1
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Garneau AP, Slimani S, Haydock L, Nsimba-Batomene TR, Préfontaine FCM, Lavoie MM, Tremblay LE, Fiola MJ, Mac-Way F, Isenring P. Molecular mechanisms, physiological roles, and therapeutic implications of ion fluxes in bone cells: Emphasis on the cation-Cl - cotransporters. J Cell Physiol 2022; 237:4356-4368. [PMID: 36125923 PMCID: PMC10087713 DOI: 10.1002/jcp.30879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Bone turnover diseases are exceptionally prevalent in human and come with a high burden on physical health. While these diseases are associated with a variety of risk factors and causes, they are all characterized by common denominators, that is, abnormalities in the function or number of osteoblasts, osteoclasts, and/or osteocytes. As such, much effort has been deployed in the recent years to understand the signaling mechanisms of bone cell proliferation and differentiation with the objectives of exploiting the intermediates involved as therapeutic preys. Ion transport systems at the external and in the intracellular membranes of osteoblasts and osteoclasts also play an important role in bone turnover by coordinating the movement of Ca2+ , PO4 2- , and H+ ions in and out of the osseous matrix. Even if they sustain the terminal steps of osteoformation and osteoresorption, they have been the object of very little attention in the last several years. Members of the cation-Cl- cotransporter (CCC) family are among the systems at work as they are expressed in bone cells, are known to affect the activity of Ca2+ -, PO4 2- -, and H+ -dependent transport systems and have been linked to bone mass density variation in human. In this review, the roles played by the CCCs in bone remodeling will be discussed in light of recent developments and their potential relevance in the treatment of skeletal disorders.
Collapse
Affiliation(s)
- Alexandre P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada.,Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, Inserm U1151, Université Paris Cité, rue de Sèvres, Paris, France
| | - Samira Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Ludwig Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | | | | | - Mathilde M Lavoie
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Laurence E Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Marie-Jeanne Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Fabrice Mac-Way
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Paul Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| |
Collapse
|
3
|
Zhu S, Yan X, Shen C, Wu L, Tang D, Wang Y, Wang Z. Transcriptome analysis of the gills of Eriocheir sinensis provide novel insights into the molecular mechanisms of the pH stress response. Gene 2022; 833:146588. [PMID: 35598683 DOI: 10.1016/j.gene.2022.146588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Eriocheir sinensis is an important economic species in China, which is easily affected by pH changes. However, the molecular mechanism of the pH stress response in E. sinensis is still unclear. Therefore, this study aimed to examine the molecular response mechanism of E. sinensis based on pH variation surveillance, histopathological evaluation and transcriptomic analyses. Firstly, pH variation surveillance showed that E. sinensis could actively regulate the pH of its environment. Meanwhile, the histopathological evaluation suggested that pH stress seriously damaged the gills, especially at high pH. Finally, transcriptome analysis showed that the expression of genes related to ion transport, immune stress, and energy metabolism significantly changed. Many genes played an important role in the pH response of E. sinensis, such as carbonic anhydrase (CA), mitochondrial proton/calcium exchanger protein (LETM1), recombinant sodium/hydrogen exchanger 3 (SLC9A3/NHE3), heat shock protein 90 alpha family class a member (HSP90A), alkylglycerone phosphate synthase (AGPS), succinate-CoA ligase ADP-forming subunit beta (LSC2), and superoxide dismutase (SOD). Our study revealed the molecular response mechanism of E. sinensis in response to pH stress, thus providing a basis for further research on the molecular mechanism of response to pH stress in aquatic animals.
Collapse
Affiliation(s)
- Shang Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xinyao Yan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Chenchen Shen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Lv Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Dan Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu Province, China
| | - Yue Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| |
Collapse
|
4
|
Garneau AP, Slimani S, Fiola MJ, Tremblay LE, Isenring P. Multiple Facets and Roles of Na+-K+-Cl−Cotransport: Mechanisms and Therapeutic Implications. Physiology (Bethesda) 2020; 35:415-429. [DOI: 10.1152/physiol.00012.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Na+-K+-Cl−cotransporters play key physiological and pathophysiological roles by regulating the membrane potential of many cell types and the movement of fluid across a variety of epithelial or endothelial structures. As such, they should soon become invaluable targets for the treatment of various disorders including pain, epilepsy, brain edema, and hypertension. This review highlights the nature of these roles, the mechanisms at play, and the unresolved issues in the field.
Collapse
Affiliation(s)
- A. P. Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, Canada
| | - S. Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - M. J. Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - L. E. Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - P. Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| |
Collapse
|
5
|
Guerra B, Fischer M, Schaefer S, Issinger OG. The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:125. [PMID: 26480820 PMCID: PMC4612421 DOI: 10.1186/s13046-015-0234-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023]
Abstract
Background Multi-drug resistance and predisposition to metastasize are major clinical problems in cancer treatment. Malignant primary brain tumor and pancreatic cancer are two well-known examples of malignant tumors resistant to conventional therapies where aberrant EGFR-mediated and NF-κB signal transduction pathways are likely to play an important role. We have recently identified 1,3-Dichloro-6-[(E)-((4-methoxyphenyl)imino)methyl] diben-zo(b,d) furan-2,7-diol (D11) as a potent and selective inhibitor of CK2 a serine/threonine protein kinase that modulates the aforementioned signaling cascades. Methods Human cancer cell lines (glioblastoma and pancreatic adenocarcinoma) resistant to conventional chemotherapeutic agents were incubated with increasing concentrations of D11 for variable amounts of time. Cell viability, cell death and effects on major signal transduction pathways deregulated in cancer cells were analyzed by ELISA, FACS and Western blot-based assays, respectively. Moreover, effects on cell migration and in cell protein-protein association were investigated by wound-healing and in situ proximity ligation assays, respectively. Results We show here, that D11 treatment leads to i) significant caspase-mediated apoptotic cell death, ii) down-regulation of EGFR expression and iii) inhibition of NF-κB transcriptional activity. Furthermore, cell exposure to D11 results in impaired cell migration and correlates with reduced expression of the ion co-transporter and cell volume regulator Na+-K+-2Cl− (NKCC1). Conclusions Data reported here underline the therapeutic potential of D11 with respect to certain types of cancer that carry aberrant intracellular signaling cascades and/or exhibit sustained cell migration and suggest a new therapeutic strategy against chemotherapy resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0234-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Mette Fischer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Schaefer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
6
|
Ding B, Frisina RD, Zhu X, Sakai Y, Sokolowski B, Walton JP. Direct control of Na(+)-K(+)-2Cl(-)-cotransport protein (NKCC1) expression with aldosterone. Am J Physiol Cell Physiol 2013; 306:C66-75. [PMID: 24173102 DOI: 10.1152/ajpcell.00096.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sodium/potassium/chloride cotransporter (NKCC1) proteins play important roles in Na(+) and K(+) concentrations in key physiological systems, including cardiac, vascular, renal, nervous, and sensory systems. NKCC1 levels and functionality are altered in certain disease states, and tend to decline with age. A sensitive, effective way of regulating NKCC1 protein expression has significant biotherapeutic possibilities. The purpose of the present investigation was to determine if the naturally occurring hormone aldosterone (ALD) could regulate NKCC1 protein expression. Application of ALD to a human cell line (HT-29) revealed that ALD can regulate NKCC1 protein expression, quite sensitively and rapidly, independent of mRNA expression changes. Utilization of a specific inhibitor of mineralocorticoid receptors, eplerenone, implicated these receptors as part of the ALD mechanism of action. Further experiments with cycloheximide (protein synthesis inhibitor) and MG132 (proteasome inhibitor) revealed that ALD can upregulate NKCC1 by increasing protein stability, i.e., reducing ubiquitination of NKCC1. Having a procedure for controlling NKCC1 protein expression opens the doors for therapeutic interventions for diseases involving the mis-regulation or depletion of NKCC1 proteins, for example during aging.
Collapse
Affiliation(s)
- Bo Ding
- Department of Communication Sciences and Disorders, Global Center for Hearing and Speech Research, University of South Florida, Tampa, Florida
| | | | | | | | | | | |
Collapse
|
7
|
Smith L, Litman P, Liedtke CM. COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination. Am J Physiol Cell Physiol 2013; 305:C133-46. [PMID: 23515529 DOI: 10.1152/ajpcell.00394.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mice deficient in Na-K-2Cl cotransporter (NKCC1) have been generated by targeted disruption of the gene encoding NKCC1 involving the carboxy terminus (CT-NKCC1) but not the amino terminus. We hypothesize that the resulting physiological defects are due to loss of proteins interacting with CT-NKCC1. Using a yeast two-hybrid approach, adaptor protein COMMD1 was found to bind to CT-NKCC1 (aa 1,040-1,212). Binding was verified in a yeast-independent system using GST-COMMD1 and myc-CT-NKCC1. Truncated COMMD1 and CT-NKCC1 peptides were used in binding assays to identify the site of interaction. The results demonstrate concentration-dependent binding of COMMD1 (aa 1-47) to CT-NKCC1 (aa 1,040-1,134). Endogenous COMMD1 was detected in pull downs using recombinant FLAG-CT-NKCC1; this co-pull down was blocked by COMMD1 (aa 1-47). CT-NKCC1 (aa 1,040-1,137) decreased basolateral membrane expression of NKCC1, and COMMD1 (aa 1-47) increased NKCC1 membrane expression. Downregulation of COMMD1 using silencing (si)RNA led to a transient loss of endogenous COMMD1 but did not affect activation of NKCC1 by hyperosmotic sucrose. Hyperosmolarity caused a transient increase in NKCC1 membrane expression, indicating regulated trafficking of NKCC1; downregulation of COMMD1 using siRNA reduced baseline (unstimulated) NKCC1 expression and blunted a transient elevation in NKCC1 membrane expression caused by hyperosmolarity. Constitutive downregulation of COMMD1 in HT29 engineered cells exhibited loss of COMMD1 and decreased NKCC1 membrane expression with no effect on activation of NKCC1. Loss of COMMD1 in Calu-3 cells and in HT29 cells led to reduced ubiquitinated NKCC1. The results indicate a role for COMMD1 in the regulation of NKCC1 membrane expression and ubiquitination.
Collapse
Affiliation(s)
- Laura Smith
- Willard Alan Bernbaum, Center for Cystic Fibrosis Research, Departments of Pediatrics at Rainbow Babies and Children Hospital and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
8
|
Hartmann AM, Blaesse P, Kranz T, Wenz M, Schindler J, Kaila K, Friauf E, Nothwang HG. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. J Neurochem 2009; 111:321-31. [PMID: 19686239 DOI: 10.1111/j.1471-4159.2009.06343.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the majority of neurons, the intracellular Cl(-) concentration is set by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the K(+)-Cl(-) cotransporter (KCC2). Here, we investigated the cotransporters' functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co-distributed with the membrane raft marker flotillin-1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co-distributed with the non-raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl-beta-cyclodextrin (MbetaCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney-293 cells, KCC2 was strongly activated by a combined treatment with MbetaCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MbetaCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co-ordinated regulation of chloride transporter function.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wertheimer EV, Salicioni AM, Liu W, Trevino CL, Chavez J, Hernández-González EO, Darszon A, Visconti PE. Chloride Is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation. J Biol Chem 2008; 283:35539-50. [PMID: 18957426 PMCID: PMC2602906 DOI: 10.1074/jbc.m804586200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/19/2008] [Indexed: 01/03/2023] Open
Abstract
After epididymal maturation, sperm capacitation, which encompasses a complex series of molecular events, endows the sperm with the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of the oviductal fluid. It is well established that capacitation requires Na(+), HCO(3)(-), Ca(2+), and a cholesterol acceptor; however, little is known about the function of Cl(-) during this important process. To determine whether Cl(-), in addition to maintaining osmolarity, actively participates in signaling pathways that regulate capacitation, Cl(-) was replaced by either methanesulfonate or gluconate two nonpermeable anions. The absence of Cl(-) did not affect sperm viability, but capacitation-associated processes such as the increase in tyrosine phosphorylation, the increase in cAMP levels, hyperactivation, the zona pellucidae-induced acrosome reaction, and most importantly, fertilization were abolished or significantly reduced. Interestingly, the addition of cyclic AMP agonists to sperm incubated in Cl(-)-free medium rescued the increase in tyrosine phosphorylation and hyperactivation suggesting that Cl(-) acts upstream of the cAMP/protein kinase A signaling pathway. To investigate Cl(-) transport, sperm incubated in complete capacitation medium were exposed to a battery of anion transport inhibitors. Among them, bumetanide and furosemide, two blockers of Na(+)/K(+)/Cl(-) cotransporters (NKCC), inhibited all capacitation-associated events, suggesting that these transporters may mediate Cl(-) movements in sperm. Consistent with these results, Western blots using anti-NKCC1 antibodies showed the presence of this cotransporter in mature sperm.
Collapse
Affiliation(s)
- Eva V Wertheimer
- Department of Veterinary and Animal Science, Paige Laboratories, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Benziane B, Demaretz S, Defontaine N, Zaarour N, Cheval L, Bourgeois S, Klein C, Froissart M, Blanchard A, Paillard M, Gamba G, Houillier P, Laghmani K. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282:33817-33830. [PMID: 17848580 DOI: 10.1074/jbc.m700195200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apical bumetanide-sensitive Na(+)-K(+)-2Cl(-) co-transporter, termed NKCC2, is the major salt transport pathway in kidney thick ascending limb. NKCC2 surface expression is subject to regulation by intracellular protein trafficking. However, the protein partners involved in the intracellular trafficking of NKCC2 remain unknown. Moreover, studies aimed at under-standing the post-translational regulation of NKCC2 have been hampered by the difficulty to express NKCC2 protein in mammalian cells. Here we were able to express NKCC2 protein in renal epithelial cells by tagging its N-terminal domain. To gain insights into the regulation of NKCC2 trafficking, we screened for interaction partners of NKCC2 with the yeast two-hybrid system, using the C-terminal tail of NKCC2 as bait. Aldolase B was identified as a dominant and novel interacting protein. Real time PCR on renal microdissected tubules demonstrated the expression of aldolase B in the thick ascending limb. Co-immunoprecipitation and co-immunolocalization experiments confirmed NKCC2-aldolase interaction in renal cells. Biotinylation assays showed that aldolase co-expression reduces NKCC2 surface expression. In the presence of aldolase substrate, fructose 1,6-bisphosphate, aldolase binding was disrupted, and aldolase co-expression had no further effect on the cell surface level of NKCC2. Finally, functional studies demonstrated that aldolase-induced down-regulation of NKCC2 at the plasma membrane was associated with a decrease in its transport activity. In summary, we identified aldolase B as a novel NKCC2 binding partner that plays a key role in the modulation of NKCC2 surface expression, thereby revealing a new regulatory mechanism governing the co-transporter intracellular trafficking. Furthermore, NKCC2 protein expression in mammalian cells and its regulation by protein-protein interactions, described here, may open new and important avenues in studying the cell biology and post-transcriptional regulation of the co-transporter.
Collapse
Affiliation(s)
- Boubacar Benziane
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Sylvie Demaretz
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Nadia Defontaine
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Nancy Zaarour
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Lydie Cheval
- IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France; CNRS-UPMC UMR7134, 75006 Paris, France
| | - Soline Bourgeois
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Christophe Klein
- IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France
| | - Marc Froissart
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France; AP-HP, Departement de Physiologie, Hopital Europeen Georges Pompidou, 75015 Paris, France
| | - Anne Blanchard
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France; AP-HP, Departement de Physiologie, Hopital Europeen Georges Pompidou, 75015 Paris, France
| | - Michel Paillard
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France; AP-HP, Departement de Physiologie, Hopital Europeen Georges Pompidou, 75015 Paris, France
| | - Gerardo Gamba
- Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran and Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Tlalpan, Mexico City 14000, Mexico
| | - Pascal Houillier
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France; AP-HP, Departement de Physiologie, Hopital Europeen Georges Pompidou, 75015 Paris, France
| | - Kamel Laghmani
- INSERM U652, 75006 Paris, France; IFR58, Institut des Cordeliers, 75006 Paris, France, Universite Paris-Descartes, 75006 Paris, France.
| |
Collapse
|
11
|
Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A, Fritsch J. Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 2006; 290:C45-56. [PMID: 16049054 DOI: 10.1152/ajpcell.00209.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The voltage-dependent ClC-2 chloride channel has been implicated in a variety of physiological functions, including fluid transport across specific epithelia. ClC-2 is activated by hyperpolarization, weakly acidic external pH, intracellular Cl−, and cell swelling. To add more insight into the mechanisms involved in ClC-2 regulation, we searched for associated proteins that may influence ClC-2 activity. With the use of immunoprecipitation of ClC-2 from human embryonic kidney-293 cells stably expressing the channel, followed by electrophoretic separation of coimmunoprecipitated proteins and mass spectrometry identification, Hsp70 and Hsp90 were unmasked as possible ClC-2 interacting partners. Association of Hsp90 with ClC-2 was confirmed in mouse brain. Inhibition of Hsp90 by two specific inhibitors, geldanamycin or radicicol, did not affect total amounts of ClC-2 but did reduce plasma membrane channel abundance. Functional experiments using the whole cell configuration of the patch-clamp technique showed that inhibition of Hsp90 reduced ClC-2 current amplitude and impaired the intracellular Cl− concentration [Cl−]-dependent rightward shift of the fractional conductance. Geldanamycin and radicicol increased both the slow and fast activation time constants in a chloride-dependent manner. Heat shock treatment had the opposite effect. These results indicate that association of Hsp90 with ClC-2 results in greater channel activity due to increased cell surface channel expression, facilitation of channel opening, and enhanced channel sensitivity to intracellular [Cl−]. This association may have important pathophysiological consequences, enabling increased ClC-2 activity in response to cellular stresses such as elevated temperature, ischemia, or oxidative reagents.
Collapse
Affiliation(s)
- Alexandre Hinzpeter
- INSERM, Unité 467, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Brunet GM, Gagnon E, Simard CF, Daigle ND, Caron L, Noël M, Lefoll MH, Bergeron MJ, Isenring P. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants. ACTA ACUST UNITED AC 2005; 126:325-37. [PMID: 16157691 PMCID: PMC2266623 DOI: 10.1085/jgp.200509334] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The absorptive Na(+)-K(+)-Cl(-) cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H(2)O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H(2)O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2-NKCC2 interactions.
Collapse
Affiliation(s)
- Geneviève M Brunet
- Department of Medicine, Faculty of Medicine, Nephrology Group, L'Hôtel-Dieu de Research Center, Laval University, Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Del Castillo IC, Fedor-Chaiken M, Song JC, Starlinger V, Yoo J, Matlin KS, Matthews JB. Dynamic regulation of Na(+)-K(+)-2Cl(-) cotransporter surface expression by PKC-{epsilon} in Cl(-)--secretory epithelia. Am J Physiol Cell Physiol 2005; 289:C1332-42. [PMID: 16000638 DOI: 10.1152/ajpcell.00580.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In secretory epithelia, activation of PKC by phorbol ester and carbachol negatively regulates Cl(-) secretion, the transport event of secretory diarrhea. Previous studies have implicated the basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) as a target of PKC-dependent inhibition of Cl(-) secretion. In the present study, we examined the regulation of surface expression of NKCC1 in response to the activation of PKC. Treatment of confluent T84 intestinal epithelial cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (PMA) reduced the amount of NKCC1 accessible to basolateral surface biotinylation. Loss of cell surface NKCC1 was due to internalization as shown by 1) the resistance of biotinylated NKCC1 to surface biotin stripping after incubation with PMA and 2) indirect immunofluorescent labeling. PMA-induced internalization of NKCC1 is dependent on the epsilon-isoform of PKC as determined on the basis of sensitivity to a panel of PKC inhibitors. The effect of PMA on surface expression of NKCC1 was specific because PMA did not significantly alter the amount of Na(+)-K(+)-ATPase or E-cadherin available for surface biotinylation. After extended PMA exposure (>2 h), NKCC1 became degraded in a proteasome-dependent fashion. Like PMA, carbachol reduced the amount of NKCC1 accessible to basolateral surface biotinylation in a PKC-epsilon-dependent manner. However, long-term exposure to carbachol did not result in degradation of NKCC1; rather, NKCC1 that was internalized after exposure to carbachol was recycled back to the cell membrane. PKC-epsilon-dependent alteration of NKCC1 surface expression represents a novel mechanism for regulating Cl(-) secretion.
Collapse
Affiliation(s)
- Isabel Calvo Del Castillo
- Dept. of Surgery, Univ. of Cincinnati Medical Center, 231 Albert B. Sabin Way, PO Box 670558, Cincinnati, OH 45267-0558, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease. Cerebrospinal Fluid Res 2004; 1:3. [PMID: 15679944 PMCID: PMC546405 DOI: 10.1186/1743-8454-1-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 12/10/2004] [Indexed: 11/10/2022] Open
Abstract
As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.
Collapse
Affiliation(s)
- Conrad Johanson
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Paul McMillan
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| | - Rosemarie Tavares
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| | - Anthony Spangenberger
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - John Duncan
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Gerald Silverberg
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
| | - Edward Stopa
- Department of Clinical Neurosciences, Brown Medical School, Providence, RI 02903, USA
- Department of Pathology, Brown Medical School, Providence, RI 02903,USA
| |
Collapse
|