1
|
He H, Ma C, Wei W, Wang H, Lai Y, Liu M, Sun S, Ma Q, Lai J, Liu H, Liu H, Sun F, Lin X. Heparan sulfate regulates myofibroblast heterogeneity and function to mediate niche homeostasis during alveolar morphogenesis. Nat Commun 2025; 16:1834. [PMID: 39979343 PMCID: PMC11842828 DOI: 10.1038/s41467-025-57163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Postnatal respiration requires bulk formation of alveoli that produces extensive surface area for gas diffusion from epithelium to the circulatory system. Alveolar morphogenesis initiates at late gestation or postnatal stage during mammalian development and is mediated by coordination among multiple cell types. Here we show that fibroblast-derived Heparan Sulfate Glycosaminoglycan (HS-GAG) is essential for maintaining a niche that supports alveolar formation by modulating both biophysical and biochemical cues. Gli1-CreER mediated deletion of HS synthase gene Ext1 in lung fibroblasts results in enlarged and simplified alveolar structures. Ablation of HS results in loss of a subset of PDGFRαhi αSMA+ alveolar myofibroblasts residing in the distal alveolar region, which exhibit contractile properties and maintain WNT signaling activity to support normal proliferation and differentiation of alveolar epithelial cells. HS is essential for proliferation while preventing precocious apoptosis of alveolar myofibroblasts. We show that these processes are dependent upon FGF/MAPK signaling and forced activation of MAPK/ERK signaling partially corrected alveolar simplification and restored alveolar myofibroblast number and AT2 cell proliferation in HS deficient mice. These data reveal HS-dependent myofibroblast heterogeneity and function as an essential orchestrator for developing alveolar niche critical for the generation of gas exchange units.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Chong Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Wei Wei
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haonan Wang
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yutian Lai
- Department of Lung Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shenfei Sun
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiashuang Lai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Hanxiang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Fei Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
| | - Xinhua Lin
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, Chengdu, Sichuan, China.
- The State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu S, Sun D, Butler R, Rawlins EL. RTK signalling promotes epithelial columnar cell shape and apical junction maintenance in human lung progenitor cells. Development 2023; 150:dev201284. [PMID: 37260147 PMCID: PMC10281517 DOI: 10.1242/dev.201284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.
Collapse
Affiliation(s)
- Shuyu Liu
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Richard Butler
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
3
|
Mccauley KB, Kukreja K, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.21.521460. [PMID: 36597531 PMCID: PMC9810218 DOI: 10.1101/2022.12.21.521460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of all epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal-cell and secretory-cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses.
Collapse
Affiliation(s)
- Katherine B Mccauley
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aron B Jaffe
- Disease Area X, Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
- Current address: Chroma Medicine, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Karasawa Y, Shinomiya N, Takeuchi M, Ito M. Growth factor dependence of the proliferation and survival of cultured lacrimal gland epithelial cells isolated from late-embryonic mice. Dev Growth Differ 2022; 64:138-149. [PMID: 35149991 DOI: 10.1111/dgd.12776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
Epidermal growth factor (EGF) and hepatocyte growth factor (HGF) regulate the growth and morphogenesis of various exocrine glands with branched morphologies. Their roles in lacrimal gland (LG) development remain unknown, but fibroblast growth factor (FGF) 10 is crucial for early LG organogenesis. To clarify the roles of EGF, HGF, and FGF10 in LG development, LG epithelial cells were isolated from late-embryonic and neonatal mice; cultured; and treated with EGF, HGF, or FGF10 and their respective receptor tyrosine kinase (RTK) inhibitors AG1478, PHA665752, or SU5402. EGF and HGF increased the number of viable cells by enhancing DNA synthesis, FGF10 and SU5402 showed no such effect, and RTK inhibitors exhibited the opposite effect. EGF and HGF receptors were immunostained in cultured late-embryonic LG epithelial cells and terminal LG acini from late embryos and adult mice. HGF was detected in neonatal LG epithelial cell culture supernatants by western blotting. In the absence of EGF and HGF RTK inhibitors, growth factor addition increased the number of viable cells and suppressed cell death. However, when one RTK was inhibited and a growth factor targeting an intact RTK was added, the number of dead cells increased as the number of viable cells increased. No cells survived when both RTKs were inhibited. In explant cultures of LGs from embryos, AG1478 or PHA665752 decreased the number of Ki67-positive proliferating epithelial cells in terminal acini. Thus, EGF and HGF may function in a cooperative autocrine manner, supporting cell proliferation and survival during LG development in late-embryonic and neonatal mice.
Collapse
Affiliation(s)
- Yoko Karasawa
- Department of Ophthalmology, National Defense Medical College, Saitama, Japan
| | | | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Saitama, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
5
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
6
|
Funk EC, Birol EB, McCune AR. Does the bowfin gas bladder represent an intermediate stage during the lung-to-gas bladder evolutionary transition? J Morphol 2021; 282:600-611. [PMID: 33538055 DOI: 10.1002/jmor.21330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/09/2022]
Abstract
Whether phenotypic evolution occurs gradually through time has prompted the search for intermediate forms between the ancestral and derived states of morphological features, especially when there appears to be a discontinuous origin. The gas bladder, a derived character of the Actinopteri, is a modification of lungs, which characterize the common ancestor of bony vertebrates. While gas bladders and lungs are similar in many ways, the key morphological difference between these organs is the direction of budding from the foregut during development; essentially, the gas bladder buds dorsally and the lungs bud ventrally from the foregut. Did the shift from ventral lungs to dorsal gas bladder transition through a lateral-budding stage? To answer this question, the precise location of budding during gas bladder development in bowfin, representing the sister lineage to teleosts, has been debated. In the early 20th-century, it was suggested that the bowfin gas bladder buds laterally from the right wall of the foregut. We used nano-CT scanning to visualize the early development of the bowfin gas bladder to verify the historical studies of gas bladder developmental morphology and determine whether the direction of gas bladder budding in bowfin could be intermediate between ventrally budding lungs and dorsally budding gas bladders. We found that the bowfin gas bladder buds dorsally from the anterior foregut; however, during early development, the posterior gas bladder twists right. As development progresses, the posterior, right-hand twist becomes shallower, and the gas bladder itself shifts toward a mid-dorsal position. The budding site is definitively dorsal, despite the temporary lateral twist of the posterior gas bladder.
Collapse
Affiliation(s)
- Emily C Funk
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Genomics Variation Lab, University of California Davis, Davis, California, USA
| | - Eda B Birol
- Department of Architecture, Cornell University, Ithaca, New York, USA
| | - Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Lenárt S, Lenárt P, Šmarda J, Remšík J, Souček K, Beneš P. Trop2: Jack of All Trades, Master of None. Cancers (Basel) 2020; 12:E3328. [PMID: 33187148 PMCID: PMC7696911 DOI: 10.3390/cancers12113328] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (S.L.); (P.L.); (J.Š.); (K.S.)
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| |
Collapse
|
9
|
Funk E, Lencer E, McCune A. Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:325-338. [PMID: 32864827 PMCID: PMC8094346 DOI: 10.1002/jez.b.22998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
How modification of gene expression generates novel traits is key to understanding the evolutionary process. We investigated the genetic basis for the origin of the piscine gas bladder from lungs of ancestral bony vertebrates. Distinguishing these homologous organs is the direction of budding from the foregut during development; lungs bud ventrally and the gas bladder buds dorsally.
Collapse
Affiliation(s)
- Emily Funk
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
- University of California Davis, Genomic Variation Lab, Animal Science Department, 2235 Meyer Hall, Davis, CA 95616
| | - Ezra Lencer
- University of Colorado Denver - Anschutz Medical Campus, Department of Craniofacial Biology, 12081 East 17 Ave, RC 1 South, Campus Box 8120, Aurora, CO 80045
| | - Amy McCune
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
| |
Collapse
|
10
|
Lang C, Conrad L, Michos O. Mathematical Approaches of Branching Morphogenesis. Front Genet 2018; 9:673. [PMID: 30631344 PMCID: PMC6315180 DOI: 10.3389/fgene.2018.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Many organs require a high surface to volume ratio to properly function. Lungs and kidneys, for example, achieve this by creating highly branched tubular structures during a developmental process called branching morphogenesis. The genes that control lung and kidney branching share a similar network structure that is based on ligand-receptor reciprocal signalling interactions between the epithelium and the surrounding mesenchyme. Nevertheless, the temporal and spatial development of the branched epithelial trees differs, resulting in organs of distinct shape and size. In the embryonic lung, branching morphogenesis highly depends on FGF10 signalling, whereas GDNF is the driving morphogen in the kidney. Knockout of Fgf10 and Gdnf leads to lung and kidney agenesis, respectively. However, FGF10 plays a significant role during kidney branching and both the FGF10 and GDNF pathway converge on the transcription factors ETV4/5. Although the involved signalling proteins have been defined, the underlying mechanism that controls lung and kidney branching morphogenesis is still elusive. A wide range of modelling approaches exists that differ not only in the mathematical framework (e.g., stochastic or deterministic) but also in the spatial scale (e.g., cell or tissue level). Due to advancing imaging techniques, image-based modelling approaches have proven to be a valuable method for investigating the control of branching events with respect to organ-specific properties. Here, we review several mathematical models on lung and kidney branching morphogenesis and suggest that a ligand-receptor-based Turing model represents a potential candidate for a general but also adaptive mechanism to control branching morphogenesis during development.
Collapse
Affiliation(s)
| | | | - Odyssé Michos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
11
|
Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification. Sci Rep 2018; 8:14344. [PMID: 30254199 PMCID: PMC6156511 DOI: 10.1038/s41598-018-32494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have shown that FGF10/FGFR2 signaling is required for airway branching morphogenesis and FGF10 functions as a chemoattractant factor for distal epithelial cells during lung development. However, the detail downstream cellular and molecular mechanisms have not been fully characterized. Using live imaging of ex vivo cultured lungs, we found that tip airway epithelial progenitor cells migrate faster than cleft cells during airway bud formation and this migration process is controlled by FGFR2-mediated ERK1/2 signaling. Additionally, we found that airway progenitor cells that migrate faster tend to become distal airway progenitor cells. We identified that Anxa4 is a downstream target of ERK1/2 signaling. Anxa4-/- airway epithelial cells exhibit a "lag-behind" behavior and tend to stay at the stalk airways. Moreover, we found that Anxa4-overexpressing cells tend to migrate to the bud tips. Finally, we demonstrated that Anxa4 functions redundantly with Anxa1 and Anxa6 in regulating endoderm budding process. Our study demonstrates that ERK1/2/Anxa4 signaling plays a role in promoting the migration of airway epithelial progenitor cells to distal airway tips and ensuring their distal cell fate.
Collapse
|
12
|
Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine 2018; 36:461-474. [PMID: 30236449 PMCID: PMC6197151 DOI: 10.1016/j.ebiom.2018.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Despite compelling data describing pro-regenerative effects of all-trans retinoic acid (ATRA) in pre-clinical models of chronic obstructive pulmonary disease (COPD), clinical trials using retinoids for emphysema patients have failed. Crucial information about the specific role of RA signaling in adult rodent and human lung epithelial progenitor cells is largely missing. Methods Adult lung organoid cultures were generated from isolated primary mouse and human lung epithelial cells, and incubated with pharmacological pathway modulators and recombinant proteins. Organoid number and size were measured, and differentiation was assessed with quantitative immunofluorescence and gene expression analyses. Findings We unexpectedly found that ATRA decreased lung organoid size, whereas RA pathway inhibition increased mouse and human lung organoid size. RA pathway inhibition stimulated mouse lung epithelial proliferation via YAP pathway activation and epithelial-mesenchymal FGF signaling, while concomitantly suppressing alveolar and airway differentiation. HDAC inhibition rescued differentiation in growth-augmented lung organoids. Interpretation In contrast to prevailing notions, our study suggests that regenerative pharmacology using transient RA pathway inhibition followed by HDAC inhibition might hold promise to promote lung epithelial regeneration in diseased adult lung tissue. Fund This project is funded by the Lung Foundation Netherlands (Longfonds) grant 6.1.14.009 (RG, MK, JS, PSH) and W2/W3 Professorship Award by the Helmholtz Association, Berlin, Germany (MK).
Collapse
|
13
|
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med 2018; 65:56-69. [PMID: 30130563 DOI: 10.1016/j.mam.2018.08.004] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and terminal lung disease with no known cure. IPF is a disease of aging, with median age of diagnosis over 65 years. Median survival is between 3 and 5 years after diagnosis. IPF is characterized primarily by excessive deposition of extracellular matrix (ECM) proteins by activated lung fibroblasts and myofibroblasts, resulting in reduced gas exchange and impaired pulmonary function. Growing evidence supports the concept of a pro-fibrotic environment orchestrated by underlying factors such as genetic predisposition, chronic injury and aging, oxidative stress, and impaired regenerative responses may account for disease development and persistence. Currently, two FDA approved drugs have limited efficacy in the treatment of IPF. Many of the genes and gene networks associated with lung development are induced or activated in IPF. In this review, we analyze current knowledge in the field, gained from both basic and clinical research, to provide new insights into the disease process, and potential approaches to treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Eva Otoupalova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas Volckaert
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stijn P De Langhe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
14
|
Hawkins F, Kramer P, Jacob A, Driver I, Thomas DC, McCauley KB, Skvir N, Crane AM, Kurmann AA, Hollenberg AN, Nguyen S, Wong BG, Khalil AS, Huang SX, Guttentag S, Rock JR, Shannon JM, Davis BR, Kotton DN. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 2017; 127:2277-2294. [PMID: 28463226 DOI: 10.1172/jci89950] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1-expressing (NKX2-1+) precursor cells. However, this hypothesis has not been formally tested owing to an inability to purify or track these progenitors for detailed characterization. Here we have engineered and developmentally differentiated NKX2-1GFP reporter pluripotent stem cells (PSCs) in vitro to generate and isolate human primordial lung progenitors that express NKX2-1 but are initially devoid of differentiated lung lineage markers. After sorting to purity, these primordial lung progenitors exhibited lung epithelial maturation. In the absence of mesenchymal coculture support, this NKX2-1+ population was able to generate epithelial-only spheroids in defined 3D cultures. Alternatively, when recombined with fetal mouse lung mesenchyme, the cells recapitulated epithelial-mesenchymal developing lung interactions. We imaged these progenitors in real time and performed time-series global transcriptomic profiling and single-cell RNA sequencing as they moved through the earliest moments of lung lineage specification. The profiles indicated that evolutionarily conserved, stage-dependent gene signatures of early lung development are expressed in primordial human lung progenitors and revealed a CD47hiCD26lo cell surface phenotype that allows their prospective isolation from untargeted, patient-specific PSCs for further in vitro differentiation and future applications in regenerative medicine.
Collapse
Affiliation(s)
- Finn Hawkins
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Philipp Kramer
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anjali Jacob
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ian Driver
- Department of Anatomy, UCSF, San Francisco, California, USA
| | | | - Katherine B McCauley
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Ana M Crane
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Anita A Kurmann
- Center for Regenerative Medicine, and.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Brandon G Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Sarah Xl Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA.,Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA
| | - Susan Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason R Rock
- Department of Anatomy, UCSF, San Francisco, California, USA
| | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Brian R Davis
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, and.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Beauchemin KJ, Wells JM, Kho AT, Philip VM, Kamir D, Kohane IS, Graber JH, Bult CJ. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development. PeerJ 2016; 4:e2318. [PMID: 27602285 PMCID: PMC4991849 DOI: 10.7717/peerj.2318] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http://lungdevelopment.jax.org).
Collapse
Affiliation(s)
- Kyle J. Beauchemin
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States
| | | | - Alvin T. Kho
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | | | - Daniela Kamir
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
16
|
Li Z, Jiang X, Zhang W. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells. Biochem Biophys Res Commun 2016; 470:197-204. [PMID: 26773504 DOI: 10.1016/j.bbrc.2016.01.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
Abstract
Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan-Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.
Collapse
Affiliation(s)
- Zanhua Li
- Medical School of Nanchang University, China; The Chest Hospital of Jiangxi Province Department of Respiration, China
| | - Xunsheng Jiang
- Department of Respiration, Medical School of Nanchang University, China
| | - Wei Zhang
- Department of Respiration, The First Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
17
|
Abstract
The respiratory endoderm develops from a small cluster of cells located on the ventral anterior foregut. This population of progenitors generates the myriad epithelial lineages required for proper lung function in adults through a complex and delicately balanced series of developmental events controlled by many critical signaling and transcription factor pathways. In the past decade, understanding of this process has grown enormously, helped in part by cell lineage fate analysis and deep sequencing of the transcriptomes of various progenitors and differentiated cell types. This review explores how these new techniques, coupled with more traditional approaches, have provided a detailed picture of development of the epithelial lineages in the lung and insight into how aberrant development can lead to lung disease.
Collapse
|
18
|
Zhao P, Yu HZ, Cai JH. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer. Mol Med Rep 2015; 12:4364-4369. [PMID: 26059528 DOI: 10.3892/mmr.2015.3900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hai-Zheng Yu
- Department of Social Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jian-Hui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
19
|
Chao CM, El Agha E, Tiozzo C, Minoo P, Bellusci S. A breath of fresh air on the mesenchyme: impact of impaired mesenchymal development on the pathogenesis of bronchopulmonary dysplasia. Front Med (Lausanne) 2015; 2:27. [PMID: 25973420 PMCID: PMC4412070 DOI: 10.3389/fmed.2015.00027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/11/2015] [Indexed: 12/14/2022] Open
Abstract
The early mouse embryonic lung, with its robust and apparently reproducible branching pattern, has always fascinated developmental biologists. They have extensively used this embryonic organ to decipher the role of mammalian orthologs of Drosophila genes in controlling the process of branching morphogenesis. During the early pseudoglandular stage, the embryonic lung is formed mostly of tubes that keep on branching. As the branching takes place, progenitor cells located in niches are also amplified and progressively differentiate along the proximo-distal and dorso-ventral axes of the lung. Such elaborate processes require coordinated interactions between signaling molecules arising from and acting on four functional domains: the epithelium, the endothelium, the mesenchyme, and the mesothelium. These interactions, quite well characterized in a relatively simple lung tubular structure remain elusive in the successive developmental and postnatal phases of lung development. In particular, a better understanding of the process underlying the formation of secondary septa, key structural units characteristic of the alveologenesis phase, is still missing. This structure is critical for the formation of a mature lung as it allows the subdivision of saccules in the early neonatal lung into alveoli, thereby considerably expanding the respiratory surface. Interruption of alveologenesis in preterm neonates underlies the pathogenesis of chronic neonatal lung disease known as bronchopulmonary dysplasia. De novo formation of secondary septae appears also to be the limiting factor for lung regeneration in human patients with emphysema. In this review, we will therefore focus on what is known in terms of interactions between the different lung compartments and discuss the current understanding of mesenchymal cell lineage formation in the lung, focusing on secondary septae formation.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Department of General Pediatrics and Neonatology, University Children's Hospital Giessen , Giessen , Germany ; Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University , New York, NY , USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center , Giessen , Germany ; Member of the German Center for Lung Research (DZL) , Giessen , Germany ; Saban Research Institute, Childrens Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA ; Kazan Federal University , Kazan , Russia
| |
Collapse
|
20
|
MacKenzie B, Henneke I, Hezel S, Al Alam D, El Agha E, Chao CM, Quantius J, Wilhelm J, Jones M, Goth K, Li X, Seeger W, Königshoff M, Herold S, Rizvanov AA, Günther A, Bellusci S. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1014-24. [PMID: 25820524 DOI: 10.1152/ajplung.00291.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/07/2015] [Indexed: 11/22/2022] Open
Abstract
Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.
Collapse
Affiliation(s)
- BreAnne MacKenzie
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Ingrid Henneke
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Stefanie Hezel
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Denise Al Alam
- Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Elie El Agha
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jennifer Quantius
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Jochen Wilhelm
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Matthew Jones
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Kerstin Goth
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, China
| | - Werner Seeger
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Susanne Herold
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Günther
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany; AGAPLESION Lung Clinic Waldhof-Elgershausen, Greifenstein, Germany; German Center for Lung Research, Germany
| | - Saverio Bellusci
- German Center for Lung Research, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, Giessen, Hessen, Germany; Developmental Biology Program, Division of Surgery, Saban Research Institute of Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
21
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
22
|
El Agha E, Bellusci S. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. SCIENTIFICA 2014; 2014:538379. [PMID: 25298902 PMCID: PMC4178922 DOI: 10.1155/2014/538379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
- Developmental Biology and Regenerative Program of the Saban Research Institute at Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
23
|
Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:E1723-30. [PMID: 24706852 DOI: 10.1073/pnas.1403470111] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite therapeutic advancement, pulmonary disease still remains a major cause of morbidity and mortality around the world. Opportunities to study human lung disease either in vivo or in vitro are currently limited. Using induced pluripotent stem cells (iPSCs), we generated mature multiciliated cells in a functional airway epithelium. Robust multiciliogenesis occurred when notch signaling was inhibited and was confirmed by (i) the assembly of multiple pericentrin-stained centrioles at the apical surface, (ii) expression of transcription factor forkhead box protein J1, and (iii) presence of multiple acetylated tubulin-labeled cilia projections in individual cells. Clara, goblet, and basal cells were all present, confirming the generation of a complete polarized epithelial-cell layer. Additionally, cAMP-activated and cystic fibrosis transmembrane regulator inhibitor 172-sensitive cystic fibrosis transmembrane regulator currents were recorded in isolated epithelial cells. Our report demonstrating the generation of mature multiciliated cells in respiratory epithelium from iPSCs is a significant advance toward modeling a number of human respiratory diseases in vitro.
Collapse
|
24
|
El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 2013; 141:296-306. [PMID: 24353064 DOI: 10.1242/dev.099747] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), D-35392 Giessen, Hessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McDougall ARA, Hooper SB, Zahra VA, Cole TJ, Lo CY, Doran T, Wallace MJ. Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2013; 305:L508-21. [DOI: 10.1152/ajplung.00160.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proliferation and migration of fibroblasts are vital for fetal lung development. However, the regulatory mechanisms are poorly understood. We have previously shown that TROP2 gene expression is closely associated with fetal lung cell proliferation in vivo and that TROP2 knockdown decreases proliferation of fetal lung fibroblasts in culture. We hypothesized that the Trop2 protein also regulates the morphology and motility of fetal lung fibroblasts. Fibroblasts isolated from fetal rat lungs (gestational age embryonic day 19) adopted a myofibroblast-like morphology in culture. Trop2 protein was localized to lamellipodia. TROP2 siRNA significantly decreased: TROP2 mRNA levels by 77%, the proportion of cells containing Trop2 protein by 70%, and cell proliferation by 50%. TROP2 siRNA also decreased the degree of motility as determined by the number of gridlines that cells moved across (2.2 ± 0.2 vs. 3.2 ± 0.2; P < 0.001). TROP2 knockdown altered cell morphology, causing a notable absence of lamellipodia and abnormal localization of components of the cell migration apparatus, and it reduced phosphorylated ERK1 and ERK2 levels. In contrast, TROP2 overexpression significantly increased: TROP2 mRNA levels by 40-fold, cell proliferation by 40%, the proportion of cells that were motile by 20%, and the number of gridlines that cells moved across (2.1 ± 0.2 vs. 1.6 ± 0.1; P < 0.001). Our data suggest that Trop2 regulates cell proliferation and motility and that it does so by regulating the ERK pathway and several critical components of the cell migration apparatus.
Collapse
Affiliation(s)
- Annie R. A. McDougall
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Timothy J. Cole
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Camden Y. Lo
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia; and
| | - Timothy Doran
- Lifestock Industries, Australia's Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Megan J. Wallace
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Wang X, Long M, Dong K, Lin F, Weng Y, Ouyang Y, Liu L, Wei J, Chen X, He T, Zhang HZ. Chemotherapy agents-induced immunoresistance in lung cancer cells could be reversed by trop-2 inhibition in vitro and in vivo by interaction with MAPK signaling pathway. Cancer Biol Ther 2013; 14:1123-32. [PMID: 24025415 DOI: 10.4161/cbt.26341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy has been widely used in cancer treatment, but the prognosis of the cancer patients following chemotherapy has not been substantially improved. Alternative strategies such as immunotherapy and their combinations with chemotherapy are now being considered; however, the effects of chemotherapy on the immune responses of cancer cells are not fully understood. In the present studies, we reveal a potential link between chemotherapy and cancer immunoresistance, we first examined the effects of chemopreventive agent DDP on the expression of a cell surface glycopreotein Trop-2 in lung cancer cells, and found that DDP not only induce Trop-2 surface expression in human lung cancer cells, but also induce T-cell apoptosis effectively. In order to investigate the relationship between DDP-induced Trop-2 expression and T-cell apoptosis, we stably transfected A549 and PC14 lung cancer cells with Trop-2 shRNA, the DDP-induced Trop-2 surface expression was effectively decreased in stably transfected cell lines, but chemotherapeutic reagent-induced cell proliferation inhibition and apoptosis were increased through inhibition of the MAPK signaling pathway. In vivo animal experiments showed that Trop-2 knockdown tumors displayed a slower growth rate than the control xenografts. Importantly, DDP treatment exhibited a strong antitumor activity in the mice with Trop-2 knockdown tumors, but only a marginal effect in the control group. Taken together, our data show that DDP resistance in lung cancer cells could be induced through increased surface expression of Trop-2, which at least partially by interfering with MAPK pathway. These results provide novel insight into the function of Trop-2 and encourage the design and testing of approaches targeting this protein and its partners.
Collapse
Affiliation(s)
- Xi Wang
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Min Long
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Ke Dong
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Fang Lin
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Yuanyuan Weng
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Yongri Ouyang
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Li Liu
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Junxia Wei
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Xi Chen
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Ting He
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| | - Hui-Zhong Zhang
- Department of Clinical Diagnosis; Tangdu Hospital; Fourth Military Medical University; Xi'an, PR China
| |
Collapse
|
27
|
Volckaert T, Campbell A, Dill E, Li C, Minoo P, De Langhe S. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development 2013; 140:3731-42. [PMID: 23924632 DOI: 10.1242/dev.096560] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Localized Fgf10 expression in the distal mesenchyme adjacent to sites of lung bud formation has long been thought to drive stereotypic branching morphogenesis even though isolated lung epithelium branches in the presence of non-directional exogenous Fgf10 in Matrigel. Here, we show that lung agenesis in Fgf10 knockout mice can be rescued by ubiquitous overexpression of Fgf10, indicating that precisely localized Fgf10 expression is not required for lung branching morphogenesis in vivo. Fgf10 expression in the mesenchyme itself is regulated by Wnt signaling. Nevertheless, we found that during lung initiation simultaneous overexpression of Fgf10 is not sufficient to rescue the absence of primary lung field specification in embryos overexpressing Dkk1, a secreted inhibitor of Wnt signaling. However, after lung initiation, simultaneous overexpression of Fgf10 in lungs overexpressing Dkk1 is able to rescue defects in branching and proximal-distal differentiation. We also show that Fgf10 prevents the differentiation of distal epithelial progenitors into Sox2-expressing airway epithelial cells in part by activating epithelial β-catenin signaling, which negatively regulates Sox2 expression. As such, these findings support a model in which the main function of Fgf10 during lung development is to regulate proximal-distal differentiation. As the lung buds grow out, proximal epithelial cells become further and further displaced from the distal source of Fgf10 and differentiate into bronchial epithelial cells. Interestingly, our data presented here show that once epithelial cells are committed to the Sox2-positive airway epithelial cell fate, Fgf10 prevents ciliated cell differentiation and promotes basal cell differentiation.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
28
|
Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, Takikawa Y, Miyajima A. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27:169-81. [PMID: 23322300 DOI: 10.1101/gad.204776.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1(+) mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Hinako M Takase
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Branching morphogenesis is a widely spread phenomenon in nature. In organogenesis, it results from the inhomogeneous growth of the epithelial sheet, leading to its repeated branching into surrounding mesoderm. Lung morphogenesis is an emblematic example of tree-like organogenesis common to most mammals. The core signalling network is well identified, notably the Fgf10/Shh couple, required to initiate and maintain branching. In a previous study, we showed that the restriction by SHH of Fgf10 expression domain to distal mesenchyme spontaneously induces differential epithelial proliferation leading to branching. A simple Laplacian model qualitatively reproduced FGF10 dynamics in the mesenchyme and the spontaneous self-avoiding branching morphogenesis. However, early lung geometry has several striking features that remain to be addressed. In this paper, we investigate, through simulations and data analysis, if the FGF10-diffusion scenario accounts for the following aspects of lung morphology: size dispersion, asymmetry of branching events, and distal epithelium-mesothelium equilibrium. We report that they emerge spontaneously in the model, and that most of the underlying mechanisms can be understood as dynamical interactions between gradients and shape. This suggests that specific regulation may not be required for the emergence of these striking geometrical features.
Collapse
Affiliation(s)
- Raphaël Clément
- Laboratoire J-A Dieudonné, UMR CNRS 7531, Parc Valrose, Université Nice Sophia Antipolis, F-06100 Nice, France.
| | | | | |
Collapse
|
30
|
Ohbuchi T, Takaki M, Misawa H, Suzuki H, Ueta Y. In vitro morphological bud formation in organ-like three-dimensional structure from mouse ES cells induced by FGF10 signaling. Commun Integr Biol 2012; 5:312-5. [PMID: 23060950 PMCID: PMC3460831 DOI: 10.4161/cib.20093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages in vitro. Using an embryoid body (EB) culture system, we developed a gut-like three-dimensional structure from mouse ES cells (the ES 3-D structure). Genetic studies implicate fibroblast growth factor 10 (FGF10)-FGF receptor 2b (FGFR2b) signaling as a critical regulator of lung bud morphogenesis in the embryonic foregut. The aim of the present study was to form a putative respiratory tract in the ES 3-D structure. By local application of FGF10 protein, we successfully demonstrated in vitro morphological formation of putative primitive respiratory tract-like processes, or buds, in the ES 3-D structure. Such organs that are differentiated from ES cells may provide new insights into tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu, Japan ; Department of Otorhinolaryngology; School of Medicine; University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
31
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
32
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
33
|
Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012; 10:398-411. [PMID: 22482505 PMCID: PMC3322392 DOI: 10.1016/j.stem.2012.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/18/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
Two populations of Nkx2-1(+) progenitors in the developing foregut endoderm give rise to the entire postnatal lung and thyroid epithelium, but little is known about these cells because they are difficult to isolate in a pure form. We demonstrate here the purification and directed differentiation of primordial lung and thyroid progenitors derived from mouse embryonic stem cells (ESCs). Inhibition of TGFβ and BMP signaling, followed by combinatorial stimulation of BMP and FGF signaling, can specify these cells efficiently from definitive endodermal precursors. When derived using Nkx2-1(GFP) knockin reporter ESCs, these progenitors can be purified for expansion in culture and have a transcriptome that overlaps with developing lung epithelium. Upon induction, they can express a broad repertoire of markers indicative of lung and thyroid lineages and can recellularize a 3D lung tissue scaffold. Thus, we have derived a pure population of progenitors able to recapitulate the developmental milestones of lung/thyroid development.
Collapse
Affiliation(s)
- Tyler A. Longmire
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Finn Hawkins
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Constantina Christodoulou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yuxia Cao
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - JC Jean
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Letty W. Kwok
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Steven S. Shen
- Section of Computational Biomedicine, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USAw
- Center for Health Informatics and Bioinformatics, Department of Biochemistry and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Anne A. Dowton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Maria Serra
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Daniel J. Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Michael D. Green
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Hans-Willem Snoeck
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Maria I. Ramirez
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
34
|
Lin JC, Wu YY, Wu JY, Lin TC, Wu CT, Chang YL, Jou YS, Hong TM, Yang PC. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma. EMBO Mol Med 2012; 4:472-85. [PMID: 22419550 PMCID: PMC3443948 DOI: 10.1002/emmm.201200222] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 01/13/2012] [Accepted: 01/25/2012] [Indexed: 12/25/2022] Open
Abstract
Trop-2, a cell surface glycoprotein, contains both extracellular epidermal growth factor-like and thyroglobulin type-1 repeat domains. Low TROP2 expression was observed in lung adenocarcinoma tissues as compared with their normal counterparts. The lack of expression could be due to either the loss of heterozygosity (LOH) or hypermethylation of the CpG island DNA of TROP2 upstream promoter region as confirmed by bisulphite sequencing and methylation-specific (MS) polymerase chain reaction (PCR). 5-Aza-2′-deoxycytidine treatment on lung cancer cell (CL) lines, CL1-5 and A549, reversed the hypermethylation status and elevated both TROP2 mRNA and protein expression levels. Enforced expression of TROP2 in the lung CL line H1299 reduced AKT as well as ERK activation and suppressed cell proliferation and colony formation. Conversely, silencing TROP2 with shRNA transfection in the less efficiently tumour-forming cell line H322M enhanced AKT activation and increased tumour growth. Trop-2 could attenuate IGF-1R signalling-mediated AKT/β-catenin and ERK activation through a direct binding of IGF1. In conclusion, inactivation of TROP2 due to LOH or by DNA methylation may play an important role in lung cancer tumourigenicity through losing its suppressive effect on IGF-1R signalling and tumour growth.
Collapse
Affiliation(s)
- Jau-Chen Lin
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hashimoto S, Nakano H, Suguta Y, Irie S, Jianhua L, Katyal SL. Exogenous fibroblast growth factor-10 induces cystic lung development with altered target gene expression in the presence of heparin in cultures of embryonic rat lung. Pathobiology 2012; 79:127-43. [PMID: 22261751 DOI: 10.1159/000334839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Signaling by fibroblast growth factor (FGF) receptor (FGFR) 2IIIb regulates branching morphogenesis in the mammalian lung. FGFR2IIIb is primarily expressed in epithelial cells, whereas its ligands, FGF-10 and keratinocyte growth factor (KGF; FGF-7), are expressed in mesenchymal cells. FGF-10 null mice lack lungs, whereas KGF null animals have normal lung development, indicating that FGF-10 regulates lung branching morphogenesis. In this study, we determined the effects of FGF-10 on lung branching morphogenesis and accompanying gene expression in cultures of embryonic rat lungs. METHODS Embryonic day 14 rat lungs were cultured with FGF-10 (0-250 ng/ml) in the absence or presence of heparin (30 ng/ml) for 4 days. Gene expression profiles were analyzed by Affymetrix microchip array including pathway analysis. Some of these genes, functionally important in FGF-10 signaling, were further analyzed by Northern blot, real-time PCR, in situ hybridization and immunohistochemistry. RESULTS Exogenous FGF-10 inhibited branching and induced cystic lung growth only in cultures containing heparin. In total, 252 upregulated genes and 164 downregulated genes were identified, and these included Spry1 (Sprouty-1), Spry2 (Sprouty-2), Spred-1, Bmp4 (bone morphogenetic protein-4, BMP-4), Shh (sonic hedgehog, SHH), Pthlh (parathyroid hormone-related protein, PTHrP), Dusp6 (MAP kinase phosphatase-3, MKP-3) and Clic4 (chloride intracellular channel-4, CLIC-4) among the upregulated genes and Igf1 (insulin-like growth factor-1, IGF-1), Tcf21 (POD), Gyg1 (glycogenin 1), Sparc (secreted protein acidic and rich in cysteine, SPARC), Pcolce (procollagen C-endopeptidase enhancer protein, Pro CEP) and Lox (lysyl oxidase) among the downregulated genes. Gsk3β and Wnt2, which are involved in canonical Wnt signaling, were up- and downregulated, respectively. CONCLUSIONS Unlike FGF-7, FGF-10 effects on lung branching morphogenesis are heparin-dependent. Sprouty-2, BMP-4, SHH, IGF-1, SPARC and POD are known to regulate branching morphogenesis; however, potential roles of CLIC-4 and MKP-3 in lung branching morphogenesis remain to be investigated. FGF-10 may also function in regulating branching morphogenesis or inducing cystic lung growth by inhibiting Wnt2/β-catenin signaling.
Collapse
Affiliation(s)
- Shuichi Hashimoto
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pa., USA.
| | | | | | | | | | | |
Collapse
|
36
|
Tagne JB, Gupta S, Gower AC, Shen SS, Varma S, Lakshminarayanan M, Cao Y, Spira A, Volkert TL, Ramirez MI. Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors. PLoS One 2012; 7:e29907. [PMID: 22242187 PMCID: PMC3252372 DOI: 10.1371/journal.pone.0029907] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 12/07/2011] [Indexed: 01/10/2023] Open
Abstract
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors.
Collapse
Affiliation(s)
- Jean-Bosco Tagne
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sumeet Gupta
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam C. Gower
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Steven S. Shen
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Saaket Varma
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Yuxia Cao
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas L. Volkert
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Maria I. Ramirez
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
37
|
Ye L, Zhao B, Yuan K, Chu Y, Li C, Zhao C, Lian QQ, Ge RS. Gene expression profiling in fetal rat lung during gestational perfluorooctane sulfonate exposure. Toxicol Lett 2012; 209:270-6. [PMID: 22237054 DOI: 10.1016/j.toxlet.2011.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in the tissues of humans and wildlife. It has been reported that gestational exposure to PFOS causes neonatal death of rats. However, the mechanism is still unclear. In this study, we investigated the effects of gestational PFOS exposure on the gene expression profiling of fetal rat lung at pseudoglandular stage. Adult Sprague Dawley dams were dosed orally from gestational day 12-18 with 0 (control), 5 mg/kg/day or 20 mg/kg/day PFOS. Animals were euthanized on day 18.5, fetal lung samples were collected for histochemical staining and RNA profiling analysis. PFOS did not cause apparent microscopic changes of fetal lungs. Gene expression profiling revealed that PFOS dose-dependently up-regulated the expression of 21 (5 mg/kg) and 43 (20 mg/kg) genes. These genes include five PPARα target genes (Acot1, Hmgcs2, Fabp4, Fabp1 and Myh7), and 4 of them are involved in lipid metabolism. The other genes were primarily included in the categories of cytoskeletal structure (Tpm1, Tnnt2, Actn3, Myoz2, Tmod1, and Mfap5), extracellular matrix (Ckm, Lum, Tnnc1, Art3, Dcn, Col17a1, Aspn, Ctsk, Itm2a, Spock2 and Orm1), transporting (Cox8h, Cox6a2 and Scnn1a) and secreted proteins (Scgb3a1, Nppb and Spp1). Our study demonstrates that in utero PFOS exposure resulted in the alteration of a set of genes which are involved in significant cytoskeletal, extracellular matrix remodeling, lipid metabolism and secreted proteins in the fetal rat lung.
Collapse
Affiliation(s)
- Leping Ye
- The 2nd Affiliated Hospital, Affiliated Yuying Children's Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang J, Zhang K, Grabowska D, Li A, Dong Y, Day R, Humphrey P, Lewis J, Kladney RD, Arbeit JM, Weber JD, Chung CH, Michel LS. Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma. Mol Cancer Res 2011; 9:1686-95. [PMID: 21970857 DOI: 10.1158/1541-7786.mcr-11-0241] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trop2, an oncogenic cell surface protein under investigation as a therapeutic target, is commonly overexpressed in several epithelial tumor types yet its function in tumor biology remains relatively unexplored. To investigate the role of Trop2 in epithelial carcinogenesis, we generated Trop2(-/-) mice, which are viable and possess a normal lifespan. Contrary to expectations, Trop2 loss fails to suppress keratinocyte transformation. Instead, ras-transformed Trop2(-/-) keratinocytes preferentially pass through an epithelial to mesenchymal transition (EMT) and form tumors with spindle cell histology. Furthermore, Trop2 loss renders Arf-null mice susceptible to the formation of biphasic sarcomatoid carcinomas containing both squamous and spindle cell components upon carcinogen exposure in an otherwise skin cancer-resistant strain (C57BL/6). Immortalized keratinocytes derived from Trop2(-/-)Arf(-/-) mice exhibit enhanced proliferative and migratory capacity as well as increased activation of mitogen-activated protein kinase and Src prior to transformation. The clinical relevance of these findings was supported by studying the molecular epidemiology of Trop2 in primary head and neck squamous cell carcinomas. This analysis revealed that Trop2 mRNA levels are decreased in a subset of tumors with features of EMT, and total loss of Trop2 protein expression is observed in the spindle cell component of sarcomatoid carcinomas. Therefore, while previous studies have emphasized the potential importance of Trop2 gain of function, these results uncover a role for Trop2 loss in tumorigenesis and the mesenchymal transdifferentiation observed in a subset of squamous cell carcinomas.
Collapse
Affiliation(s)
- Jianbo Wang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McDougall ARA, Hooper SB, Zahra VA, Sozo F, Lo CY, Cole TJ, Doran T, Wallace MJ. The oncogene Trop2 regulates fetal lung cell proliferation. Am J Physiol Lung Cell Mol Physiol 2011; 301:L478-89. [PMID: 21743029 DOI: 10.1152/ajplung.00063.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The factors regulating growth of the developing lung are poorly understood, although the degree of fetal lung expansion is critical. The oncogene Trop2 (trophoblast antigen 2) is upregulated during accelerated fetal lung growth, and we hypothesized that it may regulate normal fetal lung growth. We investigated Trop2 expression in the fetal and neonatal sheep lung during accelerated and delayed lung growth induced by alterations in fetal lung expansion, as well as in response to glucocorticoids. Trop2 expression was measured using real-time PCR and localized spatially using in situ hybridization and immunofluorescence. During normal lung development, Trop2 expression was higher at 90 days gestational age (GA; 4.0 ± 0.8) than at 128 days GA (1.0 ± 0.1), decreased to 0.5 ± 0.1 at 142 days GA (full term ∼147 days GA), and was positively correlated to lung cell proliferation rates (r = 0.953, P < 0.005). Trop2 expression was regulated by fetal lung expansion, but not by glucocorticoids. It was increased nearly threefold by 36 h of increased fetal lung expansion (P < 0.05) and was reduced to ∼55% of control levels by reduced fetal lung expansion (P < 0.05). Trop2 expression was associated with lung cell proliferation during normal and altered lung growth, and the TROP2 protein colocalized with Ki-67-positive cells in the fetal lung. TROP2 was predominantly localized to fibroblasts and type II alveolar epithelial cells. Trop2 small interfering RNA decreased Trop2 expression by ∼75% in cultured fetal rat lung fibroblasts and decreased their proliferation by ∼50%. Cell viability was not affected. This study demonstrates that TROP2 regulates lung cell proliferation during development.
Collapse
Affiliation(s)
- Annie R A McDougall
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang Y, Ballinger DG, Dai JY, Peters U, Hinds DA, Cox DR, Beilharz E, Chlebowski RT, Rossouw JE, McTiernan A, Rohan T, Prentice RL. Genetic variants in the MRPS30 region and postmenopausal breast cancer risk. Genome Med 2011; 3:42. [PMID: 21702935 PMCID: PMC3218816 DOI: 10.1186/gm258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/06/2011] [Accepted: 06/24/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Genome-wide association studies have identified several genomic regions that are associated with breast cancer risk, but these provide an explanation for only a small fraction of familial breast cancer aggregation. Genotype by environment interactions may contribute further to such explanation, and may help to refine the genomic regions of interest. METHODS We examined genotypes for 4,988 SNPs, selected from recent genome-wide studies, and four randomized hormonal and dietary interventions among 2,166 women who developed invasive breast cancer during the intervention phase of the Women's Health Initiative (WHI) clinical trial (1993 to 2005), and one-to-one matched controls. These SNPs derive from 3,224 genomic regions having pairwise squared correlation (r2) between adjacent regions less than 0.2. Breast cancer and SNP associations were identified using a test statistic that combined evidence of overall association with evidence for SNPs by intervention interaction. RESULTS The combined 'main effect' and interaction test led to a focus on two genomic regions, the fibroblast growth factor receptor two (FGFR2) and the mitochondrial ribosomal protein S30 (MRPS30) regions. The ranking of SNPs by significance level, based on this combined test, was rather different from that based on the main effect alone, and drew attention to the vicinities of rs3750817 in FGFR2 and rs7705343 in MRPS30. Specifically, rs7705343 was included with several FGFR2 SNPs in a group of SNPs having an estimated false discovery rate < 0.05. In further analyses, there were suggestions (nominal P < 0.05) that hormonal and dietary intervention hazard ratios varied with the number of minor alleles of rs7705343. CONCLUSIONS Genotype by environment interaction information may help to define genomic regions relevant to disease risk. Combined main effect and intervention interaction analyses raise novel hypotheses concerning the MRPS30 genomic region and the effects of hormonal and dietary exposures on postmenopausal breast cancer risk.
Collapse
Affiliation(s)
- Ying Huang
- Fred Hutchinson Cancer Research Center, Divisions of Public Health Sciences, and Vaccine and Infectious Diseases, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
42
|
NPAS3 is a trachealess homolog critical for lung development and homeostasis. Proc Natl Acad Sci U S A 2009; 106:11691-6. [PMID: 19581591 PMCID: PMC2710647 DOI: 10.1073/pnas.0902426106] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trachealess (Trh) is a PAS domain transcription factor regulating Drosophila tracheogenesis. No other Trh homolog has been associated with a respiratory phenotype. Seeking homolog(s) regulating lung development, we screened murine genomic DNA using trh oligonucleotides, identifying only Npas3. Npas3 mRNA peaks in lung from E10.5 to E13.5, verified by sequencing, with immunostaining in airway epithelial cells. Npas3-null mice have reduced lung branching morphogenesis but are viable prenatally. Npas3-null newborns die in respiratory distress, with diminished alveolarization, decreased Shh, Fgf9, Fgf10, and Bmp4 mRNAs, and increased Spry2, consistent with reduced FGF signaling. Exogenous FGF10 rescues branching morphogenesis in Npas3-null lungs. In promoter reporter assays, NPAS3 directly upregulates Shh and represses Spry2. Npas3(+/-) mice have a milder lung phenotype, surviving postnatally, but develop emphysema and airways hyperreactivity. Therefore, absence of a developmentally expressed transcription factor can alter downstream gene expression and multiple signaling pathways in organogenesis. NPAS3 haploinsufficiency may also lead to emphysema and asthma.
Collapse
|
43
|
Abstract
In a recent workshop organized by the NIH-NHLBI, investigators working on different aspects of lung biology met to discuss recent progress regarding the origin, development, and characterization of the various cell lineages present in the lung in both normal and disease states. The workshop was entitled "Resident Cellular Components of the Human Lung: Current Knowledge and Goals for Research on Cell Phenotyping and Function." In this article we will highlight some of the developmental aspects of the lung discussed at the meeting. We will review information about developmental signals that are possibly reactivated during lung regeneration/repair and disease processes, and we will pose the questions and challenges viewed to be relevant to further advance the field.
Collapse
|
44
|
Stem cells and cell therapies in lung biology and lung diseases. Ann Am Thorac Soc 2008; 5:637-67. [PMID: 18625757 DOI: 10.1513/pats.200804-037dw] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Tsao PN, Chen F, Izvolsky KI, Walker J, Kukuruzinska MA, Lu J, Cardoso WV. Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. J Biol Chem 2008; 283:29532-44. [PMID: 18694942 PMCID: PMC2570893 DOI: 10.1074/jbc.m801565200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/17/2008] [Indexed: 01/19/2023] Open
Abstract
Little is known about the mechanisms by which the lung epithelial progenitors are initially patterned and how proximal-distal boundaries are established and maintained when the lung primordium forms and starts to branch. Here we identified a number of Notch pathway components in respiratory progenitors of the early lung, and we investigated the role of Notch in lung pattern formation. By preventing gamma-secretase cleavage of Notch receptors, we have disrupted global Notch signaling in the foregut and in the lung during the initial stages of murine lung morphogenesis. We demonstrate that Notch signaling is not necessary for lung bud initiation; however, Notch is required to maintain a balance of proximal-distal cell fates at these early stages. Disruption of Notch signaling dramatically expands the population of distal progenitors, altering morphogenetic boundaries and preventing formation of proximal structures. Our data suggest a novel mechanism in which Notch and fibroblast growth factor signaling interact to control the proximal-distal pattern of forming airways in the mammalian lung.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang J, Day R, Dong Y, Weintraub SJ, Michel L. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol Cancer Ther 2008; 7:280-5. [PMID: 18281513 DOI: 10.1158/1535-7163.mct-07-2003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cell surface protein Trop-2 is highly expressed in a wide variety of epithelial cancers. In contrast, there is little or no expression of Trop-2 in adult somatic tissue. Because it is a cell surface protein that is selectively expressed in tumor cells, Trop-2 is a potential therapeutic target. However, whether Trop-2 is actively involved in tumorigenesis and whether its targeting for treatment would be effective have not been examined. Here, we show that Trop-2 expression is necessary for tumorigenesis and invasiveness of colon cancer cells, as both are inhibited when Trop-2 expression is suppressed by RNA interference. Conversely, ectopic expression of Trop-2 in colon cancer cells enhances their capacity for anchorage-independent growth and ectopic expression of Trop-2 in NIH3T3 cells is sufficient to promote both anchorage-independent growth and tumorigenesis. Importantly, we show that an antibody against the extracellular domain of Trop-2 reduces tumor cell invasiveness. Therefore, we have identified Trop-2 as an oncogene that has potential as a therapeutic target. Given the restricted expression of Trop-2 in normal tissue, anti-Trop-2 therapeutics would be predicted to have limited toxicity.
Collapse
Affiliation(s)
- Jianbo Wang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Millien G, Beane J, Lenburg M, Tsao PN, Lu J, Spira A, Ramirez. MI. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction. Gene Expr Patterns 2008; 8:124-39. [PMID: 18023262 PMCID: PMC2440337 DOI: 10.1016/j.modgep.2007.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 08/31/2007] [Accepted: 09/14/2007] [Indexed: 11/30/2022]
Abstract
To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.
Collapse
Affiliation(s)
- Guetchyn Millien
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jennifer Beane
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Marc Lenburg
- Depatment of Genetics and Genomics, Boston University School of Medicine, Boston, MA 02118
| | - Po-Nien Tsao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jining Lu
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Avrum Spira
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Maria I. Ramirez.
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
48
|
|
49
|
Metzger DE, Xu Y, Shannon JM. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev Dyn 2007; 236:1175-92. [PMID: 17394208 DOI: 10.1002/dvdy.21133] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling has been shown to be essential for many aspects of normal lung development. To determine epithelial targets of FGF signaling, we cultured embryonic day (E) 11.5 mouse lungs for 24 hr in the presence or absence of the FGF receptor antagonist SU5402, which inhibited branching morphogenesis. Affymetrix gene chip analysis of treated and control epithelia identified several genes regulated by FGF signaling, including Elf5, a member of the Epithelial-specific Ets family of transcription factors. SU5402 reduced Elf5 expression in mesenchyme-free cultures of E12.5 epithelium, demonstrating that the inhibition was direct. In situ hybridization revealed that Elf5 had a dynamic pattern of expression during lung development. We found that expression of Elf5 was induced by FGF7 and FGF10, ligands that primarily bind FGFR2b. To further define the pathways by which FGFs activate Elf5 expression, we cultured E11.5 lung tips in the presence of compounds to inhibit FGF receptors (SU5402), PI3-Kinase/Akt-mediated signaling (LY294002), and MAP Kinase/Erk-mediated signaling (U0126). We found that SU5402 and LY294002 significantly reduced Elf5 expression, whereas U0126 had no effect. LY294002 also reduced Elf5 expression in cultures of purified epithelium. Finally, pAkt was coexpressed with Elf5 in the proximal epithelial airways of E17.5 lungs. These results demonstrate that Elf5 is an FGF-sensitive transcription factor in the lung with a dynamic pattern of expression and that FGF regulation of Elf5 by means of FGFR2b occurs through the PI3-Kinase/Akt pathway.
Collapse
Affiliation(s)
- David E Metzger
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | |
Collapse
|
50
|
Lü J, Qian J, Keppler D, Cardoso WV. Cathespin H is an Fgf10 target involved in Bmp4 degradation during lung branching morphogenesis. J Biol Chem 2007; 282:22176-84. [PMID: 17500053 DOI: 10.1074/jbc.m700063200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During lung development, signaling by Fgf10 (fibroblast growth factor 10) and its receptor Fgfr2b is critical for induction of a gene network that controls proliferation, differentiation, and branching of the epithelial tubules. The downstream events triggered by Fgf10-Fgfr2b signaling during this process are still poorly understood. In a global screen for transcriptional targets of Fgf10, we identified Ctsh (cathepsin H), a gene encoding a lysosomal cysteine protease of the papain family, highly up-regulated in the developing lung epithelium. Here we show that among other cathepsin genes present in the lung, Ctsh is the only family member selectively induced by Fgf10 in the lung epithelium. We provide evidence that, during branching morphogenesis, epithelial expression of Ctsh overlaps temporally and spatially with that of Bmp4 (bone morphogenetic protein 4), another target of Fgf10. Moreover, we show that Ctsh controls the availability of mature Bmp4 protein in the embryonic lung and that inhibiting Ctsh activity leads to a marked accumulation of Bmp4 protein and disruption of branching morphogenesis. Tightly controlled levels of Bmp4 signaling are critical for patterning of the distal lung epithelium. Our study suggests a potentially novel posttranscriptional mechanism in which Ctsh rapidly removes Bmp4 from forming buds to limit Bmp4 action. The presence of both Ctsh and Bmp4 or Bmp4 signaling activity in other developing structures, such as the kidney, yolk sac, and choroid plexus, suggests a possible general role of Ctsh in regulating Bmp4 proteolysis in different morphogenetic events.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|