targeting depends on inadequately defined internal segments. Despite the numerous components of the import machinery identified by proteomics, the properties of hydrophobic import substrates remain poorly understood. Recent studies support several principles for these membrane proteins: first, they become organized into partially assembled forms within the translocon; second, they present noncontiguous targeting signals; and third, they induce conformational changes in translocase subunits, thereby mediating "assembly on demand" of the import machinery. It is possible that the energy needed for these proteins to pass across the outer membrane, to travel through the intermembrane space and to target the inner-membrane surface is provided by conformational changes involving import components that seem to have natively unfolded structures. Such structural malleability might render some of the translocase subunits more adept at driving the protein import process.
Collapse
Affiliation(s)
- Carine de Marcos-Lousa
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB-FORTH), PO Box 1385, Heraklion 71110, Crete, Greece
| | | | | |
Collapse
|
22
|
Hata S, Koyama S, Kawahara H, Doi N, Maeda T, Toyama-Sorimachi N, Abe K, Suzuki K, Sorimachi H. Stomach-specific calpain, nCL-2, localizes in mucus cells and proteolyzes the beta-subunit of coatomer complex, beta-COP. J Biol Chem 2006; 281:11214-24. [PMID: 16476741 DOI: 10.1074/jbc.m509244200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calpain is a Ca2+-regulated cytosolic protease. Mammals have 14 calpain genes, half of which are predominantly expressed in specific organ(s); the rest are expressed ubiquitously. A defect in calpains causes lethality/pathogenicity, indicating their physiological indispensability. nCL-2/calpain-8a was identified as a stomach-specific calpain, whose physiological functions are unclear. To elucidate these, we characterized nCL-2 in detail. Unexpectedly, nCL-2 was localized strictly to the surface mucus cells in the gastric epithelium and the mucus-secreting goblet cells in the duodenum. Yeast two-hybrid screening identified several nCL-2-interacting molecules. Of these, the beta-subunit of coatomer complex (beta-COP) occurs in the stomach pit cells and is proteolyzed by nCL-2 in vitro. Furthermore, beta-COP and nCL-2 co-expressed in COS7 cells co-localized in the Golgi, and Ca2+-ionophore stimulation caused the proteolysis of beta-COP near the linker region, resulting in the dissociation of beta-COP from the Golgi. These results strongly suggest novel functions for nCL-2 that involve the membrane trafficking of mucus cells via interactions with coat protein.
Collapse
Affiliation(s)
- Shoji Hata
- Department of Enzymatic Regulation for Cell Functions, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|