1
|
Oliveira AS, Rubio J, Noble CEM, Anderson JLR, Anders J, Mulholland AJ. Fluctuation Relations to Calculate Protein Redox Potentials from Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:385-395. [PMID: 38150288 PMCID: PMC10782445 DOI: 10.1021/acs.jctc.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The tunable design of protein redox potentials promises to open a range of applications in biotechnology and catalysis. Here, we introduce a method to calculate redox potential changes by combining fluctuation relations with molecular dynamics simulations. It involves the simulation of reduced and oxidized states, followed by the instantaneous conversion between them. Energy differences introduced by the perturbations are obtained using the Kubo-Onsager approach. Using a detailed fluctuation relation coupled with Bayesian inference, these are postprocessed into estimates for the redox potentials in an efficient manner. This new method, denoted MD + CB, is tested on a de novo four-helix bundle heme protein (the m4D2 "maquette") and five designed mutants, including some mutants characterized experimentally in this work. The MD + CB approach is found to perform reliably, giving redox potential shifts with reasonably good correlation (0.85) to the experimental values for the mutants. The MD + CB approach also compares well with redox potential shift predictions using a continuum electrostatic method. The estimation method employed within the MD + CB approach is straightforwardly transferable to standard equilibrium MD simulations and holds promise for redox protein engineering and design applications.
Collapse
Affiliation(s)
- A. S.
F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. Rubio
- School
of Mathematics and Physics, University of
Surrey, Guildford GU2 7XH, U.K.
- Department
of Physics and Astronomy, University of
Exeter, Stocker Road, Exeter EX4
4QL, U.K.
| | - C. E. M. Noble
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. L. R. Anderson
- School
of Biochemistry, University of Bristol, Bristol BS8 1DT, U.K.
- BrisSynBio
Synthetic Biology Research Centre, University
of Bristol, Bristol BS8 1TQ, U.K.
| | - J. Anders
- Department
of Physics and Astronomy, University of
Exeter, Stocker Road, Exeter EX4
4QL, U.K.
- Institute
of Physics and Astronomy, University of
Potsdam, Potsdam 14476, Germany
| | - A. J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
2
|
Hutchins GH, Noble CEM, Bunzel HA, Williams C, Dubiel P, Yadav SKN, Molinaro PM, Barringer R, Blackburn H, Hardy BJ, Parnell AE, Landau C, Race PR, Oliver TAA, Koder RL, Crump MP, Schaffitzel C, Oliveira ASF, Mulholland AJ, Anderson JLR. An expandable, modular de novo protein platform for precision redox engineering. Proc Natl Acad Sci U S A 2023; 120:e2306046120. [PMID: 37487099 PMCID: PMC10400981 DOI: 10.1073/pnas.2306046120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.
Collapse
Affiliation(s)
- George H. Hutchins
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Claire E. M. Noble
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | | | - Paulina Dubiel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Rob Barringer
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Hector Blackburn
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Benjamin J. Hardy
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Alice E. Parnell
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Charles Landau
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | | | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - A. Sofia F. Oliveira
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
3
|
Ortmayer M, Fisher K, Basran J, Wolde-Michael EM, Heyes DJ, Levy C, Lovelock SL, Anderson JLR, Raven EL, Hay S, Rigby SEJ, Green AP. Rewiring the "Push-Pull" Catalytic Machinery of a Heme Enzyme Using an Expanded Genetic Code. ACS Catal 2020; 10:2735-2746. [PMID: 32550044 PMCID: PMC7273622 DOI: 10.1021/acscatal.9b05129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Indexed: 01/14/2023]
Abstract
![]()
Nature
employs a limited number of genetically encoded axial ligands
to control diverse heme enzyme activities. Deciphering the functional
significance of these ligands requires a quantitative understanding of how their electron-donating
capabilities modulate the structures and reactivities of the iconic
ferryl intermediates compounds I and II. However, probing these relationships
experimentally has proven to be challenging as ligand substitutions
accessible via conventional mutagenesis do not allow fine tuning of
electron donation and typically abolish catalytic function. Here,
we exploit engineered translation components to replace the histidine
ligand of cytochrome c peroxidase (CcP) by a less electron-donating Nδ-methyl histidine (Me-His) with little effect on the enzyme structure.
The rate of formation (k1) and the reactivity
(k2) of compound I are unaffected by ligand
substitution. In contrast, proton-coupled electron transfer to compound
II (k3) is 10-fold slower in CcP Me-His, providing a direct link between electron donation
and compound II reactivity, which can be explained by weaker electron
donation from the Me-His ligand (“the push”) affording
an electron-deficient ferryl oxygen with reduced proton affinity (“the
pull”). The deleterious effects of the Me-His ligand can be
fully compensated by introducing a W51F mutation designed to increase
“the pull” by removing a hydrogen bond to the ferryl
oxygen. Analogous substitutions in ascorbate peroxidase lead to similar
activity trends to those observed in CcP, suggesting
that a common mechanistic strategy is employed by enzymes using distinct
electron transfer pathways. Our study highlights how noncanonical
active site substitutions can be used to directly probe and deconstruct
highly evolved bioinorganic mechanisms.
Collapse
Affiliation(s)
- Mary Ortmayer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Karl Fisher
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Emmanuel M. Wolde-Michael
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sarah L. Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Emma L. Raven
- School of Chemistry, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Anthony P. Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
4
|
Gober JG, Rydeen AE, Schwochert TD, Gibson-O'Grady EJ, Brustad EM. Enhancing cytochrome P450-mediated non-natural cyclopropanation by mutation of a conserved second-shell residue. Biotechnol Bioeng 2018; 115:1416-1426. [DOI: 10.1002/bit.26571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Joshua G. Gober
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Amy E. Rydeen
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Timothy D. Schwochert
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Evan J. Gibson-O'Grady
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Eric M. Brustad
- Department of Chemistry; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| |
Collapse
|
5
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
6
|
Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat Commun 2017; 8:358. [PMID: 28842561 PMCID: PMC5572459 DOI: 10.1038/s41467-017-00541-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Although catalytic mechanisms in natural enzymes are well understood, achieving the diverse palette of reaction chemistries in re-engineered native proteins has proved challenging. Wholesale modification of natural enzymes is potentially compromised by their intrinsic complexity, which often obscures the underlying principles governing biocatalytic efficiency. The maquette approach can circumvent this complexity by combining a robust de novo designed chassis with a design process that avoids atomistic mimicry of natural proteins. Here, we apply this method to the construction of a highly efficient, promiscuous, and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2. The maquette exhibits kinetics that match and even surpass those of certain natural peroxidases, retains its activity at elevated temperature and in the presence of organic solvents, and provides a simple platform for interrogating catalytic intermediates common to natural heme-containing enzymes.Catalytic mechanisms of enzymes are well understood, but achieving diverse reaction chemistries in re-engineered proteins can be difficult. Here the authors show a highly efficient and thermostable artificial enzyme that catalyzes a diverse array of substrate oxidations coupled to the reduction of H2O2.
Collapse
|
7
|
Evaluation of coumarin-based fluorogenic P450 BM3 substrates and prospects for competitive inhibition screenings. Anal Biochem 2014; 456:70-81. [PMID: 24708937 DOI: 10.1016/j.ab.2014.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Fluorescence-based assays for the cytochrome P450 BM3 monooxygenase from Bacillus megaterium address an attractive biotechnological challenge by facilitating enzyme engineering and the identification of potential substrates of this highly promising biocatalyst. In the current study, we used the scarcity of corresponding screening systems as an opportunity to evaluate a novel and continuous high-throughput assay for this unique enzyme. A set of nine catalytically diverse P450 BM3 variants was constructed and tested toward the native substrate-inspired fluorogenic substrate 12-(4-trifluoromethylcoumarin-7-yloxy)dodecanoic acid. Particularly high enzyme-mediated O-dealkylation yielding the fluorescent product 7-hydroxy-4-trifluoromethylcoumarin was observed with mutants containing the F87V substitution, with A74G/F87V showing the highest catalytic efficiency (0.458 min(-1)μM(-1)). To simplify the assay procedure and show its versatility, different modes of application were successfully demonstrated, including (i) the direct use of NADPH or its oxidized form NADP(+) along with diverse NADPH recycling systems for electron supply, (ii) the use of cell-free lysates and whole-cell preparations as the biocatalyst source, and (iii) its use for competitive inhibition screens to identify or characterize substrates and inhibitors. A detailed comparison with known, fluorescence-based P450 BM3 assays finally emphasizes the relevance of our contribution to the ongoing research.
Collapse
|
8
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
9
|
Luthra A, Denisov IG, Sligar SG. Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys 2010; 507:26-35. [PMID: 21167809 DOI: 10.1016/j.abb.2010.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022]
Abstract
Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2,3]. Historically these enzymes received their name from 'pigment 450' due to the unusual position of the Soret band in UV-vis absorption spectra of the reduced CO-saturated state [4,5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other 'P450-like heme enzymes' such as nitric oxide synthase and chloroperoxidase, the phenomenological term 'cytochrome P450' is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle.
Collapse
Affiliation(s)
- Abhinav Luthra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
10
|
De Laurentis W, Khim L, Anderson JLR, Adam A, Johnson KA, Phillips RS, Chapman SK, van Pee KH, Naismith JH. The second enzyme in pyrrolnitrin biosynthetic pathway is related to the heme-dependent dioxygenase superfamily. Biochemistry 2007; 46:12393-404. [PMID: 17924666 DOI: 10.1021/bi7012189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrrolnitrin is a commonly used and clinically effective treatment for fungal infections and provides the structural basis for the more widely used fludioxinil. The pyrrolnitrin biosynthetic pathway consists of four chemical steps, the second of which is the rearrangement of 7-chloro-tryptophan by the enzyme PrnB, a reaction that is so far unprecedented in biochemistry. When expressed in Pseudomonas fluorescens, PrnB is red in color due to the fact that it contains 1 mol of heme b per mole of protein. The crystal structure unexpectedly establishes PrnB as a member of the heme-dependent dioxygenase superfamily with significant structural but not sequence homology to the two-domain indoleamine 2,3-dioxygenase enzyme (IDO). The heme-binding domain is also structurally similar to that of tryptophan 2,3-dioxygenase (TDO). Here we report the binary complex structures of PrnB with d- and l-tryptophan and d- and l-7-chloro-tryptophan. The structures identify a common hydrophobic pocket for the indole ring but exhibit unusual heme ligation and substrate binding when compared with that observed in the TDO crystal structures. Our solution studies support the heme ligation observed in the crystal structures. Purification of the hexahistidine-tagged PrnB yields homogeneous protein that only displays in vitro activity with 7-chloro-l-tryptophan after reactivation with crude extract from the host strain, suggesting that an as yet unknown cofactor is required for activity. Mutation of the proximal heme ligand results, not surprisingly, in inactive enzyme. Redox titrations show that PrnB displays a significantly different reduction potential to that of IDO or TDO, indicating possible differences in the PrnB catalytic cycle. This is confirmed by the absence of tryptophan dioxygenase activity in PrnB, although a stable oxyferrous adduct (which is the first intermediate in the TDO/IDO catalytic cycle) can be generated. We propose that PrnB shares a key catalytic step with TDO and IDO, generation of a tryptophan hydroperoxide intermediate, although this species suffers a different fate in PrnB, leading to the eventual formation of the product, monodechloroaminopyrrolnitrin.
Collapse
Affiliation(s)
- Walter De Laurentis
- Centre for Biomolecular Sciences, EastChem, The University, St Andrews, Scotland, KY16 9ST, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Forouhar F, Anderson JLR, Mowat CG, Vorobiev SM, Hussain A, Abashidze M, Bruckmann C, Thackray SJ, Seetharaman J, Tucker T, Xiao R, Ma LC, Zhao L, Acton TB, Montelione GT, Chapman SK, Tong L. Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2006; 104:473-8. [PMID: 17197414 PMCID: PMC1766409 DOI: 10.1073/pnas.0610007104] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) constitute an important, yet relatively poorly understood, family of heme-containing enzymes. Here, we report extensive structural and biochemical studies of the Xanthomonas campestris TDO and a related protein SO4414 from Shewanella oneidensis, including the structure at 1.6-A resolution of the catalytically active, ferrous form of TDO in a binary complex with the substrate L-Trp. The carboxylate and ammonium moieties of tryptophan are recognized by electrostatic and hydrogen-bonding interactions with the enzyme and a propionate group of the heme, thus defining the L-stereospecificity. A second, possibly allosteric, L-Trp-binding site is present at the tetramer interface. The sixth coordination site of the heme-iron is vacant, providing a dioxygen-binding site that would also involve interactions with the ammonium moiety of L-Trp and the amide nitrogen of a glycine residue. The indole ring is positioned correctly for oxygenation at the C2 and C3 atoms. The active site is fully formed only in the binary complex, and biochemical experiments confirm this induced-fit behavior of the enzyme. The active site is completely devoid of water during catalysis, which is supported by our electrochemical studies showing significant stabilization of the enzyme upon substrate binding.
Collapse
MESH Headings
- Allosteric Site
- Amino Acid Sequence
- Catalysis
- Crystallography, X-Ray
- Humans
- Hydrogen Bonding
- In Vitro Techniques
- Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- Protein Structure, Quaternary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Shewanella/enzymology
- Shewanella/genetics
- Static Electricity
- Substrate Specificity
- Tryptophan Oxygenase/chemistry
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
- Xanthomonas campestris/enzymology
- Xanthomonas campestris/genetics
Collapse
Affiliation(s)
- Farhad Forouhar
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - J. L. Ross Anderson
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Christopher G. Mowat
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Sergey M. Vorobiev
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Arif Hussain
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Mariam Abashidze
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Chiara Bruckmann
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Sarah J. Thackray
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Jayaraman Seetharaman
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Todd Tucker
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Li-Chung Ma
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Li Zhao
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Stephen K. Chapman
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; and
| | - Liang Tong
- *Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, NY 10027
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Cai S, Shokhireva TK, Lichtenberger DL, Walker FA. NMR and EPR studies of chloroiron(III) tetraphenyl-chlorin and its complexes with imidazoles and pyridines of widely differing basicities. Inorg Chem 2006; 45:3519-31. [PMID: 16634582 PMCID: PMC2504473 DOI: 10.1021/ic0515352] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NMR and EPR spectra of two bisimidazole and three bispyridine complexes of tetraphenylchlorinatoiron(III), [(TPC)Fe(L)2]+ (L = Im-d4, 2-MeHIm, 4-Me2NPy, Py, and 4-CNPy), have been investigated. The full resonance assignments of the [(TPC)Fe(L)2]+ complexes of this study have been made from correlation spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY) experiments and Amsterdam density functional (ADF) calculations. Unlike the [(OEC)Fe(L)2]+ complexes reported previously (Cai, S.; Lichtenberger, D. L.; Walker, F. A. Inorg. Chem. 2005, 44, 1890-1903), the NMR data for the [(TPC)Fe(L)2]+ complexes of this study indicate that the ground state is S = 1/2 for each bisligand complex, whereas a higher spin state was present at NMR temperatures for the Py and 4-CNPy complexes of (OEC)Fe(III). The pyrrole-8,17 and pyrroline-H of all [TPCFe(L)2]+ show large magnitude chemical shifts (hence indicating large spin density on the adjacent carbons that are part of the pi system), while pyrrole-12,13-CH2 and -7,18-CH2 protons show much smaller chemical shifts, as predicted by the spin densities obtained from ADF calculations. The magnitude of the chemical shifts decreases with decreasing donor ability of the substituted pyridine ligands, with the nonhindered imidazole ligand having slightly larger magnitude chemical shifts than the most basic pyridine, even though its basicity is significantly lower (4-Me2NPyH+ pKa = 9.7, H2Im+ pKa = 6.65 (adjusted for the statistical factor of 2 protons)). The temperature dependence of the chemical shifts of all but the 4-Me2NPy bisligand complexes studied over the temperature range of the NMR investigations shows that they have mixed (dxy)2(dxz,dyz)3/(dxzdyz)4(dxy)1 electron configurations that cannot be resolved by temperature-dependent fitting of the proton chemical shifts, with an S = 3/2 excited state in each case that in most cases lies at more than kT at room temperature above the ground state. The observed pattern of chemical shifts of the 4-CNPy complex and analysis of the temperature dependence indicate that it has a pure (dxzdyz)4(dxy)1 ground state and that it is ruffled, because ruffling mixes the a(2u)(pi)-like orbital of the chlorin into the singly occupied molecular orbital (SOMO). This mixing accounts for the negative chemical shift of the pyrroline-H (-6.5 ppm at -40 degrees C) and thus the negative spin density at the pyrroline-alpha-carbons, but the mixing is not to the same extent as observed for [(TPC)Fe(t-BuNC)2]+, whose pyrroline-H chemical shift is -36 ppm at 25 degrees C (Simonneaux, G.; Kobeissi, M. J. Chem. Soc., Dalton Trans. 2001, 1587-1592). Peak assignments for high-spin (TPC)FeCl have been made by saturation transfer techniques that depend on chemical exchange between this complex and its bis-4-Me2NPy adduct.
Collapse
Affiliation(s)
- Sheng Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | | | |
Collapse
|
13
|
Yun CH, Kim KH, Calcutt MW, Guengerich FP. Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6. J Biol Chem 2005; 280:12279-91. [PMID: 15665333 DOI: 10.1074/jbc.m411019200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytochrome P450 (P450) 2A6 catalyzes 7-hydroxylation of coumarin, and the reaction rate is enhanced by cytochrome b5 (b5). 7-Alkoxycoumarins were O-dealkylated and also hydroxylated at the 3-position. Binding of coumarin and 7-hydroxycoumarin to ferric and ferrous P450 2A6 are fast reactions (k(on) approximately 10(6) m(-1) s(-1)), and the k(off) rates range from 5.7 to 36 s(-1) (at 23 degrees C). Reduction of ferric P450 2A6 is rapid (7.5 s(-1)) but only in the presence of coumarin. The reaction of the ferrous P450 2A6 substrate complex with O2 is rapid (k > or = 10(6) m(-1) s(-1)), and the putative Fe2+.O2 complex decayed at a rate of approximately 0.3 s(-1) at 23 degrees C. Some 7-hydroxycoumarin was formed during the oxidation of the ferrous enzyme under these conditions, and the yield was enhanced by b5. Kinetic analyses showed that approximately 1/3 of the reduced b5 was rapidly oxidized in the presence of the Fe2+.O2 complex, implying some electron transfer. High intrinsic and competitive and non-competitive intermolecular kinetic deuterium isotope effects (values 6-10) were measured for O-dealkylation of 7-alkoxycoumarins, indicating the effect of C-H bond strength on rates of product formation. These results support a scheme with many rapid reaction steps, including electron transfers, substrate binding and release at multiple stages, and rapid product release even though the substrate is tightly bound in a small active site. The inherent difficulty of chemistry of substrate oxidation and the lack of proclivity toward a linear pathway leading to product formation explain the inefficiency of the enzyme relative to highly efficient bacterial P450s.
Collapse
Affiliation(s)
- Chul-Ho Yun
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|