1
|
The Novel Peptide Chm-273s Has Therapeutic Potential for Metabolic Disorders: Evidence from In Vitro Studies and High-Sucrose Diet and High-Fat Diet Rodent Models. Pharmaceutics 2022; 14:pharmaceutics14102088. [PMID: 36297523 PMCID: PMC9611607 DOI: 10.3390/pharmaceutics14102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop a novel peptide potentially applicable for the treatment of metabolic conditions, such as obesity and type 2 diabetes (T2D). We identified CHM-273S from the list of peptides from milk hydrolysate obtained by HPLC/MS-MS. In vitro analysis of primary murine fibroblasts indicated the potential of CHM-273S to upregulate IRS2 mRNA expression. CHM-273S showed a prominent anorexigenic effect in mice with the induction of a key mechanism of leptin signaling via STAT3 in the hypothalamus as a possible effector. In the animal model of metabolic disease, CHM-273S alleviated glucose intolerance and insulin resistance, and induced phosphorylation of Akt at Ser473 and Thr308 in the hepatocytes of high-sucrose diet-fed rats. In a murine model of T2D, CHM-273S mitigated high-fat diet-induced hyperglycemia and insulin resistance and improved low-grade inflammation by diminishing serum TNFα. Mice treated with chronic CHM-273S had a significant reduction in body weight, with a lower visceral fat pad weight and narrow adipocytes. The effects of the peptide administration were comparable to those of metformin. We show the potential of CHM-273S to alleviate diet-induced metabolic alterations in rodents, substantiating its further development as a therapeutic for obesity, T2D, and other metabolic conditions.
Collapse
|
2
|
Omar IS, Abd Jamil AH, Mat Adenan NA, Chung I. MPA alters metabolic phenotype of endometrial cancer-associated fibroblasts from obese women via IRS2 signaling. PLoS One 2022; 17:e0270830. [PMID: 35816477 PMCID: PMC9273069 DOI: 10.1371/journal.pone.0270830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Obese women have a higher risk of developing endometrial cancer (EC) than lean women. Besides affecting EC progression, obesity also affects sensitivity of patients to treatment including medroxprogesterone acetate (MPA). Obese women have a lower response to MPA with an increased risk for tumor recurrence. While MPA inhibits the growth of normal fibroblasts, human endometrial cancer-associated fibroblasts (CAFs) were reported to be less responsive to MPA. However, it is still unknown how CAFs from obese women respond to progesterone. CAFs from the EC tissues of obese (CO) and non-obese (CN) women were established as primary cell models. MPA increased cell proliferation and downregulated stromal differentiation genes, including BMP2 in CO than in CN. Induction of IRS2 (a BMP2 regulator) mRNA expression by MPA led to activation of glucose metabolism in CO, with evidence of greater mRNA levels of GLUT6, GAPDH, PKM2, LDHA, and increased in GAPDH enzymatic activity. Concomitantly, MPA increased the mRNA expression of a fatty acid transporter, CD36 and lipid droplet formation in CO. MPA-mediated increase in glucose metabolism genes in CO was reversed with a progesterone receptor inhibitor, mifepristone (RU486), leading to a decreased proliferation. Our data suggests that PR signaling is aberrantly activated by MPA in CAFs isolated from endometrial tissues of obese women, leading to activation of IRS2 and glucose metabolism, which may lead to lower response and sensitivity to progesterone in obese women.
Collapse
Affiliation(s)
- Intan Sofia Omar
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Cancer Research Institute, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noor Azmi Mat Adenan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynaecology, Ara Damansara and Subang Jaya Medical Center, Ramsay Sime Darby Health Care, Subang Jaya, Selangor, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Ali G, Elsayed AK, Nandakumar M, Bashir M, Younis I, Abu Aqel Y, Memon B, Temanni R, Abubaker F, Taheri S, Abdelalim EM. Keratinocytes Derived from Patient-Specific Induced Pluripotent Stem Cells Recapitulate the Genetic Signature of Psoriasis Disease. Stem Cells Dev 2020; 29:383-400. [PMID: 31996098 PMCID: PMC7153648 DOI: 10.1089/scd.2019.0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is characterized by hyperproliferation and defective differentiation of keratinocytes (KCs). Patients with psoriasis are at a high risk of developing diabetes and cardiovascular diseases. The debate on the genetic origin of psoriasis pathogenesis remains unresolved due to lack of suitable in vitro human models mimicking the disease phenotypes. In this study, we provide the first human induced pluripotent stem cell (iPSC) model for psoriasis carrying the genetic signature of the patients. iPSCs were generated from patients with psoriasis (PsO-iPSCs) and healthy donors (Ctr-iPSCs) and were efficiently differentiated into mature KCs. RNA sequencing of KCs derived from Ctr-iPSCs and PsO-iPSCs identified 361 commonly upregulated and 412 commonly downregulated genes. KCs derived from PsO-iPSCs showed dysregulated transcripts associated with psoriasis and KC differentiation, such as HLA-C, KLF4, chemokines, type I interferon-inducible genes, solute carrier family, IVL, DSG1, and HLA-DQA1, as well as transcripts associated with insulin resistance, such as IRS2, GDF15, GLUT10, and GLUT14. Our data suggest that the KC abnormalities are the main driver triggering psoriasis pathology and highlights the substantial contribution of genetic predisposition in the development of psoriasis and insulin resistance.
Collapse
Affiliation(s)
- Gowher Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Bashir
- Department of Endocrinology, Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ihab Younis
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Yasmin Abu Aqel
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Ramzi Temanni
- Biomedical Informatics Division, Sidra Medicine, Doha, Qatar
| | - Fadhil Abubaker
- Computer Sciences Program, Carnegie Mellon University in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Shahrad Taheri
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
4
|
Mao N, Gao D, Hu W, Gadal S, Hieronymus H, Wang S, Lee YS, Sullivan P, Zhang Z, Choi D, Rosen N, Sawyers CL, Gopalan A, Chen Y, Carver BS. Oncogenic ERG Represses PI3K Signaling through Downregulation of IRS2. Cancer Res 2020; 80:1428-1437. [PMID: 32015092 DOI: 10.1158/0008-5472.can-19-1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Genomic rearrangements leading to the aberrant expression of ERG are the most common early events in prostate cancer and are significantly enriched for the concomitant loss of PTEN. Genetically engineered mouse models reveal that ERG overexpression alone is not sufficient to induce tumorigenesis, but combined loss of PTEN results in an aggressive invasive phenotype. Here, we show that oncogenic ERG repressed PI3K signaling through direct transcriptional suppression of IRS2, leading to reduced RTK levels and activity. In accordance with this finding, ERG-positive human prostate cancers had a repressed AKT gene signature and transcriptional downregulation of IRS2. Although overexpression of IRS2 activated PI3K signaling, promoting cell migration in a PI3K-dependent manner, this did not fully recapitulate the phenotype seen with loss of PTEN as PI3K signaling is not as robust as observed in the setting of loss of PTEN. Importantly, deletions of the PTEN locus, which promotes active PI3K signaling, were among the most significant copy-number alterations that co-occurred with ERG genomic rearrangements. This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote oncogenic signaling during tumor evolution. SIGNIFICANCE: This work provides insight on how initiating oncogenic events may directly influence the selection of secondary concomitant alterations to promote tumorigenesis.
Collapse
Affiliation(s)
- Ninghui Mao
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dong Gao
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wenhuo Hu
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sunyana Gadal
- Molecular Oncology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Haley Hieronymus
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shangqian Wang
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Young Sun Lee
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Sullivan
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zeda Zhang
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Danielle Choi
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neal Rosen
- Molecular Oncology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles L Sawyers
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett S Carver
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Weingarten G, Ben Yaakov A, Dror E, Russ J, Magin TM, Kahn CR, Wertheimer E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly. FASEB J 2018; 33:2241-2251. [PMID: 30332298 DOI: 10.1096/fj.201800847r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus prevalence is increasing rapidly and is a major cause of mortality and morbidity worldwide. In addition to the known severe complications associated with the disease, in recent years diabetes has been recognized as a major risk factor for cancer. Patients with diabetes experience significantly higher incidence of and higher mortality rates from many types of cancer. However, to date there are no conclusive data on the pathophysiology underlying the association between these two diseases. We previously reported that insulin regulates skin proliferation and differentiation, while IGF1 had different sometimes contrasting effects to those of insulin, suggesting direct involvement of insulin in transformation. To this end, we developed an epidermal skin-specific insulin receptor knockout (SIRKO) mouse, in which the insulin receptor (IR) is inactivated only in skin, with no other metabolic consequences. We found that IR inactivation by itself resulted in a marked decrease in skin tumorigenesis. In the control group 100% of the mice developed tumors, but in the SIRKO group tumor incidence was over 60% lower, and 25% of the SIRKO mice did not develop tumors at all, and the tumors that did develop were smaller and benign in their appearance. Furthermore, IR inactivation in vitro not only prevented cell transformation but also reversed the keratinocyte-transformed phenotype. We found that IR inactivation led to a striking abnormality in the major keratin cytoskeleton filaments structure in both in vivo and in vitro, a change that we were able to link to the decreased transformation potential in IR-null cells. In summary, we identified a unique pathway in which IR regulates cytoskeletal assembly, thus affecting skin transformation, opening a new potential target for cancer treatment and prevention.-Weingarten, G., Ben Yaakov, A., Dror, E., Russ, J., Magin, T. M., Kahn, C. R., Wertheimer, E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly.
Collapse
Affiliation(s)
- Galina Weingarten
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aya Ben Yaakov
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Dror
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jenny Russ
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thomas M Magin
- Institute of Biology and Sächsischer Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany; and
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Efrat Wertheimer
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Reynolds LJ, Dickens BJ, Green BB, Marsit CJ, Pearson KJ. Using neonatal skin to study the developmental programming of aging. Exp Gerontol 2016; 94:93-98. [PMID: 28034763 DOI: 10.1016/j.exger.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Abstract
Numerous studies have examined how both negative and positive maternal exposures (environmental contaminants, nutrition, exercise, etc.) impact offspring risk for age-associated diseases such as obesity, type 2 diabetes, hypertension, and others. The purpose of this study was to introduce the foreskin as a novel model to examine developmental programming in human neonates, particularly in regard to adipogenesis and insulin receptor signaling, major contributors to age-associated diseases such as obesity and diabetes. Neonatal foreskin was collected following circumcision and primary dermal fibroblasts were isolated to perform adipocyte differentiation and insulin stimulation experiments. Human neonatal foreskin primary fibroblasts take up lipid when stimulated with a differentiation cocktail and demonstrate insulin signaling when stimulated with insulin. Thus, we propose that foreskin tissue can be used to study developmental exposures and programming that occur in the neonate as it relates to age-associated diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Brett J Dickens
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin B Green
- Department of Epidemiology and of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
7
|
Cui B, Gai Z, She X, Wang R, Xi Z. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci Rep 2016; 6:36693. [PMID: 27811997 PMCID: PMC5095650 DOI: 10.1038/srep36693] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic noise exposure has been implicated in increased risk of diabetes. However, there is limited experimental evidence of the mechanisms linking chronic noise stress and glucose metabolism. We addressed this in the present study by examining glucose metabolism, immune response, and changes in gut microbiota/host inflammatory homeostasis in rats exposed to noise for 30 consecutive days. Chronic noise exposure increased blood glucose and corticosterone levels for at least 14 days after cessation of noise. Stressed rats also exhibited elevated levels of glycogen and triglyceride in the liver and impaired hepatic insulin production via insulin-induced insulin receptor/insulin receptor substrate 1/glycogen synthase kinase 3β signalling, which persisted for 3–14 days after cessation of noise exposure. Chronic noise altered the percentage of Proteobacteria and Actinobacteria in the gut, increasing Roseburia but decreasing Faecalibacterium levels in the cecum relative to controls. Immunoglobulin A, interleukin 1β, and tumor necrosis factor α levels were also elevated in the intestine of these animals, corresponding to noise-induced abnormalities in glucose regulation and insulin sensitivity. These results suggest that lifelong environmental noise exposure could have cumulative effects on diabetes onset and development resulting from alterations in gut microbiota composition and intestinal inflammation.
Collapse
Affiliation(s)
- Bo Cui
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Zhihui Gai
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong academy of occupational health and occupational medicine, Shandong academy of medical sciences, Jinan, China
| | - Xiaojun She
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Rui Wang
- Shandong academy of occupational health and occupational medicine, Shandong academy of medical sciences, Jinan, China
| | - Zhuge Xi
- Department of Occupational Hygiene, Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| |
Collapse
|
8
|
Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers. Arch Dermatol Res 2016; 308:677-694. [PMID: 27655635 DOI: 10.1007/s00403-016-1686-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.
Collapse
|
9
|
Salazar J, Luzardo E, Mejías JC, Rojas J, Ferreira A, Rivas-Ríos JR, Bermúdez V. Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol Res Pract 2016; 2016:1291537. [PMID: 27213076 PMCID: PMC4861775 DOI: 10.1155/2016/1291537] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/02/2016] [Accepted: 04/03/2016] [Indexed: 12/20/2022] Open
Abstract
Epicardial fat is closely related to blood supply vessels, both anatomically and functionally, which is why any change in this adipose tissue's behavior is considered a potential risk factor for cardiovascular disease development. When proinflammatory adipokines are released from the epicardial fat, this can lead to a decrease in insulin sensitivity, low adiponectin production, and an increased proliferation of vascular smooth muscle cells. These adipokines move from one compartment to another by either transcellular passing or diffusion, thus having the ability to regulate cardiac muscle activity, a phenomenon called vasocrine regulation. The participation of these adipokines generates a state of persistent vasoconstriction, increased stiffness, and weakening of the coronary wall, consequently contributing to the formation of atherosclerotic plaques. Therefore, epicardial adipose tissue thickening should be considered a risk factor in the development of cardiovascular disease, a potential therapeutic target for cardiovascular pathology and a molecular point of contact for "endocrine-cardiology."
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
| | - José Carlos Mejías
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
| | - Joselyn Rojas
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Antonio Ferreira
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
- Internal Medicine Service, “Dr. Manuel Noriega Trigo” Hospital, San Francisco 4004, Venezuela
| | - José Ramón Rivas-Ríos
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Diseases Research Center, University of Zulia, Maracaibo 4004, Venezuela
| |
Collapse
|
10
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
11
|
Fukushima H, Ogura K, Wan L, Lu Y, Li V, Gao D, Liu P, Lau AW, Wu T, Kirschner MW, Inuzuka H, Wei W. SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 2013; 4:803-16. [PMID: 23972993 PMCID: PMC3839583 DOI: 10.1016/j.celrep.2013.07.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
Proper cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key regulators by the anaphase-promoting complex (APC) and Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase complexes. But precisely how APC and SCF activities are coordinated to regulate cell-cycle progression remains largely unclear. We previously showed that APC/Cdh1 earmarks the SCF component Skp2 for degradation. Here, we continue to report that SCF(β-TRCP) reciprocally controls APC/Cdh1 activity by governing Cdh1 ubiquitination and subsequent degradation. Furthermore, we define both cyclin A and Plk1, two well-known Cdh1 substrates, as upstream modifying enzymes that promote Cdh1 phosphorylation to trigger Cdh1 ubiquitination and subsequent degradation by SCF(β-TRCP). Thus, our work reveals a negative repression mechanism for SCF to control APC, thereby illustrating an elegant dual repression system between these two E3 ligase complexes to create the ordered cascade of APC and SCF activities governing timely cell-cycle transitions.
Collapse
Affiliation(s)
- Hidefumi Fukushima
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan W. Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Wu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Burgos-Ramos E, González-Rodríguez A, Canelles S, Baquedano E, Frago LM, Revuelta-Cervantes J, Gómez-Ambrosi J, Frühbeck G, Chowen JA, Argente J, Valverde AM, Barrios V. Differential insulin receptor substrate-1 (IRS1)-related modulation of neuropeptide Y and proopiomelanocortin expression in nondiabetic and diabetic IRS2-/- mice. Endocrinology 2012; 153:1129-40. [PMID: 22210743 DOI: 10.1210/en.2011-1278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin resistance and type 2 diabetes correlate with impaired leptin and insulin signaling. Insulin receptor substrate-2 deficient (IRS2(-/-)) mice are an accepted model for the exploration of alterations in these signaling pathways and their relationship with diabetes; however, disturbances in hypothalamic signaling and the effect on neuropeptides controlling food intake remain unclear. Our aim was to analyze how leptin and insulin signaling may differentially affect the expression of hypothalamic neuropeptides regulating food intake and hypothalamic inflammation in diabetic (D) and nondiabetic (ND) IRS2(-/-) mice. We analyzed the activation of leptin and insulin targets by Western blotting and their association by immunoprecipitation, as well as the mRNA levels of neuropeptide Y (NPY), proopiomelanocortin, and inflammatory markers by real-time PCR and colocalization of forkhead box protein O1 (FOXO1) and NPY by double immunohistochemistry in the hypothalamus. Serum leptin and insulin levels and hypothalamic Janus kinase 2 and signal transducer and activator of transcription factor 3 activation were increased in ND IRS2(-/-) mice. IRS1 levels and its association with Janus kinase 2 and p85 and protein kinase B activation were increased in ND IRS2(-/-). Increased FOXO1 positively correlated with NPY mRNA levels in D IRS2(-/-) mice, with FOXO1 showing mainly nuclear localization in D IRS2(-/-) and cytoplasmic in ND IRS2(-/-) mice. D IRS2(-/-) mice exhibited higher hypothalamic inflammation markers than ND IRS2(-/-) mice. In conclusion, differential activation of these pathways and changes in the expression of NPY and inflammation may exert a protective effect against hypothalamic deregulation of appetite, suggesting that manipulation of these targets could be of interest in the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65; E-28009 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Distinct regulation of insulin receptor substrate-1 and -2 by 90-kDa heat-shock protein in adrenal chromaffin cells. Neurochem Int 2010; 56:42-50. [DOI: 10.1016/j.neuint.2009.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/24/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
|
14
|
Hanke S, Mann M. The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 2008; 8:519-34. [PMID: 19001411 DOI: 10.1074/mcp.m800407-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insulin signaling pathway is critical in regulating glucose levels and is associated with diabetes, obesity, and longevity. A tyrosine phosphorylation cascade creates docking sites for protein interactions, initiating subsequent propagation of the signal throughout the cell. The phosphotyrosine interactome of this medically important pathway has not yet been studied comprehensively. We therefore applied quantitative interaction proteomics to exhaustively profile all potential phosphotyrosine-dependent interaction sites in its key players. We targeted and compared insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) as central distributors of the insulin signal, the insulin receptor, the insulin-like growth factor 1 receptor, and the insulin receptor-related receptor. Using the stable isotope labeling by amino acids in cell culture (SILAC) approach with phosphorylated versus non-phosphorylated bait peptides, we found phosphorylation-specific interaction partners for 52 out of 109 investigated sites. In addition, doubly and triply phosphorylated motifs provided insight into the combinatorial effects of phosphorylation events in close proximity to each other. Our results retrieve known interactions and substantially broaden the spectrum of potential interaction partners of IRS-1 and IRS-2. A large number of common interactors rationalize their extensive functional redundancy. However, several proteins involved in signaling and metabolism interact differentially with IRS-1 and IRS-2 and thus provide leads into their different physiological roles. Differences in interactions at the receptor level are reflected in multisite recruitment of SHP2 by the insulin-like growth factor 1 receptor and limited but exclusive interactions with the IRR. In common with other recent reports, our data furthermore hint at non-SH2 or phosphotyrosine-binding domain-mediated phosphotyrosine binding.
Collapse
Affiliation(s)
- Stefan Hanke
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Munich, Germany
| | | |
Collapse
|
15
|
Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO J 2008; 27:2091-101. [PMID: 18650937 DOI: 10.1038/emboj.2008.141] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 06/26/2008] [Indexed: 12/17/2022] Open
Abstract
The lifelong self-renewal of the epidermis is driven by a progenitor cell population with high proliferative potential. To date, the upstream signals that determine this potential have remained largely elusive. Here, we find that insulin and insulin-like growth factor receptors (IR and IGF-1R) determine epidermal proliferative potential and cooperatively regulate interfollicular epidermal morphogenesis in a cell autonomous manner. Epidermal deletion of either IR or IGF-1R or both in mice progressively decreased epidermal thickness without affecting differentiation or apoptosis. Proliferation was temporarily reduced at E17.5 in the absence of IGF-1R but not IR. In contrast, clonogenic capacity was impaired in both IR- and IGF-1R-deficient primary keratinocytes, concomitant with an in vivo loss of keratin 15. Together with a reduction in label-retaining cells in the interfollicular epidermis, this suggests that IR/IGF-1R regulate progenitor cells. The expression of dominant active Rac rescued clonogenic potential of IR/IGF-1R-negative keratinocytes and reversed epidermal thinning in vivo. Our results identify the small GTPase Rac as a key target of epidermal IR/IGF-1R signalling crucial for proliferative potential and interfollicular morphogenesis.
Collapse
|
16
|
Sadagurski M, Nofech-Mozes S, Weingarten G, White MF, Kadowaki T, Wertheimer E. Insulin receptor substrate 1 (IRS-1) plays a unique role in normal epidermal physiology. J Cell Physiol 2007; 213:519-27. [PMID: 17508357 DOI: 10.1002/jcp.21131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Insulin receptor substrate (IRS) proteins play a central role in insulin signaling. Previously we have demonstrated that insulin is essential for normal skin development and function. In the present study we investigated the involvement of the IRS-1 and IRS-2 proteins in skin physiology and in mediating insulin action in skin. For this purpose we have investigated the effects of inactivation of each of the IRSs on skin, studying skin sections and primary skin cells derived from IRS-1 or IRS-2 null mice. We have demonstrated that while the skin of the IRS-2 null mice appeared normal, the skin of the IRS-1 null mice was thinner and translucent. Histological analysis revealed that the thinning of the IRS-1 null skin was a consequence of the thinning of the spinous compartment, consisting of fewer layers. Proliferation of the IRS-1 and IRS-2 null skin epidermal cells was normal. However, the differentiation process of the IRS-1 skin and skin cells was impaired. There was a marked decrease in the induction of the expression of K1, the marker of advanced stages of skin differentiation. In contrary, IRS-2 inactivation had no effects on skin differentiation. In conclusion, we have shown for the first time that IRS-1 but not IRS-2 has an effect on skin formation and development, being one of the main activators of the differentiation process in skin keratinocytes. Furthermore, we suggest that IRS-1 and IRS-2 have distinct roles in skin physiology.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Rizk NN, Saed GM, Diamond MP. Effects of hyperglycemia on the differential expression of insulin and insulin-like growth factor-I receptors in human normal peritoneal and adhesion fibroblasts. Fertil Steril 2006; 86:1217-22. [PMID: 16962112 DOI: 10.1016/j.fertnstert.2006.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine whether the insulin receptor (IR), insulin-like growth factor-I receptor (IGF-IR), and IGF-I are expressed differentially in fibroblasts isolated from normal peritoneal and adhesion tissue before and after 24-hour treatment with increasing glucose concentrations. DESIGN Prospective experimental study. SETTING University medical center. PATIENT(S) Primary cultures of fibroblasts established from peritoneal and adhesion tissues of the same patients. INTERVENTION(S) Glucose treatment of the primary cultured fibroblasts for 24 hours with increasing concentrations of glucose (100-850 mg/dL). MAIN OUTCOME MEASURE(S) Real-time polymerase chain reaction was used to measure messenger RNA (mRNA) levels for IR, IGF-IR, and IGF-I. Enzyme-linked immunosorbent assay was used to determine protein levels. RESULT(S) At the normal glycemic level (100 mg/dL), adhesion fibroblasts have significantly higher mRNA levels of the IR (7.96 +/- 0.15 vs. 6.97 +/- 0.16; P<.05), IGF-IR (7.72 +/- 0.22 vs. 6.88 +/- 0.06; P<.05), and IGF-I (7.04 +/- 0.10 vs. 5.92 +/- 0.10; P<.05) when compared with normal fibroblasts, respectively. Data are expressed as log(mRNA/microg RNA). Normal fibroblasts respond to increasing glucose concentrations by increasing the expression levels of the IR, IGF-IR, and IGF-I, whereas adhesion fibroblasts respond by decreasing the expression of the IR, IGF-IR, and IGF-I. CONCLUSION(S) The differential expression of the IR, IGF-IR, and IGF-I in adhesion fibroblasts may contribute to the pathogenesis of fibrosis observed in diabetic patients.
Collapse
Affiliation(s)
- Natalie N Rizk
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
18
|
Nemoto T, Yokoo H, Satoh S, Yanagita T, Sugano T, Yoshikawa N, Maruta T, Kobayashi H, Wada A. Constitutive activity of glycogen synthase kinase-3beta: positive regulation of steady-state levels of insulin receptor substrates-1 and -2 in adrenal chromaffin cells. Brain Res 2006; 1110:1-12. [PMID: 16870161 DOI: 10.1016/j.brainres.2006.06.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/14/2006] [Accepted: 06/18/2006] [Indexed: 01/17/2023]
Abstract
In cultured bovine adrenal chromaffin cells, 12-h treatment with 1-20 mM LiCl, an inhibitor of glycogen synthase kinase-3 (GSK-3), increased Ser(9) phosphorylation of GSK-3beta by approximately 44%, while decreasing insulin receptor substrate-1 (IRS-1) and IRS-2 protein levels by approximately 38 and approximately 62% in a concentration-dependent manner. Treatment with SB216763 (0.1-30 microM for 12 h), a selective inhibitor of GSK-3, lowered IRS-1 and IRS-2 levels by approximately 38 and approximately 48%, while increasing beta-catenin protein level by approximately 47%, due to the prevention of GSK-3-induced degradation of beta-catenin by SB216763. Insulin (100 nM for 24 h) increased Ser(9) phosphorylation of GSK-3beta by approximately 104%, while decreasing IRS-1 and IRS-2 levels by approximately 41 and approximately 72%; the insulin-induced Ser(9) phosphorylation of GSK-3beta, as well as down-regulations of IRS-1 and IRS-2 levels were restored to the control levels of nontreated cells at 24 h after the washout of the insulin (100 nM for 12 h)-treated cells. Either clasto-lactacystin beta-lactone or lactacystin (an inhibitor of proteasome) prevented LiCl- or SB216763-induced decreases of IRS-1 and IRS-2 levels by approximately 100 and approximately 69%, respectively. In contrast, calpastatin (an inhibitor of calpain) and leupeptin (an inhibitor of lysosome) failed to prevent the decreases of IRS-1 and IRS-2 levels caused by LiCl or SB216763. LiCl or SB216763 lowered IRS-2 mRNA level, with no effect on IRS-1 mRNA level. These results suggest that constitutive activity of GSK-3beta in quiescent cells positively maintains steady-state levels of IRS-1 and IRS-2 via regulating proteasomal degradation and/or synthesis of IRS-1 and IRS-2 proteins.
Collapse
Affiliation(s)
- Takayuki Nemoto
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes CJ, Breitkreutz D, Leroith D, Wertheimer E. Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol Cell Biol 2006; 26:2675-87. [PMID: 16537911 PMCID: PMC1430337 DOI: 10.1128/mcb.26.7.2675-2687.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a multifunctional receptor that mediates signals for cell proliferation, differentiation, and survival. Genetic experiments showed that IGF-1R inactivation in skin results in a disrupted epidermis. However, because IGF-1R-null mice die at birth, it is difficult to study the effects of IGF-1R on skin. By using a combined approach of conditional gene ablation and a three-dimensional organotypic model, we demonstrate that IGF-1R-deficient skin cocultures show abnormal maturation and differentiation patterns. Furthermore, IGF-1R-null keratinocytes exhibit accelerated differentiation and decreased proliferation. Investigating the signaling pathway downstream of IGF-1R reveals that insulin receptor substrate 2 (IRS-2) overexpression compensates for the lack of IGF-1R, whereas IRS-1 overexpression does not. We also demonstrate that phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1 and 2 are involved in the regulation of skin keratinocyte differentiation and take some part in mediating the inhibitory signal of IGF-1R on differentiation. In addition, we show that mammalian target of rapamycin plays a specific role in mediating IGF-1R impedance of action on keratinocyte differentiation. In conclusion, these results reveal that IGF-1R plays an inhibitory role in the regulation of skin development and differentiation.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Thirone ACP, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 2006; 17:72-8. [PMID: 16458527 DOI: 10.1016/j.tem.2006.01.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/08/2005] [Accepted: 01/19/2006] [Indexed: 02/06/2023]
Abstract
In type 2-diabetes and impaired glucose tolerance, the muscle, fat and liver become resistant to insulin, and recent developments place dysregulation of insulin receptor substrate (IRS) expression and activation at the center of such defects. IRS1 and IRS2 are the major insulin receptor substrates leading to glucose homeostasis, and have distinct and overlapping roles in diverse organs. The majority of the published literature in this field suggests that IRS1 is the major substrate leading to stimulation of glucose transport in muscle and adipose tissues, whereas in liver, IRS1 and IRS2 have complementary roles in insulin signaling and metabolism.
Collapse
Affiliation(s)
- Ana C P Thirone
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|