1
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
2
|
Immel F, Gaspard D, Marie A, Guichard N, Cusack M, Marin F. Shell proteome of rhynchonelliform brachiopods. J Struct Biol 2015; 190:360-6. [DOI: 10.1016/j.jsb.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 11/27/2022]
|
3
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
4
|
Byrne LJ, Cole DJ, Cox BS, Ridout MS, Morgan BJT, Tuite MF. The number and transmission of [PSI] prion seeds (Propagons) in the yeast Saccharomyces cerevisiae. PLoS One 2009; 4:e4670. [PMID: 19262693 PMCID: PMC2650407 DOI: 10.1371/journal.pone.0004670] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/17/2008] [Indexed: 12/02/2022] Open
Abstract
Background Yeast (Saccharomyces cerevisiae) prions are efficiently propagated and the on-going generation and transmission of prion seeds (propagons) to daughter cells during cell division ensures a high degree of mitotic stability. The reversible inhibition of the molecular chaperone Hsp104p by guanidine hydrochloride (GdnHCl) results in cell division-dependent elimination of yeast prions due to a block in propagon generation and the subsequent dilution out of propagons by cell division. Principal Findings Analysing the kinetics of the GdnHCl-induced elimination of the yeast [PSI+] prion has allowed us to develop novel statistical models that aid our understanding of prion propagation in yeast cells. Here we describe the application of a new stochastic model that allows us to estimate more accurately the mean number of propagons in a [PSI+] cell. To achieve this accuracy we also experimentally determine key cell reproduction parameters and show that the presence of the [PSI+] prion has no impact on these key processes. Additionally, we experimentally determine the proportion of propagons transmitted to a daughter cell and show this reflects the relative cell volume of mother and daughter cells at cell division. Conclusions While propagon generation is an ATP-driven process, the partition of propagons to daughter cells occurs by passive transfer via the distribution of cytoplasm. Furthermore, our new estimates of n0, the number of propagons per cell (500–1000), are some five times higher than our previous estimates and this has important implications for our understanding of the inheritance of the [PSI+] and the spontaneous formation of prion-free cells.
Collapse
Affiliation(s)
- Lee J. Byrne
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Diana J. Cole
- Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, United Kingdom
| | - Brian S. Cox
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin S. Ridout
- Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, United Kingdom
| | - Byron J. T. Morgan
- Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, United Kingdom
| | - Mick F. Tuite
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Crapeau M, Marchal C, Cullin C, Maillet L. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Mol Biol Cell 2009; 20:2286-96. [PMID: 19225154 DOI: 10.1091/mbc.e08-11-1097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2p(Sp)) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2p(Sp) overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2p(Sp) and of S. cerevisiae Ure2p (Ure2p(Sc)) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2p(Sp) aggregates faster than Ure2p(Sc). Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2p(Sc) than with Ure2p(Sp). Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2p(Sc). Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2p(Sp) might be more sensitive to such effects than Ure2p(Sc).
Collapse
Affiliation(s)
- Myriam Crapeau
- Centre National de la Recherche Scientifique, Institut de Biochimie et de Génétique Cellulaires, Bordeaux, France
| | | | | | | |
Collapse
|
6
|
Lewinska A, Bartosz G. Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic Res 2007; 41:580-90. [PMID: 17454141 DOI: 10.1080/10715760701209904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to examine the protection of the yeast lacking the "antioxidant-like" prion precursor protein (Ure2p), by antioxidants and to elucidate how modification of redox homeostasis affects toxicity of agents inducing oxidative stress in the Deltaure2 cells. We found a diverse ability of a range of antioxidants to ameliorate the hypersensitivity of the Deltaure2 disruptant to oxidants and heavy metal ions. Glutathione and then ascorbate were the most effective antioxidants; Tempol, Trolox and melatonin were much less effective or even hampered the growth of the Deltaure2 cells exposed to tested agents. The intracellular level of ROS was augmented in the Deltaure2 mutant under normal growth conditions (1.7-fold), and after treatment with H(2)O(2) (2.3-fold) and Cd(II) (2.8-fold), with respect to its wild-type counterpart. Glutathione was unable to prevent the increase in ROS production caused by CdCl(2). The Deltaure2 disruptant was also hypersensitive to heat shock, like mutants lacking glutathione S-transferases.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland.
| | | |
Collapse
|
7
|
Immel F, Jiang Y, Wang YQ, Marchal C, Maillet L, Perrett S, Cullin C. In Vitro Analysis of SpUre2p, a Prion-related Protein, Exemplifies the Relationship between Amyloid and Prion. J Biol Chem 2007; 282:7912-20. [PMID: 17234629 DOI: 10.1074/jbc.m608652200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.
Collapse
Affiliation(s)
- Francoise Immel
- IBGC, UMR5095 CNRS-Université Bordeaux2, 1, rue Camille Saint Saens, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Patel BK, Liebman SW. "Prion-proof" for [PIN+]: infection with in vitro-made amyloid aggregates of Rnq1p-(132-405) induces [PIN+]. J Mol Biol 2006; 365:773-82. [PMID: 17097676 PMCID: PMC2570204 DOI: 10.1016/j.jmb.2006.10.069] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
Prions are self-propagating, infectious protein conformations. The mammalian prion, PrP(Sc), responsible for neurodegenerative diseases like bovine spongiform encephalopathy (BSE; "mad cow" disease) and Creutzfeldt-Jakob's disease, appears to be a beta-sheet-rich amyloid conformation of PrP(c) that converts PrP(c) into PrP(Sc). However, an unequivocal demonstration of "protein-only" infection by PrP(Sc) is still lacking. So far, protein only infection has been proven for three prions, [PSI(+)], [URE3] and [Het-s], all of fungal origin. Considerable evidence supports the hypothesis that another protein, the yeast Rnq1p, can form a prion, [PIN(+)]. While Rnq1p does not lose any known function upon prionization, [PIN(+)] has interesting positive phenotypes: facilitating the appearance and destabilization of other prions as well as the aggregation of polyglutamine extensions of the Huntingtin protein. Here, we polymerize a Gln/Asn-rich recombinant fragment of Rnq1p into beta-sheet-rich amyloid-like aggregates. While the method used for [PSI(+)] and [URE3] infectivity assays did not yield protein-only infection for the Rnq1p aggregates, we did successfully obtain protein-only infection by modifying the protocol. This work proves that [PIN(+)] is a prion mediated by amyloid-like aggregates of Rnq1p, and supports the hypothesis that heterologous prions affect each other's appearance and propagation through interaction of their amyloid-like regions.
Collapse
Affiliation(s)
| | - Susan W Liebman
- Corresponding author, e-mail: , Phone: 312-996-4662, Fax: 312-413-2691
| |
Collapse
|
9
|
Baxa U, Cassese T, Kajava AV, Steven AC. Structure, function, and amyloidogenesis of fungal prions: filament polymorphism and prion variants. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:125-80. [PMID: 17190613 DOI: 10.1016/s0065-3233(06)73005-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Infectious proteins (prions) became an important medical issue when they were identified as agents of the transmissible spongiform encephalopathies. More recently, prions have been found in fungi and their investigation has been facilitated by greater experimental tractability. In each case, the normal form of the prion protein may be converted into the infectious form (the prion itself) in an autocatalytic process; conversion may either occur spontaneously or by transmission from an already infected cell. Four fungal prion proteins have been studied in some depth-Ure2p, Sup35p, and Rnq1p of Saccharomyces cerevisiae and HET-s of Podospora anserina. Each has a "prion domain" that governs infectivity and a "functional domain" that contributes the protein's activity in a wild-type cell, if it has one. This activity is repressed in prion-infected cells for loss-of-activity prions, [URE3] (the prion of Ure2p) and [PSI] (the prion of Sup35p). For gain-of-activity prions, [PIN] (the prion of Rnq1p) and [Het-s] (the prion of HET-s), the prion domain is also involved in generating a new activity in infected cells. In prion conversion, prion domains polymerize into an amyloid filament, switching from a "natively unfolded" conformation into an amyloid conformation (stable, protease-resistant, rich in cross-beta structure). For Ure2p and probably also Sup35p, the functional domain retains its globular fold but is inactivated by a steric mechanism. We review the evidence on which this scenario is based with emphasis on filament structure, summarizing current experimental constraints and appraising proposed models. We conclude that the parallel superpleated beta-structure and a specific beta-helical formulation are valid candidates while other proposals are excluded. In both the Ure2p and Sup35p systems, prion domain amyloid filaments exhibit polymorphic variation. However, once a certain structure is nucleated, it is maintained throughout that filament. Electron microscopy of several Ure2p-related constructs indicates that the basis for polymorphism lies mainly if not entirely in the prion domain. Filament polymorphism appears to underlie the phenomenon of prion "variants" which differ in the severity of their phenotype, that is, for Ure2p and Sup35p, the stringency with which their activity is switched off. We discuss a possible structural basis for this phenomenon.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
10
|
Brachmann A, Baxa U, Wickner RB. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 2005; 24:3082-92. [PMID: 16096644 PMCID: PMC1201353 DOI: 10.1038/sj.emboj.7600772] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 07/15/2005] [Indexed: 11/08/2022] Open
Abstract
[URE3] is a prion (infectious protein) of the Ure2 protein of yeast. In vitro, Ure2p can form amyloid filaments, but direct evidence that these filaments constitute the infectious form is still missing. Here we demonstrate that recombinant Ure2p converted into amyloid can infect yeast cells lacking the prion. Infection produced a variety of [URE3] variants. Extracts of [URE3] strains, as well as amyloid of Ure2p formed in an extract-primed reaction could transmit to uninfected cells the [URE3] variant present in the cells from which the extracts were made. Infectivity and determinant of [URE3] variants resided within the N-terminal 65 amino acids of Ure2p. Notably, we could show that amyloid filaments of recombinant Ure2p are nearly as infectious per mass of Ure2p as extracts of [URE3] strains. Sizing experiments indicated that infectious particles in vitro and in vivo were >20 nm in diameter, suggesting that they were amyloid filaments and not smaller oligomeric structures. Our data indicate that there is no substantial difference between filaments formed in vivo and in vitro.
Collapse
Affiliation(s)
- Andreas Brachmann
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Ulrich Baxa
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reed Brendon Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive , Bethesda, MD 20892-0830, USA. Tel.: +1 301 496 3452; Fax: +1 301 402 0240; E-mail:
| |
Collapse
|
11
|
Baxa U, Cheng N, Winkler DC, Chiu TK, Davies DR, Sharma D, Inouye H, Kirschner DA, Wickner RB, Steven AC. Filaments of the Ure2p prion protein have a cross-β core structure. J Struct Biol 2005; 150:170-9. [PMID: 15866740 DOI: 10.1016/j.jsb.2005.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/05/2005] [Indexed: 10/25/2022]
Abstract
Formation of filaments by the Ure2 protein constitutes the molecular mechanism of the [URE3] prion in yeast. According to the "amyloid backbone" model, the N-terminal asparagine-rich domains of Ure2p polymerize to form an amyloid core fibril that is surrounded by C-terminal domains in their native conformation. Protease resistance and Congo Red binding as well as beta-sheet content detected by spectroscopy-all markers for amyloid-have supported this model, as has the close resemblance between 40 A N-domain fibrils and the fibrillar core of intact Ure2p filaments visualized by cryo-electron microscopy and scanning transmission electron microscopy. Here, we present electron diffraction and X-ray diffraction data from filaments of Ure2p, of N-domains alone, of fragments thereof, and of an N-domain-containing fusion protein that demonstrate in each case the 4.7A reflection that is typical for cross-beta structure and highly indicative of amyloid. This reflection was observed for specimens prepared by air-drying with and without sucrose embedding. To confirm that the corresponding structure is not an artifact of air-drying, the reflection was also demonstrated for specimens preserved in vitreous ice. Local area electron diffraction and X-ray diffraction from partially aligned specimens showed that the 4.7A reflection is meridional and therefore the underlying structure is cross-beta.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2005; 22:593-600. [PMID: 16003861 DOI: 10.1002/yea.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|