1
|
Li Z, Dai A, Yang M, Chen S, Deng Z, Li L. p38MAPK Signaling Pathway in Osteoarthritis: Pathological and Therapeutic Aspects. J Inflamm Res 2022; 15:723-734. [PMID: 35140502 PMCID: PMC8820459 DOI: 10.2147/jir.s348491] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/16/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an aging-related joint disease, pathologically featured with degenerated articular cartilage and deformation of subchondral bone. OA has become the fourth major cause of disability in the world, imposing a huge economic burden. At present, the pathogenesis and pathophysiology of OA are still unclear. Complex regulating networks containing different biochemical signaling pathways are involved in OA pathogenesis and progression. The p38MAPK signaling pathway is a member of the MAPK signaling pathway family, which participates in the induction of cellular senescence, the differentiation of chondrocytes, the synthesis of matrix metalloproteinase (MMPs) and the production of pro-inflammatory factors. In recent years, studies on the regulating role of p38MAPK signaling pathway and the application of its inhibitors have attracted growing attention, with an increasing number of in vivo and in vitro studies. One interesting finding is that the inhibition of p38MAPK could suppress chondrocyte inflammation and ameliorate OA, indicating its therapeutic role in OA treatment. Based on this, we reviewed the mechanisms of p38MAPK signaling pathway in the pathogenesis of OA, hoping to provide new ideas for future research and OA treatment.
Collapse
Affiliation(s)
- Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Ming Yang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People’s Republic of China
- Correspondence: Zhenhan Deng, Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 3002 Sungang West Road, Shenzhen City, 518035, People’s Republic of China, Tel +86 13928440786, Fax +86 755-83366388, Email ; Liangjun Li, Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan South Road, Changsha City, 410018, People’s Republic of China, Tel +86 13875822004, Fax +86 731-85668156, Email
| |
Collapse
|
2
|
Noguchi H, Miyagi-Shiohira C, Nakashima Y, Saitoh I, Watanabe M. Novel cell-permeable p38-MAPK inhibitor efficiently prevents porcine islet apoptosis and improves islet graft function. Am J Transplant 2020; 20:1296-1308. [PMID: 31834983 DOI: 10.1111/ajt.15740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
During islet transplantation, mitogen-activated protein kinase (MAPK) p38 is preferentially activated in response to the isolation of islets and the associated inflammation. Although therapeutic effects of p38 inhibitors are expected, the clinical application of small-molecule inhibitors of p38 is not recommended because of their serious adverse effects on the liver and central nervous system. Here we designed peptides to inhibit p38, which were derived from the sites on p38 that mediate binding to proteins such as MAPK kinases. Peptide 11R-p38I110 significantly inhibited the activation of p38. To evaluate the effects of 11R-p38I110 , porcine islets were incubated with 10 µmol/L 11R-p38I110 or a mutant form designated 11R-mp38I110 . After islet transplantation, blood glucose levels reached the normoglycemic range in 58.3% and 0% of diabetic mice treated with 11R-p38I110 or 11R-mp38I110 , respectively. These data suggest that 11R-p38I110 inhibited islet apoptosis and improved islet function. Peptide p38I110 is a noncompetitive inhibitor of ATP and targets a unique docking site. Therefore, 11R-p38I110 specifically inhibits p38 activation, which may avoid the adverse effects that have discouraged the clinical use of small-molecule inhibitors of p38. Moreover, our methodology to design "peptide inhibitors" could be used to design other inhibitors derived from the binding sites of proteins.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Wu CX, Feng YH, Yang L, Zhan ZL, Xu XH, Hu XY, Zhu ZH, Zhou GP. Electroacupuncture exerts neuroprotective effects on ischemia/reperfusion injury in JNK knockout mice: the underlying mechanism. Neural Regen Res 2018; 13:1594-1601. [PMID: 30127120 PMCID: PMC6126120 DOI: 10.4103/1673-5374.235294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Simple regulation of c-Jun N-terminal kinase (JNK) or p38 mitogen-activated protein kinase (MAPK) pathways is not enough to trigger cell apoptosis. However, activation of the stress activated pathway (JNK/p38 MAPK) together with inhibition of the growth factor activated extracellular signal-regulated kinase (ERK) pathway can promote cell apoptosis. We hypothesized that inhibition of the JNK or p38 pro-apoptotic pathway and activating the ERK pathway could be the mechanism of anti-apoptosis following cerebral ischemia/reperfusion injury. To investigate the mechanism of the protective effect of electroacupuncture on cerebral ischemia/reperfusion injury in JNK knockout mice, mouse models of cerebral ischemia/reperfusion injury were established by Longa’s method. Electroacupuncture was conducted at acupoints Chize (LU5), Hegu (LI4), Sanyinjiao (SP6) and Zusanli (ST36) 1.5 hours after ischemia/reperfusion injury for 20 minutes, once a day. The neurological function was evaluated using neurological deficit scores. The expression of phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 (p-p38) in JNK knockout mice was detected using double-labeling immunofluorescence and western blot assay. The mRNA expression of ERK and p38 was measured by quantitative real-time polymerase chain reaction. Electroacupuncture improved neurological function, increased the immunoreactivity and relative expression of p-ERK and reduced that of p-p38 in the cerebral cortex and hippocampus on the injured side. Electroacupuncture increased mRNA expression of ERK, but decreased that of p38 in the cerebral cortex and hippocampus on the injured side. In conclusion, electroacupuncture upregulated the protective ERK pathway and inhibited the pro-apoptotic p38 pathway, thereby exerting a neuroprotective effect and improving the neurological function in JNK knockout mice.
Collapse
Affiliation(s)
- Chun-Xiao Wu
- School of Traditional Chinese Medicine, Southern Medical University; Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yi-Hui Feng
- Central Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Lu Yang
- School of Traditional Chinese Medicine, Southern Medical University; Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhu-Lian Zhan
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiu-Hong Xu
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Ying Hu
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi-Hua Zhu
- Ruikang Hospital Affiliated to Guangxi College of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guo-Ping Zhou
- School of Traditional Chinese Medicine, Southern Medical University; Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Negl Trop Dis 2016; 10:e0004300. [PMID: 26735851 PMCID: PMC4703370 DOI: 10.1371/journal.pntd.0004300] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022] Open
Abstract
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature. Neglected tropical diseases are human infectious diseases that are often associated with poverty. Historically, lack of interest from the pharmaceutical industry resulted in the lack of good drugs to combat the majority of the pathogens that cause these diseases. Recently, the availability of open chemical information has increased with the advent of public domain chemical resources and the release of data from high throughput screening assays. Our aim in this work was to make use of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to prioritize and identify candidate drug targets in neglected pathogen proteomes, and drug-like bioactive molecules to foster drug development against neglected diseases. Our approach to the problem relied on applying bioinformatics and computational biology strategies to model large datasets spanning complete proteomes and extensive chemical information from publicly available sources. As a result, we were able to prioritize drug targets and identify potential targets for orphan bioactive drugs.
Collapse
Affiliation(s)
- Ariel José Berenstein
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Magariños
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Laboratorio de Bioinformática, Fundación Instituto Leloir, Buenos Aires, Argentina
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernán Agüero
- Laboratorio de Genómica y Bioinformática, Instituto de Investigaciones Biotecnológicas–Instituto Tecnológico de Chascomús, Universidad de San Martín–CONICET, Sede San Martín, San Martín, Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
5
|
Zheng NN, Yue YL, Zheng Y, Liu H, Zhang CF, Chen WG. Hydrogen sulfide promotes proliferation of hepatocytes from hepatic fibrosis rats via p38MAPK signal pathway. Shijie Huaren Xiaohua Zazhi 2015; 23:901-906. [DOI: 10.11569/wcjd.v23.i6.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulatory effect of hydrogen sulfide (H2S) on proliferation and apoptosis of hepatocytes from hepatic fibrosis rats and the underlying mechanism.
METHODS: Carbon tetrachloride was used to induce liver fibrosis in rats. Hepatocytes were isolated from the fibrotic liver rats and divided into a control group, an H2S group, an SB203580 group, and an SB203580 + H2S group. MTT assay was used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect apoptosis of hepatocytes. Western blot was used to measure P-p38MAPK protein expression.
RESULTS: Compared with the control group, H2S at 50 μmol/L promoted hepatocyte proliferation (P = 0.000), but had no significant impact on apoptosis of hepatocytes. SB203580 could inhibit hepatocyte proliferation in a dose-dependent manner (P =0.000), but induce cell apoptosis (P = 0.000). The expression of P-p38MAPK was detected in all four groups of cells. H2S up-regulated the expression of P-p38MAPK protein when compared to the control group (P = 0.000). The expression of P-p38MAPK was significantly lower in the SB203580 group and SB203580 + H2S group than in the control group and H2S group (P = 0.000).
CONCLUSION: H2S at 50 μmol/L has no apoptosis inducing effect on hepatocytes from hepatic fibrosis rats, but promotes hepatocyte proliferation possibly through activating the p38MAPK signal pathway.
Collapse
|
6
|
Williard DE, Twait E, Yuan Z, Carter AB, Samuel I. Nuclear factor kappa B-dependent gene transcription in cholecystokinin- and tumor necrosis factor-alpha-stimulated isolated acinar cells is regulated by p38 mitogen-activated protein kinase. Am J Surg 2010; 200:283-90. [PMID: 20413104 DOI: 10.1016/j.amjsurg.2009.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mitogen-activated protein (MAP) kinases and nuclear factor kappa B (NF-kappaB) are implicated in early stages of acute pancreatitis pathogenesis. We investigated the relationship between the p38 MAP kinase and NF-kappaB in isolated acinar cells. METHODS Isolated rodent acinar cells were stimulated with agonists after infection with an adenovector containing a luciferase promoter driven only by NF-kappaB and an adenovector containing the dominant negative (DN) form of p38 (empty vector in controls). RESULTS Initial immunoblots confirmed that the agonist stimulated p38 activation in acinar cells was substantially attenuated by DN p38 overexpression. Stimulation of native cholecystokinin (CCK)-A receptors or tumor necrosis factor-alpha (TNF-alpha) receptors promoted a significant increase in NF-kappaB-dependent gene transcription in cells infected with the empty vector, while overexpression of DN p38 significantly abrogated NF-kappaB-dependent luciferase activity. CONCLUSIONS These findings support our hypothesis that p38 is involved in the activation of proinflammatory nuclear transcription factors such as NF-kappaB in pancreatic exocrine cells.
Collapse
|
7
|
Chan PS, Koon HK, Wu ZG, Wong RNS, Lung ML, Chang CK, Mak NK. Role of p38 MAPKs in hypericin photodynamic therapy-induced apoptosis of nasopharyngeal carcinoma cells. Photochem Photobiol 2009; 85:1207-17. [PMID: 19496992 DOI: 10.1111/j.1751-1097.2009.00572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aims to determine the role of mitogen-activated protein kinases (MAPKs) in hypericin-mediated photodynamic therapy (HY-PDT)-induced apoptosis of the HK-1 nasopharyngeal carcinoma (NPC) cells. HY-PDT was found to induce proteolytic cleavage of procaspase-9 and -3 in HK-1 cells. Apoptotic nuclei were observed at 6 h after PDT whereas B-cell leukemia/lymphoma-2-associated-X-protein (Bax) translocation and formation of Bax channel is responsible for the cell death. Increase in phosphorylation of p38 MAPKs and c-Jun N-terminal kinase 1/2 (JNK1/2) was detected at 15-30 min after HY-PDT. The appearance of phosphorylated form of p38 MAPKs and JNK1/2 was inhibited by the singlet oxygen scavenger l-histidine. HY-PDT-induced cell death was enhanced by the chemical inhibitors for p38 MAPKs (SB202190 and SB203580), but not by the JNKs inhibitor SP600125. Knockdown of the p38alpha and p38beta MAPK isoforms by small interfering RNA (siRNA) are more effective than the p38delta in enhancing PDT-induced cell death. Augmentation of apoptosis by p38alpha or p38beta knockdown is also correlated with the increased proteolytic cleavage of procaspase-9 after HY-PDT treatment. Our results suggested that HY-PDT activated p38 MAPKs through the production of singlet oxygen. Inhibition of p38 MAPKs with chemical inhibitors or siRNA enhances HY-PDT-induced apoptosis of the HK-1 NPC cells.
Collapse
Affiliation(s)
- Pui S Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu HX, Henson BS, Zhou Y, D'Silva NJ, Mistretta CM. Fungiform papilla pattern: EGF regulates inter-papilla lingual epithelium and decreases papilla number by means of PI3K/Akt, MEK/ERK, and p38 MAPK signaling. Dev Dyn 2009; 237:2378-93. [PMID: 18729215 DOI: 10.1002/dvdy.21657] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fungiform papillae are epithelial taste organs that form on the tongue, requiring differentiation of papillae and inter-papilla epithelium. We tested roles of epidermal growth factor (EGF) and the receptor EGFR in papilla development. Developmentally, EGF was localized within and between papillae whereas EGFR was progressively restricted to inter-papilla epithelium. In tongue cultures, EGF decreased papillae and increased cell proliferation in inter-papilla epithelium in a concentration-dependent manner, whereas EGFR inhibitor increased and fused papillae. EGF preincubation could over-ride disruption of Shh signaling that ordinarily would effect a doubling of fungiform papillae. With EGF-induced activation of EGFR, we demonstrated phosphorylation in PI3K/Akt, MEK/ERK, and p38 MAPK pathways; with pathway inhibitors (LY294002, U0126, SB203580) the EGF-mediated decrease in papillae was reversed, and synergistic actions were shown. Thus, EGF/EGFR signaling by means of PI3K/Akt, MEK/ERK, and p38 MAPK contributes to epithelial cell proliferation between papillae; this biases against papilla differentiation and reduces numbers of papillae.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | |
Collapse
|
9
|
Brouillette Y, Lisowski V, Martinez J. Thieno[3,2-e]diazepinediones and 3-Thienylimidazolidinediones Syntheses: Regio-Controlled Ring Opening of Thiaisatoic Anhydride by α-Amino Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:9-10. [DOI: 10.1007/978-0-387-73657-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Ross-Macdonald P, de Silva H, Guo Q, Xiao H, Hung CY, Penhallow B, Markwalder J, He L, Attar RM, Lin TA, Seitz S, Tilford C, Wardwell-Swanson J, Jackson D. Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol Cancer Ther 2008; 7:3490-8. [PMID: 19001433 DOI: 10.1158/1535-7163.mct-08-0826] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In developing inhibitors of the LIM kinases, the initial lead molecules combined potent target inhibition with potent cytotoxic activity. However, as subsequent compounds were evaluated, the cytotoxic activity separated from inhibition of LIM kinases. A rapid determination of the cytotoxic mechanism and its molecular target was enabled by integrating data from two robust core technologies. High-content assays and gene expression profiling both indicated an effect on microtubule stability. Although the cytotoxic compounds are still kinase inhibitors, and their structures did not predict tubulin as an obvious target, these results provided the impetus to test their effects on microtubule polymerization directly. Unexpectedly, we confirmed tubulin itself as a molecular target of the cytotoxic kinase inhibitor compounds. This general approach to mechanism of action questions could be extended to larger data sets of quantified phenotypic and gene expression data.
Collapse
|
11
|
Liu YC, Ko CC, Cheng FC, Huang PT, Lou KL, Chow LP. Identification of a novel competitive inhibitor of p38alpha MAPK by a human PBMC screen. Biochem Biophys Res Commun 2007; 352:656-61. [PMID: 17141198 DOI: 10.1016/j.bbrc.2006.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022]
Abstract
The pro-inflammatory cytokines TNF-alpha and IL-1beta are two of the important mediators involved in the several chronic inflammatory diseases. We used the release of TNF-alpha and IL-1beta from lipopolysaccharide-stimulated human PBMC as inflammatory indexes to discover the potential anti-inflammatory candidates. Among near 500 chemical compounds, MT4 had the suppressive action on the release of TNF-alpha and IL-1beta in PBMC with IC50 values of 22 and 44 nM, respectively. After verified the MT4 inhibitory mechanism, the results revealed that p38alpha and p38beta MAPK activity was inhibited by MT4 with an IC50 value of 0.13 and 0.55 microM, respectively. Further characterization of enzyme kinetics showed the binding mode of MT4 was competitive with the ATP substrate-binding site of p38alpha MAPK.
Collapse
Affiliation(s)
- Yu-Chih Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Samuel I, Zaheer A, Fisher RA. In vitro evidence for role of ERK, p38, and JNK in exocrine pancreatic cytokine production. J Gastrointest Surg 2006; 10:1376-83. [PMID: 17175457 DOI: 10.1016/j.gassur.2006.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/13/2006] [Indexed: 02/07/2023]
Abstract
Elucidation of mechanisms of acinar cell cytokine production is essential for a better understanding of acute pancreatitis pathogenesis. We hypothesize that the stress kinases ERK, p38, and JNK play an important role in acinar cell cytokine production. Rat pancreatic fragments were incubated with 100 nM concentration of the cholecystokinin analog caerulein or 100 nM caerulein and specific ERK inhibitor (100 microM PD98059), specific p38 inhibitor (10 microM SB203580), or specific JNK inhibitor (20 microM SP600125). After 3 hours of caerulein treatment, pancreatic fragments were homogenized and assayed for total and phosphorylated ERK, p38, and JNK, and for tumor necrosis factor-alpha or interleukin-1beta concentrations (ELISA). Pancreatic fragments stimulated with caerulein showed activation of ERK, p38, and JNK and increased cytokine concentrations (ANOVA, P<0.05). Specific stress kinase inhibitors significantly attenuated caerulein-induced activation of the corresponding stress kinase and cytokine production; however, the effect of the JNK inhibitor was comparatively less convincing. Increased activation of ERK, p38, and JNK in pancreatic fragments was not associated with significant increases in total ERK, total p38, or total JNK concentrations. The stress kinases ERK and p38 play an important role in caerulein-stimulated exocrine pancreatic overproduction of cytokines. The role of JNK needs further evaluation in this experimental model.
Collapse
Affiliation(s)
- Isaac Samuel
- Department of Surgery, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, and Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
13
|
Funding AT, Johansen C, Kragballe K, Otkjaer K, Jensen UB, Madsen MW, Fjording MS, Finnemann J, Skak-Nielsen T, Paludan SR, Iversen L. Mitogen- and Stress-Activated Protein Kinase 1 Is Activated in Lesional Psoriatic Epidermis and Regulates the Expression of Pro-Inflammatory Cytokines. J Invest Dermatol 2006; 126:1784-91. [PMID: 16543895 DOI: 10.1038/sj.jid.5700252] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mitogen- and stress-activated protein kinase 1 (MSK1) is a downstream target of both the p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinases (MAPKs). MSK1 stimulates transcription of different pro-inflammatory genes through activation of transcription factors. The purpose of this study was to investigate the expression and activation of MSK1 in lesional psoriatic skin and its role in cytokine production in cultured normal human keratinocytes. Western blotting revealed a consistent and significant increase in phosphorylated (activated) MSK1(Ser376) in lesional psoriatic skin. Immunofluorescence staining revealed the phosphorylated MSK1(Thr581) to be localized in the basal layers of the epidermis in lesional psoriatic skin. No staining was found in non-lesional psoriatic skin. Cultured human keratinocytes incubated with anisomycin or IL-1beta resulted in the phosphorylation of the p38 MAPK and MSK1(Ser376). MSK1(Ser376) phosphorylation was inhibited by pre-incubation with the p38 inhibitor SB 202190. Transfection of the keratinocytes with specific MSK1 small interfering RNA resulted in 80% reduction of MSK1 expression and 51, 40, and 31% decrease in IL-6, IL-8, and tumor necrosis factor-alpha protein production, respectively. This study demonstrates for the first time the expression of MSK1 in epidermal keratinocytes and increased activation focally in psoriatic epidermis. As MSK1 regulates the production of pro-inflammatory cytokines, it may play a role in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Anne T Funding
- Department of Dermatology, Aarhus Sygehus, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tran MD, Neary JT. Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci U S A 2006; 103:9321-6. [PMID: 16754856 PMCID: PMC1482608 DOI: 10.1073/pnas.0603146103] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin (TSP)-1, a multidomain glycoprotein, is secreted from astrocytes and promotes synaptogenesis. However, little is known about the mechanisms regulating its expression and release. In this article, we report that purinergic signaling participates in the production and secretion of TSP-1. Treatment of primary cultures of rat cortical astrocytes with extracellular ATP caused an increase in TSP-1 expression in a time- and concentration-dependent manner and was inhibited by antagonists of P2 and P1 purinergic receptors. Agonist studies revealed that UTP, but not 2',3'-O-(4-benzoyl)benzoyl-ATP, 2-methylthio-ADP, adenosine, or 5'-N-ethyl-carboxamidoadenosine, caused a significant increase in TSP-1 expression. In addition, release of TSP-1 was stimulated by ATP and UTP but not by 2-methylthio-ADP or adenosine. Additional studies indicated that P2Y(4) receptors stimulate both TSP-1 expression and release. P2Y receptors are coupled to protein kinase cascades, and signaling studies demonstrated that blockade of mitogen-activated protein kinases or Akt inhibited ATP- and UTP-induced TSP-1 expression. Using an in vitro model of CNS trauma that stimulates release of ATP, we found that TSP-1 expression increased after mechanical strain and was completely blocked by a P2 receptor antagonist and by inhibition of p38/mitogen-activated protein kinase and Akt, thereby indicating a major role for P2 receptor/protein kinase signaling in TSP-1 expression induced by trauma. We conclude that TSP-1 expression can be regulated by activation of P2Y receptors, particularly P2Y(4), coupled to protein kinase signaling pathways and suggest that purinergic signaling may be an important factor in TSP-1-mediated cell-matrix and cell-cell interactions such as those occurring during development and repair.
Collapse
Affiliation(s)
- Minh D. Tran
- Research Service, Miami Veterans Affairs Medical Center, and Departments of Pathology, Biochemistry & Molecular Biology, and the Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33125
| | - Joseph T. Neary
- Research Service, Miami Veterans Affairs Medical Center, and Departments of Pathology, Biochemistry & Molecular Biology, and the Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33125
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
O'Hayre M, Taylor L, Andratsch M, Feifel E, Gstraunthaler G, Curthoys NP. Effects of constitutively active and dominant negative MAPK kinase (MKK) 3 and MKK6 on the pH-responsive increase in phosphoenolpyruvate carboxykinase mRNA. J Biol Chem 2005; 281:2982-8. [PMID: 16319064 DOI: 10.1074/jbc.m510084200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic acidosis is partially compensated by a pronounced increase in renal catabolism of glutamine. This adaptive response is sustained, in part, through increased expression of phosphoenolpyruvate carboxykinase (PEPCK). Previous inhibitor studies suggested that the pH-responsive increase in PEPCK mRNA in LLC-PK1-FBPase+ cells is mediated by a p38 mitogen-activated protein kinase (MAPK). These cells express high levels of the upstream kinase MAPK kinase (MKK) 3 but relatively low levels of the alternative upstream kinase MKK6. To firmly establish the role of the p38 MAPK signaling pathway, clonal lines of LLC-PK1-FBPase+ cells that express constitutively active (ca) and dominant negative (dn) forms of MKK3 and MKK6 from a tetracycline-responsive promoter were developed. Western blot analyses confirmed that 0.5 microg/ml doxycycline was sufficient to block transcription and that removal of doxycycline led to pronounced and sustained expression of the caMKKs and dnMKKs. Expression of caMKK6 (but not caMKK3) caused an increase in phosphorylation of p38 MAPK and an increase in the level of PEPCK mRNA that closely mimicked the effect of treatment with acidic medium (pH 6.9, 10 mm HCO3-). Only caMKK6 activated transcription of a PEPCK-luciferase reporter construct. Co-expression of both dnMKKs blocked the increases in phosphorylation of p38 MAPK and PEPCK mRNA. The latter effect closely mimicked that of the p38 MAPK inhibitor SB203580. The expression of either dnMKK3 or dnMKK6 was less effective than co-expression of both dnMKKs. Thus, the pH-responsive increase in PEPCK mRNA in the kidney is mediated by the p38 MAPK signaling pathway and involves activation of MKK3 and/or MKK6.
Collapse
Affiliation(s)
- Morgan O'Hayre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523-1870, USA
| | | | | | | | | | | |
Collapse
|