1
|
Zheng W, Borja M, Dorman L, Liu J, Zhou A, Seng A, Arjyal R, Sunshine S, Nalyvayko A, Pisco A, Rosenberg O, Neff N, Zha BS. How Mycobacterium tuberculosis builds a home: Single-cell analysis reveals M. tuberculosis ESX-1-mediated accumulation of anti-inflammatory macrophages in infected mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590421. [PMID: 38712150 PMCID: PMC11071417 DOI: 10.1101/2024.04.20.590421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mycobacterium tuberculosis (MTB) infects and replicates in lung mononuclear phagocytes (MNPs) with astounding ability to evade elimination. ESX-1, a type VII secretion system, acts as a virulence determinant that contributes to MTB's ability to survive within MNPs, but its effect on MNP recruitment and/or differentiation remains unknown. Here, using single-cell RNA sequencing, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden. Further, MTB induces an anti-inflammatory signature in MNPs and BMDM in an ESX-1 dependent manner. Similarly, spatial transcriptomics revealed an upregulation of anti-inflammatory signals in MTB lesions, where monocyte-derived macrophages concentrate near MTB-infected cells. Together, our findings suggest that MTB ESX-1 mediates the recruitment and differentiation of anti-inflammatory MNPs, which MTB can infect and manipulate for survival.
Collapse
|
2
|
Hu Y, Liu C, Han W, Wang P. A theoretical framework of immune cell phenotypic classification and discovery. Front Immunol 2023; 14:1128423. [PMID: 36936975 PMCID: PMC10018129 DOI: 10.3389/fimmu.2023.1128423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Immune cells are highly heterogeneous and show diverse phenotypes, but the underlying mechanism remains to be elucidated. In this study, we proposed a theoretical framework for immune cell phenotypic classification based on gene plasticity, which herein refers to expressional change or variability in response to conditions. The system contains two core points. One is that the functional subsets of immune cells can be further divided into subdivisions based on their highly plastic genes, and the other is that loss of phenotype accompanies gain of phenotype during phenotypic conversion. The first point suggests phenotypic stratification or layerability according to gene plasticity, while the second point reveals expressional compatibility and mutual exclusion during the change in gene plasticity states. Abundant transcriptome data analysis in this study from both microarray and RNA sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells and monocytes supports the logical rationality and generality, as well as expansibility, across immune cells. A collection of thousands of known immunophenotypes reported in the literature further supports that highly plastic genes play an important role in maintaining immune cell phenotypes and reveals that the current classification model is compatible with the traditionally defined functional subsets. The system provides a new perspective to understand the characteristics of dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune system. Moreover, the current substantial results based on plasticitomics analysis of bulk and single-cell sequencing data provide a useful resource for big-data-driven experimental studies and knowledge discoveries.
Collapse
Affiliation(s)
- Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wenling Han
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University Center for Human Disease Genomics, Beijing, China
- *Correspondence: Pingzhang Wang,
| |
Collapse
|
3
|
Oliver TRW, Chappell L, Sanghvi R, Deighton L, Ansari-Pour N, Dentro SC, Young MD, Coorens THH, Jung H, Butler T, Neville MDC, Leongamornlert D, Sanders MA, Hooks Y, Cagan A, Mitchell TJ, Cortes-Ciriano I, Warren AY, Wedge DC, Heer R, Coleman N, Murray MJ, Campbell PJ, Rahbari R, Behjati S. Clonal diversification and histogenesis of malignant germ cell tumours. Nat Commun 2022; 13:4272. [PMID: 35953478 PMCID: PMC9372159 DOI: 10.1038/s41467-022-31375-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/21/2022] Open
Abstract
Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | | | | | | | | | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Urology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Matthew J Murray
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Chai Z, Wu Z, Ji Q, Wang J, Wang J, Wang H, Zhang C, Zhong J, Xin J. Genome-Wide DNA Methylation and Hydroxymethylation Changes Revealed Epigenetic Regulation of Neuromodulation and Myelination in Yak Hypothalamus. Front Genet 2021; 12:592135. [PMID: 34646294 PMCID: PMC8503545 DOI: 10.3389/fgene.2021.592135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are important epigenetic modifications in neurodevelopment. However, there is little research examining the genome-wide patterns of 5mC and 5hmC in brain regions of animals under natural high-altitude conditions. We used oxidative reduced representation bisulfite sequencing (oxRRBS) to determine the 5mC and 5hmC sites in the brain, brainstem, cerebellum, and hypothalamus of yak and cattle. We reported the first map of genome-wide DNA methylation and hydroxymethylation in the brain, brainstem, cerebellum, and hypothalamus of yak (living at high altitudes) and cattle. Overall, we found striking differences in 5mC and 5hmC between the hypothalamus and other brain regions in both yak and cattle. Genome-wide profiling revealed that 5mC level decreased and 5hmC level increased in the hypothalamus than in other regions. Furthermore, we identified differentially methylated regions (DMRs) and differentially hydroxymethylated regions (DhMRs), most of which overlapped with each other. Interestingly, transcriptome results for these brain regions also showed distinctive gene levels in the hypothalamus. Finally, differentially expressed genes (DEGs) regulated by DMRs and DhMRs may play important roles in neuromodulation and myelination. Overall, our results suggested that mediation of 5mC and 5hmC on epigenetic regulation may broadly impact the development of hypothalamus and its biological functions.
Collapse
Affiliation(s)
- Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiumei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chengfu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jinwei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Science and Veterinary Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
5
|
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged Proteins and Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905309. [PMID: 31943419 DOI: 10.1002/adma.201905309] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.
Collapse
Affiliation(s)
- Chao Ma
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anke Malessa
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J Boersma
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
6
|
Meng S, Zhan S, Dou W, Ge W. The interactome and proteomic responses of ALKBH7 in cell lines by in-depth proteomics analysis. Proteome Sci 2019; 17:8. [PMID: 31889914 PMCID: PMC6935500 DOI: 10.1186/s12953-019-0156-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/19/2019] [Indexed: 03/05/2023] Open
Abstract
Background ALKBH7 is a mitochondrial protein, involved in programmed necrosis, fatty acid metabolism, cell cycle regulation, and prostate cancer disease. However, the exact roles of ALKBH7 and the underlying molecular mechanisms remain mysterious. Thus, investigations of the interactome and proteomic responses of ALKBH7 in cell lines using proteomics strategies are urgently required. Methods In the present study, we investigated the interactome of ALKBH7 in mitochondria through immunoprecipitation-mass spectrometry/mass spectrometry (IP-MS/MS). Additionally, we established the ALKBH7 knockdown and overexpression cell lines and further identified the differentially expressed proteins (DEPs) in these cell lines by TMT-based MS/MS. Two DEPs (UQCRH and HMGN1) were validated by western blotting analysis. Results Through bioinformatic analysis the proteomics data, we found that ALKBH7 was involved in protein homeostasis and cellular immunity, as well as cell proliferation, lipid metabolism, and programmed necrosis by regulating the expression of PTMA, PTMS, UQCRH, HMGN1, and HMGN2. Knockdown of ALKBH7 resulted in upregulation of UQCRH and HMGN1 expression, and the opposite pattern of expression was detected in ALKBH7 overexpression cell lines; these results were consistent with our proteomics data. Conclusion Our findings indicate that the expression of UQCRH and HMGN1 is regulated by ALKBH7, which provides potential directions for future studies of ALKBH7. Furthermore, our results also provide comprehensive insights into the molecular mechanisms and pathways associated with ALKBH7.
Collapse
Affiliation(s)
- Shu Meng
- 1State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dongdan Santiao, Dongcheng District, Beijing, 100005 China
| | - Shaohua Zhan
- 1State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dongdan Santiao, Dongcheng District, Beijing, 100005 China.,2National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,6Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730 People's Republic of China
| | - Wanchen Dou
- 3Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Wei Ge
- 1State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, No.5 Dongdan Santiao, Dongcheng District, Beijing, 100005 China.,4Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000 China.,5State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
7
|
The Chinese Medicinal Formulation Guzhi Zengsheng Zhitongwan Modulates Chondrocyte Structure, Dynamics, and Metabolism by Controlling Multiple Functional Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9847286. [PMID: 30596102 PMCID: PMC6282133 DOI: 10.1155/2018/9847286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.
Collapse
|
8
|
Broséus J, Chen G, Hergalant S, Ramstein G, Mounier N, Guéant JL, Feugier P, Gisselbrecht C, Thieblemont C, Houlgatte R. Relapsed diffuse large B-cell lymphoma present different genomic profiles between early and late relapses. Oncotarget 2018; 7:83987-84002. [PMID: 27276707 PMCID: PMC5356640 DOI: 10.18632/oncotarget.9793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/13/2016] [Indexed: 01/12/2023] Open
Abstract
Despite major advances in first-line treatment, a significant proportion of patients with diffuse large B-cell lymphoma (DLBCL) will experience treatment failure. Prognosis is particularly poor for relapses occurring less than one year after the end of first-line treatment (early relapses/ER) compared to those occurring more than one year after (late relapses/LR). To better understand genomic alterations underlying the delay of relapse, we identified copy number variations (CNVs) on 39 tumor samples from a homogeneous series of patients included in the Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) prospective study. To identify CNVs associated with ER or LR, we devised an original method based on Significance Analysis of Microarrays, a permutation-based method which allows control of false positives due to multiple testing. Deletions of CDKN2A/B (28%) and IBTK (23%) were frequent events in relapsed DLBCLs. We identified 56 protein-coding genes and 25 long non-coding RNAs with significantly differential CNVs distribution between ER and LR DLBCLs, with a false discovery rate < 0.05. In ER DLBCLs, CNVs were related to transcription regulation, cell cycle and apoptosis, with duplications of histone H1T (31%), deletions of DIABLO (26%), PTMS (21%) and CK2B (15%). In LR DLBCLs, CNVs were related to immune response, with deletions of B2M (20%) and CD58 (10%), cell proliferation regulation, with duplications of HES1 (25%) and DVL3 (20%), and transcription regulation, with MTERF4 deletions (20%). This study provides new insights into the genetic aberrations in relapsed DLBCLs and suggest pathway-targeted therapies in ER and LR DLBCLs.
Collapse
Affiliation(s)
- Julien Broséus
- Inserm U954, Faculty of Medicine, Nancy, France.,Hematology, Laboratory Department, University Hospital of Nancy, Nancy, France
| | - Gaili Chen
- ZhongNan Hospital of Wuhan University, Wuhan, China
| | | | | | - Nicolas Mounier
- Hemato-oncology, University Hospital of l'Archet, Nice, France
| | - Jean-Louis Guéant
- Inserm U954, Faculty of Medicine, Nancy, France.,Biochemistry, Laboratory Department, University Hospital of Nancy, Nancy, France
| | - Pierre Feugier
- Inserm U954, Faculty of Medicine, Nancy, France.,Hematology Department, University Hospital of Nancy, Nancy, France
| | | | - Catherine Thieblemont
- APHP, Saint-Louis Hospital, Hemato-Oncology Department, Paris, France.,Paris Diderot University-Sorbonne Paris-Cité, Paris, France
| | - Rémi Houlgatte
- Inserm U954, Faculty of Medicine, Nancy, France.,DRCI, University Hospital of Nancy, Nancy, France
| |
Collapse
|
9
|
Arnold N, Girke T, Sureshchandra S, Nguyen C, Rais M, Messaoudi I. Genomic and functional analysis of the host response to acute simian varicella infection in the lung. Sci Rep 2016; 6:34164. [PMID: 27677639 PMCID: PMC5039758 DOI: 10.1038/srep34164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, CA, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
| | - Christina Nguyen
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, CA, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
10
|
Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res 2015; 10:1356-8. [PMID: 26604878 PMCID: PMC4625483 DOI: 10.4103/1673-5374.165209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 12/11/2022] Open
Abstract
The brain and spinal cord can not replace neurons or supporting glia that are lost through traumatic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this field needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate patient-specific replacement cells is to reprogram autologous cells such as fibroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms fibroblasts into the final graftable cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efficiency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.
Collapse
Affiliation(s)
- Danju Tso
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Randall D. McKinnon
- Department of Surgery (Neurosurgery), Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Aruni AW, Zhang K, Dou Y, Fletcher H. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways. Infect Immun 2014; 82:3261-74. [PMID: 24866790 PMCID: PMC4136196 DOI: 10.1128/iai.01727-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Changes in periodontal status are associated with shifts in the composition of the bacterial community in the periodontal pocket. The relative abundances of several newly recognized microbial species, including Filifactor alocis, as-yet-unculturable organisms, and other fastidious organisms have raised questions on their impact on disease development. We have previously reported that the virulence attributes of F. alocis are enhanced in coculture with Porphyromonas gingivalis. We have evaluated the proteome of host cells and F. alocis during a polymicrobial infection. Coinfection of epithelial cells with F. alocis and P. gingivalis strains showed approximately 20% to 30% more proteins than a monoinfection. Unlike F. alocis ATCC 35896, the D-62D strain expressed more proteins during coculture with P. gingivalis W83 than with P. gingivalis 33277. Proteins designated microbial surface component-recognizing adhesion matrix molecules (MSCRAMMs) and cell wall anchor proteins were highly upregulated during the polymicrobial infection. Ultrastructural analysis of the epithelial cells showed formation of membrane microdomains only during coinfection. The proteome profile of epithelial cells showed proteins related to cytoskeletal organization and gene expression and epigenetic modification to be in high abundance. Modulation of proteins involved in apoptotic and cell signaling pathways was noted during coinfection. The enhanced virulence potential of F. alocis may be related to the differential expression levels of several putative virulence factors and their effects on specific host cell pathways.
Collapse
Affiliation(s)
- A Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Kangling Zhang
- University of Texas Medical branch at Galveston, Galveston, Texas, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
12
|
Khan H, Cino EA, Brickenden A, Fan J, Yang D, Choy WY. Fuzzy Complex Formation between the Intrinsically Disordered Prothymosin α and the Kelch Domain of Keap1 Involved in the Oxidative Stress Response. J Mol Biol 2013; 425:1011-27. [DOI: 10.1016/j.jmb.2013.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/04/2012] [Accepted: 01/03/2013] [Indexed: 12/30/2022]
|
13
|
MicroRNA-22 can reduce parathymosin expression in transdifferentiated hepatocytes. PLoS One 2012; 7:e34116. [PMID: 22493679 PMCID: PMC3320904 DOI: 10.1371/journal.pone.0034116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/26/2012] [Indexed: 12/27/2022] Open
Abstract
Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV) replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3′ UTR of parathymosin, by the 3′ UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.
Collapse
|
14
|
Tanikawa C, Espinosa M, Suzuki A, Masuda K, Yamamoto K, Tsuchiya E, Ueda K, Daigo Y, Nakamura Y, Matsuda K. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 2012; 3:676. [PMID: 22334079 DOI: 10.1038/ncomms1676] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/11/2012] [Indexed: 01/17/2023] Open
Abstract
Histone proteins are modified in response to various external signals; however, their mechanisms are still not fully understood. Citrullination is a post-transcriptional modification that converts arginine in proteins into citrulline. Here we show in vivo and in vitro citrullination of the arginine 3 residue of histone H4 (cit-H4R3) in response to DNA damage through the p53-PADI4 pathway. We also show DNA damage-induced citrullination of Lamin C. Cit-H4R3 and citrullinated Lamin C localize around fragmented nuclei in apoptotic cells. Ectopic expression of PADI4 leads to chromatin decondensation and promotes DNA cleavage, whereas Padi4(-/-) mice exhibit resistance to radiation-induced apoptosis in the thymus. Furthermore, the level of cit-H4R3 is negatively correlated with p53 protein expression and with tumour size in non-small cell lung cancer tissues. Our findings reveal that cit-H4R3 may be an 'apoptotic histone code' to detect damaged cells and induce nuclear fragmentation, which has a crucial role in carcinogenesis.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Basappa J, Turcan S, Vetter DE. Corticotropin-releasing factor-2 activation prevents gentamicin-induced oxidative stress in cells derived from the inner ear. J Neurosci Res 2010; 88:2976-90. [PMID: 20544827 PMCID: PMC2947086 DOI: 10.1002/jnr.22449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Generation of reactive oxygen species (ROS) is a common denominator in many conditions leading to cell death in the cochlea, yet little is known of the cochlea's endogenous mechanisms involved in preventing oxidative stress and its consequences in the cochlea. We have recently described a corticotropin-releasing factor (CRF) signaling system in the inner ear involved in susceptibility to noise-induced hearing loss. We use biochemical and proteomics assays to define further the role of CRF signaling in the response of cochlear cells to aminoglycoside exposure. We demonstrate that activity via the CRF(2) class of receptors protects against aminoglycoside-induced ROS production and activation of cell death pathways. This study suggests for the first time a role for CRF signaling in protecting the cochlea against oxidative stress, and our proteomics data suggest novel mechanisms beyond induction of free radical scavengers that are involved in its protective mechanisms.
Collapse
Affiliation(s)
- Johnvesly Basappa
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Sevin Turcan
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
- Biomedical Engineering Program, Tufts University, Medford, Massachusetts
| | - Douglas E. Vetter
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
16
|
Chen M, Wang Y, Zhao Y, Wang L, Gong J, Wu L, Gao X, Yang Z, Qian L. Dynamic proteomic and metabonomic analysis reveal dysfunction and subclinical injury in rat liver during restraint stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1751-65. [DOI: 10.1016/j.bbapap.2009.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/28/2022]
|
17
|
Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009; 7:17. [PMID: 19292913 PMCID: PMC2666642 DOI: 10.1186/1479-5876-7-17] [Citation(s) in RCA: 469] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023] Open
Abstract
The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.
Collapse
Affiliation(s)
- Louis J Sparvero
- Departments of Surgery and Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Evidence that human blastomere cleavage is under unique cell cycle control. J Assist Reprod Genet 2009; 26:187-95. [PMID: 19288185 PMCID: PMC2682187 DOI: 10.1007/s10815-009-9306-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 02/16/2009] [Indexed: 11/21/2022] Open
Abstract
Purpose To understand the molecular pathways that control early human embryo development. Methods Improved methods of linear amplification of mRNAs and whole human genome microarray analyses were utilized to characterize gene expression in normal appearing 8-Cell human embryos, in comparison with published microarrays of human fibroblasts and pluripotent stem cells. Results Many genes involved in circadian rhythm and cell division were over-expressed in the 8-Cells. The cell cycle checkpoints, RB and WEE1, were silent on the 8-Cell arrays, whereas the recently described tumor suppressor, UHRF2, was up-regulated >10-fold, and the proto-oncogene, MYC, and the core element of circadian rhythm, CLOCK, were elevated up to >50-fold on the 8-Cell arrays. Conclusions The canonical G1 and G2 cell cycle checkpoints are not active in totipotent human blastomeres, perhaps replaced by UHRF2, MYC, and intracellular circadian pathways, which may play important roles in early human development. Electronic supplementary material The online version of this article (doi:10.1007/s10815-009-9306-x) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Ayala YM, Zago P, D'Ambrogio A, Xu YF, Petrucelli L, Buratti E, Baralle FE. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 2008; 121:3778-85. [PMID: 18957508 DOI: 10.1242/jcs.038950] [Citation(s) in RCA: 478] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 (also known as TARDBP) regulates different processes of gene expression, including transcription and splicing, through RNA and DNA binding. Moreover, recent reports have shown that the protein interacts with the 3'UTRs of specific mRNAs. The aberrant cellular distribution and aggregation of TDP-43 were recently reported in neurodegenerative diseases, namely frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A detailed description of the determinants for cellular localization has yet to emerge, including information on how the known functions of TDP-43 and cellular targeting affect each other. We provide the first experimental evidence that TDP-43 continuously shuttles between nucleus and cytoplasm in a transcription-dependent manner. Furthermore, we investigate the role of the functional TDP-43 domains in determining cellular targeting through a combination of immunofluorescence and biochemical fractionation methods. Our analyses indicate that the C-terminus is essential for solubility and cellular localization, because its deletion results in the formation of large nuclear and cytoplasmic aggregates. Disruption of the RNA-recognition domain required for RNA and DNA binding, however, alters nuclear distribution by decreasing TDP-43 presence in the nucleoplasm. Our findings suggest that TDP-43 solubility and localization are particularly sensitive to disruptions that extend beyond the newly found nuclear localization signal and depend on a combination of factors that are closely connected to the functional properties of this protein.
Collapse
Affiliation(s)
- Youhna M Ayala
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34012 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Boraldi F, Annovi G, Carraro F, Naldini A, Tiozzo R, Sommer P, Quaglino D. Hypoxia influences the cellular cross-talk of human dermal fibroblasts. A proteomic approach. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1402-13. [PMID: 17904921 DOI: 10.1016/j.bbapap.2007.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 11/18/2022]
Abstract
The ability of cells to respond to changes in oxygen availability is critical for many physiological and pathological processes (i.e. development, aging, wound healing, hypertension, cancer). Changes in the protein profile of normal human dermal fibroblasts were investigated in vitro after 96 h in 5% CO(2) and 21% O(2) (pO(2) = 140 mm Hg) or 2% O(2) (pO(2) = 14 mm Hg), these parameters representing a mild chronic hypoxic exposure which fibroblasts may undergo in vivo. The proliferation rate and the protein content were not significantly modified by hypoxia, whereas proteome analysis demonstrated changes in the expression of 56 proteins. Protein identification was performed by mass spectrometry. Data demonstrate that human fibroblasts respond to mild hypoxia increasing the expression of hypoxia inducible factor (HIF1a) and of the 150-kDa oxygen-regulated protein. Other differentially expressed proteins appeared to be related to stress response, transcriptional control, metabolism, cytoskeleton, matrix remodelling and angiogenesis. Furthermore, some of them, like galectin 1, 40S ribosomal protein SA, N-myc-downstream regulated gene-1 protein, that have been described in the literature as possible cancer markers, significantly changed their expression also in normal hypoxic fibroblasts. Interestingly, a bovine fetuin was also identified that appeared significantly less internalised by hypoxic fibroblasts. In conclusion, results indicate that human dermal fibroblasts respond to an in vitro mild chronic hypoxic exposure by modifying a number of multifunctional proteins. Furthermore, data highlight the importance of stromal cells in modulating the intercellular cross-talk occurring in physiological and in pathologic conditions.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Catez F, Ueda T, Bustin M. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 2006; 13:305-10. [PMID: 16715048 PMCID: PMC3730444 DOI: 10.1038/nsmb1077] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dynamic interaction of chromatin-binding proteins with their nucleosome binding sites is an important element in regulating the structure and function of chromatin in living cells. Here we review the major factors regulating the intranuclear mobility and chromatin binding of the linker histone H1, the most abundant family of nucleosome-binding proteins. The information available reveals that multiple and diverse factors modulate the interaction of H1 with chromatin at both a local and global level. This multifaceted mode of modulating the interaction of H1 with nucleosomes is part of the mechanism that regulates the dynamics of the chromatin fiber in living cells.
Collapse
Affiliation(s)
- Frédéric Catez
- Protein Section, Laboratory of Metabolism, National Cancer Institute (NCI), US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem 2005; 280:36986-93. [PMID: 16150697 DOI: 10.1074/jbc.m506056200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macromolecular translocation inhibitor II (MTI-II), which was first identified as an in vitro inhibitor of binding between the highly purified glucocorticoid receptor (GR) and isolated nuclei, is an 11.5-kDa Zn(2+)-binding protein that is also known as ZnBP or parathymosin. MTI-II is a small nuclear acidic protein that is highly conserved in rats, cows, and humans and widely distributed in mammalian tissues, yet its physiological function is unknown. To elucidate its in vivo function in relation to GR, we transiently transfected mammalian cells with an expression plasmid encoding MTI-II. Unexpectedly, we found that the expression of MTI-II enhances the transcriptional activity of GR. The magnitude of the transcriptional enhancement induced by MTI-II is comparable with that induced by the steroid receptor coactivator SRC-1. In contrast, MTI-II had little effect on the transcriptional activity of estrogen receptor. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, GR coprecipitates with MTI-II, and, vice versa, MTI-II coprecipitates with GR. The expression of various deletion mutants of MTI-II revealed that the central acidic domain is essential for the enhancement of GR-dependent transcription. Microscopic analysis of MTI-II fused to green fluorescent protein and GR fused to red fluorescent protein in living HeLa cells showed that MTI-II colocalizes with GR in discrete subnuclear domains in a hormone-dependent manner. Coexpression of MTI-II with the coactivator SRC-1 or p300 further enhances GR-dependent transcription. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, p300 and CREB-binding protein are coprecipitated with MTI-II. Furthermore, the knockdown of endogenous MTI-II by RNAi reduces the transcriptional activity of GR in cells. Moreover, expression of MTI-II enhances the glucocorticoid-dependent transcription of the endogenous glucocorticoid-inducible enzyme in cells. Taken together, these results indicate that MTI-II enhances GR-dependent transcription via a direct interaction with GR in vivo. Thus, MTI-II is a new member of the GR-coactivator complex.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Department of Biochemistry, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | |
Collapse
|
23
|
Kepert JF, Mazurkiewicz J, Heuvelman GL, Tóth KF, Rippe K. NAP1 Modulates Binding of Linker Histone H1 to Chromatin and Induces an Extended Chromatin Fiber Conformation. J Biol Chem 2005; 280:34063-72. [PMID: 16105835 DOI: 10.1074/jbc.m507322200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NAP1 (nucleosome assembly protein 1) is a histone chaperone that has been described to bind predominantly to the histone H2A.H2B dimer in the cell during shuttling of histones into the nucleus, nucleosome assembly/remodeling, and transcription. Here it was examined how NAP1 interacts with chromatin fibers isolated from HeLa cells. NAP1 induced a reversible change toward an extended fiber conformation as demonstrated by sedimentation velocity ultracentrifugation experiments. This transition was due to the removal of the linker histone H1. The H2A.H2B dimer remained stably bound to the native fiber fragments and to fibers devoid of linker histone H1. This was in contrast to mononucleosome substrates, which displayed a NAP1-induced removal of a single H2A.H2B dimer from the core particle. The effect of NAP1 on the chromatin fiber structure was examined by scanning/atomic force microscopy. A quantitative image analysis of approximately 36,000 nucleosomes revealed an increase of the average internucleosomal distance from 22.3 +/- 0.4 to 27.6 +/- 0.6 nm, whereas the overall fiber structure was preserved. This change reflects the disintegration of the chromatosome due to binding of H1 to NAP1 as chromatin fibers stripped from H1 showed an average nucleosome distance of 27.4 +/- 0.8 nm. The findings suggest a possible role of NAP1 in chromatin remodeling processes involved in transcription and replication by modulating the local linker histone content.
Collapse
Affiliation(s)
- J Felix Kepert
- Kirchhoff-Institut für Physik, Molecular Biophysics Group, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|