1
|
Fittolani G, Kutateladze DA, Loas A, Buchwald SL, Pentelute BL. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. J Am Chem Soc 2025; 147:4188-4197. [PMID: 39840443 PMCID: PMC11912879 DOI: 10.1021/jacs.4c13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent Bacillus subtilis myoglobin (BsMb) and sperm whale myoglobin (SwMb). The synthetic enzymes displayed excellent enantioselectivity and yield in carbene transfer reactions. Absolute control over enantioselectivity in styrene cyclopropanation was achieved using synthetic L- and D-BsMb mutants, which delivered each enantiomer of cyclopropane product in identical and opposite enantiomeric enrichment. BsMb mutants outfitted with noncanonical amino acids were used to facilitate detailed structure-activity relationship studies, revealing a previously unrecognized hydrogen-bonding interaction as the primary driver of enantioselectivity in styrene cyclopropanation. We anticipate that our approach will advance biocatalysis by providing reliable and rapid access to fully synthetic enzymes possessing noncanonical amino acids.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
de Armiño DJA, Di Lella S, Montepietra D, Delcanale P, Bruno S, Giordano D, Verde C, Estrin DA, Viappiani C, Abbruzzetti S. Kinetic and dynamical properties of truncated hemoglobins of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Protein Sci 2024; 33:e5064. [PMID: 38864722 PMCID: PMC11168075 DOI: 10.1002/pro.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.
Collapse
Affiliation(s)
- Diego Javier Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Santiago Di Lella
- Departamento de Química Biológica and IQUIBICEN‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Daniele Montepietra
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
- Nanoscience Institute—CNR‐NANOModenaItaly
| | - Pietro Delcanale
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefano Bruno
- Department of Food and Drug SciencesUniversity of ParmaParmaItaly
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNRNaplesItaly
- Department of Ecosustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| | - Dario A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE‐CONICET, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer SciencesUniversity of ParmaParmaItaly
| |
Collapse
|
3
|
Imai T, Tobe R, Honda K, Tanaka M, Kawamoto J, Mihara H. Group II truncated haemoglobin YjbI prevents reactive oxygen species-induced protein aggregation in Bacillus subtilis. eLife 2022; 11:70467. [PMID: 36125244 PMCID: PMC9536834 DOI: 10.7554/elife.70467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress-mediated formation of protein hydroperoxides can induce irreversible fragmentation of the peptide backbone and accumulation of cross-linked protein aggregates, leading to cellular toxicity, dysfunction, and death. However, how bacteria protect themselves from damages caused by protein hydroperoxidation is unknown. Here, we show that YjbI, a group II truncated haemoglobin from Bacillus subtilis, prevents oxidative aggregation of cell-surface proteins by its protein hydroperoxide peroxidase-like activity, which removes hydroperoxide groups from oxidised proteins. Disruption of the yjbI gene in B. subtilis lowered biofilm water repellence, which associated with the cross-linked aggregation of the biofilm matrix protein TasA. YjbI was localised to the cell surface or the biofilm matrix, and the sensitivity of planktonically grown cells to generators of reactive oxygen species was significantly increased upon yjbI disruption, suggesting that YjbI pleiotropically protects labile cell-surface proteins from oxidative damage. YjbI removed hydroperoxide residues from the model oxidised protein substrate bovine serum albumin and biofilm component TasA, preventing oxidative aggregation in vitro. Furthermore, the replacement of Tyr63 near the haem of YjbI with phenylalanine resulted in the loss of its protein peroxidase-like activity, and the mutant gene failed to rescue biofilm water repellency and resistance to oxidative stress induced by hypochlorous acid in the yjbI-deficient strain. These findings provide new insights into the role of truncated haemoglobin and the importance of hydroperoxide removal from proteins in the survival of aerobic bacteria.
Collapse
Affiliation(s)
- Takeshi Imai
- Hyogo Prefectural Institute of Technology, Hyogo, Japan
| | - Ryuta Tobe
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan
| | - Koji Honda
- Hyogo Prefectural Institute of Technology, Hyogo, Japan
| | - Mai Tanaka
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
4
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
5
|
Nardini M, Pesce A, Bolognesi M. Truncated (2/2) hemoglobin: Unconventional structures and functional roles in vivo and in human pathogenesis. Mol Aspects Med 2021; 84:101049. [PMID: 34776271 DOI: 10.1016/j.mam.2021.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Truncated hemoglobins (trHbs) build a sub-class of the globin family, found in eubacteria, cyanobacteria, unicellular eukaryotes, and in higher plants; among these, selected human pathogens are found. The trHb fold is based on a 2/2 α-helical sandwich, consisting of a simplified and reduced-size version of the classical 3/3 α-helical sandwich of vertebrate and invertebrate globins. Phylogenetic analysis indicates that trHbs further branch into three groups: group I (or trHbN), group II (or trHbO), and group III (or trHbP), each group being characterized by specific structural features. Among these, a protein matrix tunnel, or a cavity system implicated in diatomic ligand diffusion through the protein matrix, is typical of group I and group II, respectively. In general, a highly intertwined network of hydrogen bonds stabilizes the heme bound ligand, despite variability of the heme distal residues in the different trHb groups. Notably, some organisms display genes from more than one trHb group, suggesting that trHbN, trHbO, and trHbP may support different functions in vivo, such as detoxification of reactive nitrogen and oxygen species, respiration, oxygen storage/sensoring, thus aiding survival of an invading microorganism. Here, structural features and proposed functions of trHbs from human pathogens are reviewed.
Collapse
Affiliation(s)
- Marco Nardini
- Department of Biosciences, University of Milano, Milano, Italy
| | | | | |
Collapse
|
6
|
Yang Y, Arnold FH. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Acc Chem Res 2021; 54:1209-1225. [PMID: 33491448 PMCID: PMC7931446 DOI: 10.1021/acs.accounts.0c00591] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Despite the astonishing diversity of naturally
occurring biocatalytic
processes, enzymes do not catalyze many of the transformations favored
by synthetic chemists. Either nature does not care about the specific
products, or if she does, she has adopted a different synthetic strategy.
In many cases, the appropriate reagents used by synthetic chemists
are not readily accessible to biological systems. Here, we discuss
our efforts to expand the catalytic repertoire of enzymes to encompass
powerful reactions previously known only in small-molecule catalysis:
formation and transfer of reactive carbene and nitrene intermediates
leading to a broad range of products, including products with bonds
not known in biology. In light of the structural similarity of iron
carbene (Fe=C(R1)(R2)) and iron nitrene
(Fe=NR) to the iron oxo (Fe=O) intermediate involved
in cytochrome P450-catalyzed oxidation, we have used synthetic carbene
and nitrene precursors that biological systems have not encountered
and repurposed P450s to catalyze reactions that are not known in the
natural world. The resulting protein catalysts are fully genetically
encoded and function in intact microbial cells or cell-free lysates,
where their performance can be improved and optimized by directed
evolution. By leveraging the catalytic promiscuity of P450 enzymes,
we evolved a range of carbene and nitrene transferases exhibiting
excellent activity toward these new-to-nature reactions. Since our
initial report in 2012, a number of other heme proteins including
myoglobins, protoglobins, and cytochromes c have
also been found and engineered to promote unnatural carbene and nitrene
transfer. Due to the altered active-site environments, these heme
proteins often displayed complementary activities and selectivities
to P450s. Using wild-type and engineered heme proteins, we and
others have
described a range of selective carbene transfer reactions, including
cyclopropanation, cyclopropenation, Si–H insertion, B–H
insertion, and C–H insertion. Similarly, a variety of asymmetric
nitrene transfer processes including aziridination, sulfide imidation,
C–H amidation, and, most recently, C–H amination have
been demonstrated. The scopes of these biocatalytic carbene and nitrene
transfer reactions are often complementary to the state-of-the-art
processes based on small-molecule transition-metal catalysts, making
engineered biocatalysts a valuable addition to the synthetic chemist’s
toolbox. Moreover, enabled by the exquisite regio- and stereocontrol
imposed by the enzyme catalyst, this biocatalytic platform provides
an exciting opportunity to address challenging problems in modern
synthetic chemistry and selective catalysis, including ones that have
eluded synthetic chemists for decades.
Collapse
Affiliation(s)
- Yang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 210-41, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
8
|
Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 2018; 73:39-51. [DOI: 10.1016/j.niox.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
9
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
10
|
Hernandez KE, Renata H, Lewis RD, Kan SBJ, Zhang C, Forte J, Rozzell D, McIntosh JA, Arnold FH. Highly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor. ACS Catal 2016; 6:7810-7813. [PMID: 28286694 DOI: 10.1021/acscatal.6b02550] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extending the scope of biocatalysis to important non-natural reactions such as olefin cyclopropanation will open new opportunities for replacing multi-step chemical syntheses of pharmaceutical intermediates with efficient, clean, and highly selective enzyme-catalyzed processes. In this work, we engineered the truncated globin of Bacillus subtilis for the synthesis of a cyclopropane precursor to the antithrombotic agent ticagrelor. The engineered enzyme catalyzes the cyclopropanation of 3,4-difluorostyrene with ethyl diazoacetate on a preparative scale to give ethyl-(1R, 2R)-2-(3,4-difluorophenyl)-cyclopropanecarboxylate in 79% yield, with very high diastereoselectivity (>99% dr) and enantioselectivity (98% ee), enabling a single-step biocatalytic route to this pharmaceutical intermediate.
Collapse
Affiliation(s)
| | | | | | | | - Chen Zhang
- Provivi, Inc., Santa Monica, California 90404, United States
| | - Jared Forte
- Provivi, Inc., Santa Monica, California 90404, United States
| | - David Rozzell
- Provivi, Inc., Santa Monica, California 90404, United States
| | | | | |
Collapse
|
11
|
Bustamante JP, Szretter ME, Sued M, Martí MA, Estrin DA, Boechi L. A quantitative model for oxygen uptake and release in a family of hemeproteins. Bioinformatics 2016; 32:1805-13. [PMID: 27153569 DOI: 10.1093/bioinformatics/btw083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/30/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. RESULTS We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. CONTACT lboechi@ic.fcen.uba.ar SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Juan P Bustamante
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - María E Szretter
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires Departamento De Matemática, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Mariela Sued
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Marcelo A Martí
- Departamento De Química Biológica E Instituto De Química Biológica De La Facultad De Ciencias Exactas Y Naturales (IQUIBICEN), Universidad De Buenos Aires, Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica Y Química Física, INQUIMAE-CONICET, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| | - Leonardo Boechi
- Instituto De Cálculo, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires
| |
Collapse
|
12
|
Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, di Prisco G, Nardini M, Estrin D, Smulevich G, Bolognesi M, Verde C. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 2015; 282:2948-65. [PMID: 26040838 DOI: 10.1111/febs.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | | | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Elena Caldelli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Barry D Howes
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Italy.,CNR-Institute of Biophysics and CIMAINA, University of Milano, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy.,Department of Biology, Roma 3 University, Italy
| |
Collapse
|
13
|
Rice SL, Boucher LE, Schlessman JL, Preimesberger MR, Bosch J, Lecomte JTJ. Structure of Chlamydomonas reinhardtii THB1, a group 1 truncated hemoglobin with a rare histidine-lysine heme ligation. Acta Crystallogr F Struct Biol Commun 2015; 71:718-25. [PMID: 26057801 PMCID: PMC4461336 DOI: 10.1107/s2053230x15006949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 04/05/2023] Open
Abstract
THB1 is one of several group 1 truncated hemoglobins (TrHb1s) encoded in the genome of the unicellular green alga Chlamydomonas reinhardtii. THB1 expression is under the control of NIT2, the master regulator of nitrate assimilation, which also controls the expression of the only nitrate reductase in the cell, NIT1. In vitro and physiological evidence suggests that THB1 converts the nitric oxide generated by NIT1 into nitrate. To aid in the elucidation of the function and mechanism of THB1, the structure of the protein was solved in the ferric state. THB1 resembles other TrHb1s, but also exhibits distinct features associated with the coordination of the heme iron by a histidine (proximal) and a lysine (distal). The new structure illustrates the versatility of the TrHb1 fold, suggests factors that stabilize the axial ligation of a lysine, and highlights the difficulty of predicting the identity of the distal ligand, if any, in this group of proteins.
Collapse
Affiliation(s)
- Selena L. Rice
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Lauren E. Boucher
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jamie L. Schlessman
- Chemistry Department, US Naval Academy, 572 Holloway Road, Annapolis, MD 21402, USA
| | - Matthew R. Preimesberger
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Peroxidase activity and involvement in the oxidative stress response of roseobacter denitrificans truncated hemoglobin. PLoS One 2015; 10:e0117768. [PMID: 25658318 PMCID: PMC4319818 DOI: 10.1371/journal.pone.0117768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.
Collapse
|
15
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
16
|
Fapyane D, Kartashov A, von Wachenfeldt C, Ferapontova EE. Gated electron transfer reactions of truncated hemoglobin from Bacillus subtilis differently orientated on SAM-modified electrodes. Phys Chem Chem Phys 2015; 17:15365-74. [DOI: 10.1039/c5cp00960j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electron transfer in truncated hemoglobin depends on the SAMs it is attached to demonstrating a new type of electronic responsivity.
Collapse
Affiliation(s)
- Deby Fapyane
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Andrey Kartashov
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
17
|
Kim DY, Hong MJ, Seo YW. Role of wheat trHb in nitric oxide scavenging. Mol Biol Rep 2014; 41:5931-41. [DOI: 10.1007/s11033-014-3468-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/14/2014] [Indexed: 12/21/2022]
|
18
|
Jennaro TS, Beaty MR, Kurt-Yilmaz N, Luskin BL, Cavagnero S. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation. Proteins 2014; 82:2318-31. [DOI: 10.1002/prot.24590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Theodore S. Jennaro
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Matthew R. Beaty
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Neşe Kurt-Yilmaz
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Benjamin L. Luskin
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| | - Silvia Cavagnero
- Department of Chemistry; University of Wisconsin-Madison; Madison Wisconsin 53706
| |
Collapse
|
19
|
Reeder BJ, Hough MA. The structure of a class 3 nonsymbiotic plant haemoglobin from Arabidopsis thaliana reveals a novel N-terminal helical extension. ACTA ACUST UNITED AC 2014; 70:1411-8. [PMID: 24816109 DOI: 10.1107/s1399004714004878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/03/2014] [Indexed: 12/25/2022]
Abstract
Plant nonsymbiotic haemoglobins fall into three classes, each with distinct properties but all with largely unresolved physiological functions. Here, the first crystal structure of a class 3 nonsymbiotic plant haemoglobin, that from Arabidopsis thaliana, is reported to 1.77 Å resolution. The protein forms a homodimer, with each monomer containing a two-over-two α-helical domain similar to that observed in bacterial truncated haemoglobins. A novel N-terminal extension comprising two α-helices plays a major role in the dimer interface, which occupies the periphery of the dimer-dimer face, surrounding an open central cavity. The haem pocket contains a proximal histidine ligand and an open sixth iron-coordination site with potential for a ligand, in this structure hydroxide, to form hydrogen bonds to a tyrosine or a tryptophan residue. The haem pocket appears to be unusually open to the external environment, with another cavity spanning the entrance of the two haem pockets. The final 23 residues of the C-terminal domain are disordered in the structure; however, these domains in the functional dimer are adjacent and include the only two cysteine residues in the protein sequence. It is likely that these residues form disulfide bonds in vitro and it is conceivable that this C-terminal region may act in a putative complex with a partner molecule in vivo.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, England
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, England
| |
Collapse
|
20
|
Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium. J Biochem 2014; 156:97-106. [PMID: 24733432 DOI: 10.1093/jb/mvu023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
Collapse
Affiliation(s)
- Farrukh Jamil
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Ermin Schadich
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Jennifer A Saito
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Nazalan Najimudin
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Maqsudul Alam
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USACentre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
21
|
Molecular basis of thermal stability in truncated (2/2) hemoglobins. Biochim Biophys Acta Gen Subj 2014; 1840:2281-8. [PMID: 24704259 DOI: 10.1016/j.bbagen.2014.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures. METHODS We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position. RESULTS The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible. CONCLUSIONS This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability. GENERAL SIGNIFICANCE These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.
Collapse
|
22
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
23
|
Abstract
Small size globins that have been defined as 'truncated haemoglobins' or as '2/2 haemoglobins' have increasingly been discovered in microorganisms since the early 1990s. Analysis of amino acid sequences allowed to distinguish three groups that collect proteins with specific and common structural properties. All three groups display 3D structures that are based on four main α-helices, which are a subset of the conventional eight-helices globin fold. Specific features, such as the presence of protein matrix tunnels that are held to promote diffusion of functional ligands to/from the haem, distinguish members of the three groups. Haem distal sites vary for their accessibility, local structures, polarity, and ligand stabilization mechanisms, suggesting functional roles that are related to O2/NO chemistry. In a few cases, such activities have been proven in vitro and in vivo through deletion mutants. The issue of 2/2 haemoglobin varied biological functions throughout the three groups remains however fully open.
Collapse
|
24
|
Dumont E, Jokipii-Lukkari S, Parkash V, Vuosku J, Sundström R, Nymalm Y, Sutela S, Taskinen K, Kallio PT, Salminen TA, Häggman H. Evolution, three-dimensional model and localization of truncated hemoglobin PttTrHb of hybrid aspen. PLoS One 2014; 9:e88573. [PMID: 24520401 PMCID: PMC3919811 DOI: 10.1371/journal.pone.0088573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Thus far, research on plant hemoglobins (Hbs) has mainly concentrated on symbiotic and non-symbiotic Hbs, and information on truncated Hbs (TrHbs) is scarce. The aim of this study was to examine the origin, structure and localization of the truncated Hb (PttTrHb) of hybrid aspen (Populus tremula L. × tremuloides Michx.), the model system of tree biology. Additionally, we studied the PttTrHb expression in relation to non-symbiotic class1 Hb gene (PttHb1) using RNAi-silenced hybrid aspen lines. Both the phylogenetic analysis and the three-dimensional (3D) model of PttTrHb supported the view that plant TrHbs evolved vertically from a bacterial TrHb. The 3D model suggested that PttTrHb adopts a 2-on-2 sandwich of α-helices and has a Bacillus subtilis -like ligand-binding pocket in which E11Gln and B10Tyr form hydrogen bonds to a ligand. However, due to differences in tunnel cavity and gate residue (E7Ala), it might not show similar ligand-binding kinetics as in Bs-HbO (E7Thr). The immunolocalization showed that PttTrHb protein was present in roots, stems as well as leaves of in vitro -grown hybrid aspens. In mature organs, PttTrHb was predominantly found in the vascular bundles and specifically at the site of lateral root formation, overlapping consistently with areas of nitric oxide (NO) production in plants. Furthermore, the NO donor sodium nitroprusside treatment increased the amount of PttTrHb in stems. The observed PttTrHb localization suggests that PttTrHb plays a role in the NO metabolism.
Collapse
Affiliation(s)
- Estelle Dumont
- Department of Biology, University of Oulu, Oulu, Finland
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Aix-Marseille Université, Marseille, France
| | | | - Vimal Parkash
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jaana Vuosku
- Department of Biology, University of Oulu, Oulu, Finland
| | - Robin Sundström
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Yvonne Nymalm
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Suvi Sutela
- Department of Biology, University of Oulu, Oulu, Finland
| | | | | | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Hely Häggman
- Department of Biology, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Fernandez E, Larsson JT, McLean KJ, Munro AW, Gorton L, von Wachenfeldt C, Ferapontova EE. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
27
|
Sharma RD, Kanwal R, Lynn AM, Singh P, Pasha ST, Fatma T, Jawaid S. High temperature unfolding of a truncated hemoglobin by molecular dynamics simulation. J Mol Model 2013; 19:3993-4002. [PMID: 23839248 DOI: 10.1007/s00894-013-1919-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/09/2013] [Indexed: 11/27/2022]
Abstract
Heme containing proteins are associated with peroxidase activity. The proteins like hemoglobin, myoglobins, cytochrome c and micro-peroxidase other than peroxidases have been shown to exhibit weak peroxidase-like activity. This weak peroxidase-like activity in hemoglobin-like molecules is due to heme moiety. We conducted molecular dynamics (MD) studies to decipher the unfolding path of Ba-Glb (a truncated hemoglobin from Bacillus anthracis) and the role of heme moiety to its unfolding path. The similar unfolding path is also observed in vitro by UV/VIS spectroscopy. The data confirmed that the unfolding of Ba-Glb follows a three state process with a meta-stable (intermediate) state between the native and unfolded conformations. The present study is supported by several unfolding parameters like root-mean-square-deviation (RMSD), dictionary of protein secondary structure (DSSP), and free energy landscape. Understanding the structure of hemoglobin like proteins in unicellular dreaded pathogens like B. anthracis will pave way for newer drug discovery targets and in the disease management of anthrax.
Collapse
|
28
|
Small ligand-globin interactions: reviewing lessons derived from computer simulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1722-38. [PMID: 23470499 DOI: 10.1016/j.bbapap.2013.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
In this work we review the application of classical and quantum-mechanical atomistic computer simulation tools to the investigation of small ligand interaction with globins. In the first part, studies of ligand migration, with its connection to kinetic association rate constants (kon), are presented. In the second part, we review studies for a variety of ligands such as O2, NO, CO, HS(-), F(-), and NO2(-) showing how the heme structure, proximal effects, and the interactions with the distal amino acids can modulate protein ligand binding. The review presents mainly results derived from our previous works on the subject, in the context of other theoretical and experimental studies performed by others. The variety and extent of the presented data yield a clear example of how computer simulation tools have, in the last decade, contributed to our deeper understanding of small ligand interactions with globins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
29
|
Tsai AL, Martin E, Berka V, Olson JS. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 2012; 17:1246-63. [PMID: 22356101 PMCID: PMC3430480 DOI: 10.1089/ars.2012.4564] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom. RECENT ADVANCES Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated β subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding. CRITICAL ISSUES However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation. FUTURE DIRECTIONS Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | | | | | |
Collapse
|
30
|
Lapini A, Di Donato M, Patrizi B, Marcelli A, Lima M, Righini R, Foggi P, Sciamanna N, Boffi A. Carbon monoxide recombination dynamics in truncated hemoglobins studied with visible-pump midIR-probe spectroscopy. J Phys Chem B 2012; 116:8753-61. [PMID: 22759230 DOI: 10.1021/jp3019149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon monoxide recombination dynamics upon photodissociation with visible light has been characterized by means of ultrafast visible-pump/MidIR probe spectroscopy for the truncated hemoglobins from Thermobifida fusca and Bacillus subtilis. Photodissociation has been induced by exciting the sample at two different wavelengths: 400 nm, corresponding to the heme absorption in the B-band, and 550 nm, in the Q-bands. The bleached iron-CO coordination band located at 1850-1950 cm(-1) and the free CO absorption band in the region 2050-2200 cm(-1) have been observed by probe pulses tuned in the appropriate infrared region. The kinetic traces measured at 1850-1950 cm(-1) reveal multiexponential subnanosecond dynamics that have been interpreted as arising from fast geminate recombination of the photolyzed CO. A compared analysis of the crystal structure of the two proteins reveals a similar structure of their distal heme pocket, which contains conserved polar and aromatic amino acid residues closely interacting with the iron ligand. Although fast geminate recombination is observed in both proteins, several kinetic differences can be evidenced, which can be interpreted in terms of a different structural flexibility of the corresponding heme distal pockets. The analysis of the free CO band-shape and of its dynamic evolution brings out novel features about the nature of the docking site inside the protein cavity.
Collapse
Affiliation(s)
- Andrea Lapini
- LENS (European Laboratory for Nonlinear Spectroscopy), via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jasaitis A, Ouellet H, Lambry JC, Martin JL, Friedman JM, Guertin M, Vos MH. Ultrafast heme–ligand recombination in truncated hemoglobin HbO from Mycobacterium tuberculosis: A ligand cage. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Abstract
Nitric oxide (NO) is an essential signaling molecule in biological systems. In mammals, the diatomic gas is critical to the cyclic guanosine monophosphate (cGMP) pathway as it functions as the primary activator of soluble guanylate cyclase (sGC). NO is synthesized from l-arginine and oxygen (O(2)) by the enzyme nitric oxide synthase (NOS). Once produced, NO rapidly diffuses across cell membranes and binds to the heme cofactor of sGC. sGC forms a stable complex with NO and carbon monoxide (CO), but not with O(2). The binding of NO to sGC leads to significant increases in cGMP levels. The second messenger then directly modulates phosphodiesterases (PDEs), ion-gated channels, or cGMP-dependent protein kinases to regulate physiological functions, including vasodilation, platelet aggregation, and neurotransmission. Many studies are focused on elucidating the molecular mechanism of sGC activation and deactivation with a goal of therapeutic intervention in diseases involving the NO/cGMP-signaling pathway. This review summarizes the current understanding of sGC structure and regulation as well as recent developments in NO signaling.
Collapse
Affiliation(s)
- Emily R Derbyshire
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Giordano D, Russo R, Ciaccio C, Howes BD, di Prisco G, Marden MC, Hui Bon Hoa G, Smulevich G, Coletta M, Verde C. Ligand- and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125. IUBMB Life 2012; 63:566-73. [PMID: 21698762 DOI: 10.1002/iub.492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spectroscopic and ligand-binding properties of a 2/2 globin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 have been studied in the ferrous state. It displays two major conformations characterized by CO-association rates that differ by a factor of 20, with relative fractions that depend on pH. A dynamic equilibrium is found between the two conformations, as indicated by an enhanced slower phase when lower CO levels were used to allow a longer time to facilitate the transition. The deoxy form, in the absence of external ligands, is a mixture of a predominant six-coordinate low spin form and a five-coordinate high-spin state; the proportion of low spin increasing at alkaline pH. In addition, at temperatures above the physiological temperature of 1 °C, an enhanced tendency of the protein to oxidize is observed.
Collapse
|
34
|
Pietri R, Román-Morales E, López-Garriga J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid Redox Signal 2011; 15:393-404. [PMID: 21050142 PMCID: PMC3118656 DOI: 10.1089/ars.2010.3698] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Historically, hydrogen sulfide (H(2)S) has been regarded as a poisonous gas, with a wide spectrum of toxic effects. However, like ·NO and CO, H(2)S is now referred to as a signaling gas involved in numerous physiological processes. The list of reports highlighting the physiological effects of H(2)S is rapidly expanding and several drug candidates are now being developed. As with ·NO and CO, not a single H(2)S target responsible for all the biological effects has been found till now. Nevertheless, it has been suggested that H(2)S can bind to hemeproteins, inducing different responses that can mediate its effects. For instance, the interaction of H(2)S with cytochrome c oxidase has been associated with the activation of the ATP-sensitive potassium channels, regulating muscle relaxation. Inhibition of cytochrome c oxidase by H(2)S has also been related to inducing a hibernation-like state. Although H(2)S might induce these effects by interacting with hemeproteins, the mechanisms underlying these interactions are obscure. Therefore, in this review we discuss the current state of knowledge about the interaction of H(2)S with vertebrate and invertebrate hemeproteins and postulate a generalized mechanism. Our goal is to stimulate further research aimed at evaluating plausible mechanisms that explain H(2)S reactivity with hemeproteins.
Collapse
Affiliation(s)
- Ruth Pietri
- Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | | |
Collapse
|
35
|
Heroux MS, Mohan AD, Olsen KW. Ligand migration in the truncated hemoglobin of Mycobacterium tuberculosis. IUBMB Life 2011; 63:214-20. [DOI: 10.1002/iub.438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
A hydrogen-bonding network formed by the B10–E7–E11 residues of a truncated hemoglobin from Tetrahymena pyriformis is critical for stability of bound oxygen and nitric oxide detoxification. J Biol Inorg Chem 2011; 16:599-609. [DOI: 10.1007/s00775-011-0761-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
|
37
|
Droghetti E, Nicoletti FP, Bonamore A, Boechi L, Arroyo Mañez P, Estrin DA, Boffi A, Smulevich G, Feis A. Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca. Biochemistry 2010; 49:10394-402. [PMID: 21049911 DOI: 10.1021/bi101452k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic surface variant (ASV) of the "truncated" hemoglobin from Thermobifida fusca was designed with the aim of creating a versatile globin scaffold endowed with thermostability and a high level of recombinant expression in its soluble form while keeping the active site unmodified. This engineered protein was obtained by mutating the surface-exposed residues Phe107 and Arg91 to Glu. Molecular dynamics simulations showed that the mutated residues remain solvent-exposed, not affecting the overall protein structure. Thus, the ASV was used in a combinatorial mutagenesis of the distal heme pocket residues in which one, two, or three of the conserved polar residues [TyrB10(54), TyrCD1(67), and TrpG8(119)] were substituted with Phe. Mutants were characterized by infrared and resonance Raman spectroscopy and compared with the wild-type protein. Similar Fe-proximal His stretching frequencies suggest that none of the mutations alters the proximal side of the heme cavity. Two conformers were observed in the spectra of the CO complexes of both wild-type and ASV protein: form 1 with ν(FeC) and ν(CO) at 509 and 1938 cm(-1) and form 2 with ν(FeC) and ν(CO) at 518 and 1920 cm(-1), respectively. Molecular dynamics simulations were performed for the wild-type and ASV forms, as well as for the TyrB10 mutant. The spectroscopic and computational results demonstrate that CO interacts with TrpG8 in form 1 and interacts with both TrpG8 and TyrCD1 in form 2. TyrB10 does not directly interact with the bound CO.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pesce A, Nardini M, Labarre M, Richard C, Wittenberg JB, Wittenberg BA, Guertin M, Bolognesi M. Structural characterization of a group II 2/2 hemoglobin from the plant pathogen Agrobacterium tumefaciens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:810-6. [PMID: 21070893 DOI: 10.1016/j.bbapap.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022]
Abstract
Within the 2/2 hemoglobin sub-family, no group II 2/2Hbs from proteobacteria have been so far studied. Here we present the first structural characterization of a group II 2/2Hb from the soil and phytopathogenic bacterium Agrobacterium tumefaciens (At-2/2HbO). The crystal structure of ferric At-2/2HbO (reported at 2.1Å resolution) shows the location of specific/unique heme distal site residues (e.g., His(42)CD1, a residue distinctive of proteobacteria group II 2/2Hbs) that surround a heme-liganded water molecule. A highly intertwined hydrogen-bonded network, involving residues Tyr(26)B10, His(42)CD1, Ser(49)E7, Trp(93)G8, and three distal site water molecules, stabilizes the heme-bound ligand. Such a structural organization suggests a path for diatomic ligand diffusion to/from the heme. Neither a similar distal site structuring effect nor the presence of distal site water molecules has been so far observed in group I and group III 2/2Hbs, thus adding new distinctive information to the complex picture of currently available 2/2Hb structural and functional data. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Alessandra Pesce
- Department of Physics, University of Genova, I-16146 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta FM, Feis A, Smulevich G, Boffi A. Sulfide binding properties of truncated hemoglobins. Biochemistry 2010; 49:2269-78. [PMID: 20102180 DOI: 10.1021/bi901671d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.
Collapse
Affiliation(s)
- Francesco P Nicoletti
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Derbyshire ER, Deng S, Marletta MA. Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O2 binding. J Biol Chem 2010; 285:17471-8. [PMID: 20231286 DOI: 10.1074/jbc.m109.098269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is the physiologically relevant activator of the mammalian hemoprotein soluble guanylate cyclase (sGC). The heme cofactor of alpha1beta1 sGC has a high affinity for NO but has never been observed to form a complex with oxygen. Introduction of a key tyrosine residue in the sGC heme binding domain beta1(1-385) is sufficient to produce an oxygen-binding protein, but this mutation in the full-length enzyme did not alter oxygen affinity. To evaluate ligand binding specificity in full-length sGC we mutated several conserved distal heme pocket residues (beta1 Val-5, Phe-74, Ile-145, and Ile-149) to introduce a hydrogen bond donor in proximity to the heme ligand. We found that the NO coordination state, NO dissociation, and enzyme activation were significantly affected by the presence of a tyrosine in the distal heme pocket; however, the stability of the reduced porphyrin and the proteins affinity for oxygen were unaltered. Recently, an atypical sGC from Drosophila, Gyc-88E, was shown to form a stable complex with oxygen. Sequence analysis of this protein identified two residues in the predicted heme pocket (tyrosine and glutamine) that may function to stabilize oxygen binding in the atypical cyclase. The introduction of these residues into the rat beta1 distal heme pocket (Ile-145 --> Tyr and Ile-149 --> Gln) resulted in an sGC construct that oxidized via an intermediate with an absorbance maximum at 417 nm. This absorbance maximum is consistent with globin Fe(II)-O(2) complexes and is likely the first observation of a Fe(II)-O(2) complex in the full-length alpha1beta1 protein. Additionally, these data suggest that atypical sGCs stabilize O(2) binding by a hydrogen bonding network involving tyrosine and glutamine.
Collapse
Affiliation(s)
- Emily R Derbyshire
- Department of Molecular and Cell Biology, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
41
|
Boechi L, Mañez PA, Luque FJ, Marti MA, Estrin DA. Unraveling the molecular basis for ligand binding in truncated hemoglobins: The trHbO Bacillus subtilis
case. Proteins 2009; 78:962-70. [DOI: 10.1002/prot.22620] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Jokipii-Lukkari S, Frey AD, Kallio PT, Häggman H. Intrinsic non-symbiotic and truncated haemoglobins and heterologous Vitreoscilla haemoglobin expression in plants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:409-422. [PMID: 19129158 DOI: 10.1093/jxb/ern320] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, haemoglobins (Hbs) have been shown to exist in all kingdoms of life. The least studied and understood groups are plant non-symbiotic haemoglobins (nsHbs) and the recently found plant truncated Hbs (trHbs). From a biotechnological point of view, the best characterized and almost exclusively applied Hb is the bacterial Vitreoscilla haemoglobin (VHb). In this review, the present state of knowledge of structural features and ligand binding kinetics of plant nsHbs and trHbs and their proposed roles as oxygen carriers, oxygen sensors, and for oxygen storage, in nitric oxide (NO) detoxification, and in peroxidase activity are described. Furthermore, in order to predict the functioning of plant Hbs, their characteristics will be compared with those of the better known bacterial globins. In this context, the effects of heterologous applications of VHb on plants are reviewed. Finally, the challenging future of plant Hb research is discussed.
Collapse
|
43
|
Olea C, Boon EM, Pellicena P, Kuriyan J, Marletta MA. Probing the function of heme distortion in the H-NOX family. ACS Chem Biol 2008; 3:703-10. [PMID: 19032091 PMCID: PMC2646007 DOI: 10.1021/cb800185h] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemoproteins carry out diverse functions utilizing a wide range of chemical reactivity while employing the same heme prosthetic group. It is clear from high-resolution crystal structures and biochemical studies that protein-bound hemes are not planar and adopt diverse conformations. The crystal structure of an H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) contains the most distorted heme reported to date. In this study, Tt H-NOX was engineered to adopt a flatter heme by mutating proline 115, a conserved residue in the H-NOX family, to alanine. Decreasing heme distortion in Tt H-NOX increases affinity for oxygen and decreases the reduction potential of the heme iron. Additionally, flattening the heme is associated with significant shifts in the N-terminus of the protein. These results show a clear link between the heme conformation and Tt H-NOX structure and demonstrate that heme distortion is an important determinant for maintaining biochemical properties in H-NOX proteins.
Collapse
Affiliation(s)
- Charles Olea
- Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
| | - Elizabeth M. Boon
- Department of Chemistry, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
| | - Patricia Pellicena
- Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
- Department of Chemistry, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, CA 94720
| | - Michael A. Marletta
- Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
- Department of Chemistry, California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720
- Division of Physical Biosciences, Lawrence Berkeley National Lab, Berkeley, CA 94720
| |
Collapse
|
44
|
Razzera G, Vernal J, Baruh D, Serpa VI, Tavares C, Lara F, Souza EM, Pedrosa FO, Almeida FCL, Terenzi H, Valente AP. Spectroscopic characterization of a truncated hemoglobin from the nitrogen-fixing bacterium Herbaspirillum seropedicae. J Biol Inorg Chem 2008; 13:1085-96. [DOI: 10.1007/s00775-008-0394-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 05/29/2008] [Indexed: 11/28/2022]
|
45
|
Archaeal protoglobin structure indicates new ligand diffusion paths and modulation of haem-reactivity. EMBO Rep 2008; 9:157-63. [PMID: 18188182 DOI: 10.1038/sj.embor.7401153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 11/08/2022] Open
Abstract
The structural adaptability of the globin fold has been highlighted by the recent discovery of the 2-on-2 haemoglobins, of neuroglobin and cytoglobin. Protoglobin from Methanosarcina acetivorans C2A-a strictly anaerobic methanogenic Archaea-is, to the best of our knowledge, the latest entry adding new variability and functional complexity to the haemoglobin (Hb) superfamily. Here, we report the 1.3 A crystal structure of oxygenated M. acetivorans protoglobin, together with the first insight into its ligand-binding properties. We show that, contrary to all known globins, protoglobin-specific loops and an amino-terminal extension completely bury the haem within the protein matrix. Access of O(2), CO and NO to the haem is granted by the protoglobin-specific apolar tunnels reaching the haem distal site from locations at the B/G and B/E helix interfaces. Functionally, M. acetivorans dimeric protoglobin shows a selectivity ratio for O(2)/CO binding to the haem that favours O(2) ligation and anticooperativity in ligand binding. Both properties are exceptional within the Hb superfamily.
Collapse
|
46
|
Pesce A, Milani M, Nardini M, Bolognesi M. Mapping Heme‐Ligand Tunnels in Group I Truncated(2/2) Hemoglobins. Methods Enzymol 2008; 436:303-15. [DOI: 10.1016/s0076-6879(08)36017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Feis A, Lapini A, Catacchio B, Brogioni S, Foggi P, Chiancone E, Boffi A, Smulevich G. Unusually Strong H-Bonding to the Heme Ligand and Fast Geminate Recombination Dynamics of the Carbon Monoxide Complex of Bacillus subtilis Truncated Hemoglobin. Biochemistry 2007; 47:902-10. [DOI: 10.1021/bi701297f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Feis
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Andrea Lapini
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Bruno Catacchio
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Silvia Brogioni
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Paolo Foggi
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Emilia Chiancone
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Alberto Boffi
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy, Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy, and Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, I-06100 Perugia, Italy
| |
Collapse
|
48
|
Ouellet H, Milani M, LaBarre M, Bolognesi M, Couture M, Guertin M. The roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis truncated hemoglobin O in ligand binding and on the heme distal site architecture. Biochemistry 2007; 46:11440-50. [PMID: 17887774 DOI: 10.1021/bi7010288] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of the cyano-met form of Mt-trHbO revealed two unusual distal residues Y(CD1) and W(G8) forming a hydrogen-bond network with the heme-bound ligand [Milani, M., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5766-5771]. W(G8) is an invariant residue in group II and group III trHbs and has no counterpart in other globins. A previous study reported that changing Y(CD1) for a Phe causes a significant increase in the O2 combination rate, but almost no change in the O2 dissociation rate [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Here we investigated the role of the W(G8) in ligand binding by using resonance Raman spectroscopy, stopped-flow spectrophotometry, and X-ray crystallography. For this purpose, W(G8) was changed, by site-directed mutagenesis, to a Phe in both the wild-type protein and the mutant Y(CD1)F to create the single mutant W(G8)F and the double mutant Y(CD1)F/W(G8)F, respectively. Resonance Raman results suggest that W(G8) interacts with the heme-bound O2 and CO, as evidenced by the increase of the Fe-O2 stretching mode from 559 to 564 cm-1 and by the lower frequency of the Fe-CO stretching modes (514 and 497 cm-1) compared to that of the wild-type protein. Mutation of W(G8) to Phe indicates that this residue controls ligand binding, as evidenced by a dramatic increase of the combination rates of both O2 and CO. Also, the rate of O2 dissociation showed a 90-1000-fold increase in the W(G8)F and Y(CD1)F/W(G8)F mutants, that is in sharp contrast with the values obtained for the other distal mutants Y(B10)F and Y(CD1)F [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Taken together, these data indicate a pivotal role for the W(G8) residue in O2 binding and stabilization.
Collapse
Affiliation(s)
- Hugues Ouellet
- Department of Biochemistry and Microbiology, Laval University, Quebec, Canada, G1K 7P4
| | | | | | | | | | | |
Collapse
|
49
|
Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R. Plant hemoglobins: what we know six decades after their discovery. Gene 2007; 398:78-85. [PMID: 17540516 DOI: 10.1016/j.gene.2007.01.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
This review describes contributions to the study of plant hemoglobins (Hbs) from a historical perspective with emphasis on non-symbiotic Hbs (nsHbs). Plant Hbs were first identified in soybean root nodules, are known as leghemoglobins (Lbs) and have been characterized in detail. It is widely accepted that a function of Lbs in nodules is to facilitate the diffusion of O(2) to bacteroids. For many years Hbs could not be identified in plants other than N(2)-fixing legumes, however in the 1980s a Hb was isolated from the nodules of the non-legume dicot plant Parasponia, a hb gene was cloned from the non-nodulating Trema, and Hbs were detected in nodules of actinorhizal plants. Gene expression analysis showed that Trema Hb transcripts exist in non-symbiotic roots. In the 1990s nsHb sequences were also identified in monocot and primitive (bryophyte) plants. In addition to Lbs and nsHbs, Hb sequences that are similar to microbial truncated (2/2) Hbs were also detected in plants. Plant nsHbs have been characterized in detail. These proteins have very high O(2)-affinities because of an extremely low O(2)-dissociation constant. Analysis of rice Hb1 showed that distal His coordinates heme Fe and stabilizes bound O(2); this means that O(2) is not released easily from oxygenated nsHbs. Non-symbiotic hb genes are expressed in specific plant tissues, and overexpress in organs of stressed plants. These observations suggest that nsHbs have functions additional to O(2)-transport, such as to modulate levels of ATP and NO.
Collapse
Affiliation(s)
- Verónica Garrocho-Villegas
- Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, México
| | | | | |
Collapse
|
50
|
Giordano D, Parrilli E, Dettaï A, Russo R, Barbiero G, Marino G, Lecointre G, di Prisco G, Tutino L, Verde C. The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Gene 2007; 398:69-77. [PMID: 17582708 DOI: 10.1016/j.gene.2007.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/23/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
The genome sequence of the Antarctic Gram-negative marine eubacterium Pseudoalteromonas haloplanktis TAC125 is a potential source of useful data on proteins from a cold-adapted microorganism. Identifying the bases of protein adaptation to higher or lower temperatures is important to understand the relationship between structure/function and life history on the Earth. The P. haloplanktis TAC125 genome contains three genes in distinct positions on chromosome I, named PSHAa0030, PSHAa2217 and PSHAa0458. These genes encode three truncated hemoglobins. The amino-acid identity between the three hemoglobins is less than 25% suggesting that these proteins may have different function(s) in bacterial cellular metabolism. The hemoglobin encoded by the PSHAa0030 gene has been cloned, expressed in Escherichia coli, purified and structurally characterised. This truncated hemoglobin is monomeric; circular dichroism shows high temperature resistance. The optical spectra of oxygenated and CO forms are similar to those of other truncated hemoglobins. Phylogenetic analyses show that two truncated globins encoded by the PSHAa0030 and PSHAa2217 genes belong to group II, and the third one encoded by PSHAa0458 to group I.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|