1
|
Xu EY, Schneper LM, Notterman DA. A novel metric to improve mismatched primer selection and quantification accuracy in amplifying DNA repeats for quantitative polymerase chain reactions. PLoS One 2023; 18:e0292559. [PMID: 37812635 PMCID: PMC10561853 DOI: 10.1371/journal.pone.0292559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023] Open
Abstract
In quantitative polymerase chain reaction (qPCR) experiments, primers containing mismatches with respect to the template are widely used in measuring repetitive DNA elements. Primer-template mismatches may lead to underestimation of the input sample quantity due to inefficient annealing and amplification. But how primer-template mismatches affect quantification accuracy has not been rigorously investigated. In this study, we performed a series of qPCR experiments in which we tested three pairs of mismatched telomere primers (tel1/tel2, tel1b/tel2b and telg/telc) and two pairs of perfect-match reference gene primers (36B4-F/-R and IFNB1-F/-R) at three different primer concentrations under four cycling conditions. Templates used were genomic DNA from two human cell lines and oligo duplexes which contained telomere sequences, reference gene sequences, or both. We demonstrated that the underestimation of input sample quantity from reactions containing mismatched primers was not due to lower amplification efficiency (E), but due to ineffective usage of the input sample. We defined a novel concept of amplification efficacy (f) which quantifies the effectiveness of input sample amplification by primers. We have modified the conventional qPCR kinetic formula to include f, which corrects the effects of primer mismatches. We demonstrated that reactions containing mismatched telomere primer pairs had similar efficiency (E), but varying degrees of reduced efficacy (f) in comparison to those with the perfect-match gene primer pairs. Using the quantitative parameter f, underestimation of initial target by telomere primers can be adjusted to provide a more accurate measurement. Additionally, we found that the tel1b/tel2b primer set at concentration of 500 nM and 900 nM exhibited the best amplification efficacy f. This study provides a novel way to incorporate an evaluation of amplification efficacy into qPCR analysis. In turn, it improves mismatched primer selection and quantification accuracy in amplifying DNA repeats using qPCR methods.
Collapse
Affiliation(s)
- Eugenia Y. Xu
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Lisa M. Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
2
|
Miki S, Koga T, Mckinney AM, Parisian AD, Tadokoro T, Vadla R, Marsala M, Hevner RF, Costello JF, Furnari F. TERT promoter C228T mutation in neural progenitors confers growth advantage following telomere shortening in vivo. Neuro Oncol 2022; 24:2063-2075. [PMID: 35325218 PMCID: PMC9713509 DOI: 10.1093/neuonc/noac080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.
Collapse
Affiliation(s)
- Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew M Mckinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alison D Parisian
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Raghavendra Vadla
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Frank Furnari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Laboratory of Tumor Biology, Ludwig Cancer Research, San Diego Branch, La Jolla, California, USA
| |
Collapse
|
3
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
4
|
Lee S, Chang TC, Schreiner P, Fan Y, Agarwal N, Owens C, Dummer R, Kirkwood JM, Barnhill RL, Theodorescu D, Wu G, Bahrami A. Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells. Cancers (Basel) 2022; 14:4018. [PMID: 36011010 PMCID: PMC9406525 DOI: 10.3390/cancers14164018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - John M. Kirkwood
- Department of Pathology, University of Pittsburgh Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| |
Collapse
|
5
|
Xu T, Cheng D, Zhao Y, Zhang J, Zhu X, Zhang F, Chen G, Wang Y, Yan X, Robertson GP, Gaddameedhi S, Lazarus P, Wang S, Zhu J. Polymorphic tandem DNA repeats activate the human telomerase reverse transcriptase gene. Proc Natl Acad Sci U S A 2021; 118:e2019043118. [PMID: 34155099 PMCID: PMC8256013 DOI: 10.1073/pnas.2019043118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple independent sequence variants of the hTERT locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; hTERT alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.
Collapse
Affiliation(s)
- Tao Xu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - De Cheng
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jinglong Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Xiaolu Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Fan Zhang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Gang Chen
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Yang Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shobhan Gaddameedhi
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606
| | - Philip Lazarus
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Shuwen Wang
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210
| | - Jiyue Zhu
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210;
| |
Collapse
|
6
|
Zhang F, Wang S, Zhu J. ETS variant transcription factor 5 and c-Myc cooperate in derepressing the human telomerase gene promoter via composite ETS/E-box motifs. J Biol Chem 2020; 295:10062-10075. [PMID: 32518154 DOI: 10.1074/jbc.ra119.012130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
The human telomerase gene (hTERT) is repressed in most somatic cells. How transcription factors activate the hTERT promoter in its repressive chromatin environment is unknown. Here, we report that the ETS family protein ETS variant transcription factor 5 (ETV5) mediates epidermal growth factor (EGF)-induced hTERT expression in MCF10A cells. This activation required MYC proto-oncogene bHLH transcription factor (c-Myc) and depended on the chromatin state of the hTERT promoter. Using chromatinized bacterial artificial chromosome (BAC) reporters in human fibroblasts, we found that ETV5 and c-Myc/MYC-associated factor X (MAX) synergistically activate the hTERT promoter via two identical, but inverted, composite Ets/E-box motifs enclosing the core promoter. Mutations of Ets or E-box sites in either DNA motif abolished the activation and reduced or eliminated the synergism. ETV5 and c-Myc facilitated each other's binding to the hTERT promoter. ETV5 bound to the hTERT promoter in both telomerase-negative and -positive cells, but it activated the repressed hTERT promoter and altered histone modifications only in telomerase-negative cells. The synergistic ETV5/c-Myc activation disappeared when hTERT promoter repression became relieved because of the loss of distal regulatory elements in chimeric human/mouse BAC reporters. Our results suggest that the binding of c-Myc and ETS family proteins to the Ets/E-box motifs derepresses the hTERT promoter by inducing an active promoter configuration, providing a mechanistic insight into hTERT activation during tumorigenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| |
Collapse
|
7
|
Engineering a humanized telomerase reverse transcriptase gene in mouse embryonic stem cells. Sci Rep 2019; 9:9683. [PMID: 31273310 PMCID: PMC6609615 DOI: 10.1038/s41598-019-46160-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Telomerase is expressed in adult mouse, but not in most human, tissues and mouse telomeres are much longer than those in humans. This interspecies difference of telomere homeostasis poses a challenge in modeling human diseases using laboratory mice. Using chromatinized bacterial artificial chromosome reporters, we discovered that the 5′ intergenic region, introns 2 and 6 of human telomerase gene (hTERT) were critical for regulating its promoter in somatic cells. Accordingly, we engineered a humanized gene, hmTert, by knocking-in a 47-kilobase hybrid fragment containing these human non-coding sequences into the mTert locus in mouse embryonic stem cells (mESCs). The hmTert gene, encoding the wildtype mTert protein, was fully functional, as a mESC line with homozygous hmTert alleles proliferated for over 400 population doublings without exhibiting chromosomal abnormalities. Like human ESCs, the engineered mESCs contained high telomerase activity, which was repressed upon their differentiation into fibroblast-like cells in a histone deacetylase-dependent manner. Fibroblast-like cells differentiated from these mESCs contained little telomerase activity. Thus, telomerase in mESCs with the hmTert alleles was subjected to human-like regulation. Our study revealed a novel approach to engineer a humanized telomerase gene in mice, achieving a milestone in creating a mouse model with humanized telomere homeostasis.
Collapse
|
8
|
Regulation of human and mouse telomerase genes by genomic contexts and transcription factors during embryonic stem cell differentiation. Sci Rep 2017; 7:16444. [PMID: 29180668 PMCID: PMC5703907 DOI: 10.1038/s41598-017-16764-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Differential regulation of telomerase reverse transcriptase (TERT) genes contribute to distinct aging and tumorigenic processes in humans and mice. To study TERT regulation, we generated mouse embryonic stem cell (ESC) lines containing single-copy bacterial artificial chromosome (BAC) reporters, covering hTERT and mTERT genes and their neighboring loci, via recombinase-mediated BAC targeting. ESC lines with chimeric BACs, in which two TERT promoters were swapped, were also generated. Using these chromatinized BACs, we showed that hTERT silencing during differentiation to embryoid bodies (EBs) and to fibroblast-like cells was driven by the human-specific genomic context and accompanied by increases of repressive epigenetic marks, H3K9me3 and H3K27me3, near its promoter. Conversely, the mouse genomic context did not repress TERT transcription until late during differentiation. The hTERT promoter was more active than its mouse counterpart when compared in the same genomic contexts. Mutations of E-box and E2F consensus sites at the promoter had little effect on hTERT transcription in ESCs. However, the mutant promoters were rapidly silenced upon EB differentiation, indicating that transcription factors (TFs) bound to these sites were critical in maintaining hTERT transcription during differentiation. Together, our study revealed a dynamic hTERT regulation by chromatin environment and promoter-bound TFs during ESC differentiation.
Collapse
|
9
|
Khattar E, Tergaonkar V. Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC. Front Cell Dev Biol 2017; 5:1. [PMID: 28184371 PMCID: PMC5266692 DOI: 10.3389/fcell.2017.00001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Telomerase elongates telomeres and is crucial for maintaining genomic stability. While stem cells and cancer cells display high telomerase activity, normal somatic cells lack telomerase activity primarily due to transcriptional repression of telomerase reverse transcriptase (TERT), the catalytic component of telomerase. Transcription factor binding, chromatin status as well as epigenetic modifications at the TERT promoter regulates TERT transcription. Myc is an important transcriptional regulator of TERT that directly controls its expression by promoter binding and associating with other transcription factors. In this review, we discuss the current understanding of the molecular mechanisms behind regulation of TERT transcription by Myc. We also discuss future perspectives in investigating the regulation of Myc at TERT promoter during cancer development.
Collapse
Affiliation(s)
- Ekta Khattar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTAR Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology, ASTARSingapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore; Centre for Cancer Biology, University of South Australia and SA PathologyAdelaide, SA, Australia
| |
Collapse
|
10
|
Heidenreich B, Kumar R. TERT promoter mutations in telomere biology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 771:15-31. [PMID: 28342451 DOI: 10.1016/j.mrrev.2016.11.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Telomere repeats at chromosomal ends, critical to genome integrity, are maintained through an elaborate network of proteins and pathways. Shelterin complex proteins shield telomeres from induction of DNA damage response to overcome end protection problem. A specialized ribonucleic protein, telomerase, maintains telomere homeostasis through repeat addition to counter intrinsic shortcomings of DNA replication that leads to gradual sequence shortening in successive mitoses. The biogenesis and recruitment of telomerase composed of telomerase reverse transcriptase (TERT) subunit and an RNA component, takes place through the intricate machinery that involves an elaborate number of molecules. The synthesis of telomeres remains a controlled and limited process. Inherited mutations in the molecules involved in the process directly or indirectly cause telomeropathies. Telomerase, while present in stem cells, is deactivated due to epigenetic silencing of the rate-limiting TERT upon differentiation in most of somatic cells with a few exceptions. However, in most of the cancer cells telomerase reactivation remains a ubiquitous process and constitutes one of the major hallmarks. Discovery of mutations within the core promoter of the TERT gene that create de novo binding sites for E-twenty-six (ETS) transcription factors provided a mechanism for cancer-specific telomerase reactivation. The TERT promoter mutations occur mainly in tumors from tissues with low rates of self-renewal. In melanoma, glioma, hepatocellular carcinoma, urothelial carcinoma and others, the promoter mutations have been shown to define subsets of patients with adverse disease outcomes, associate with increased transcription of TERT, telomerase reactivation and affect telomere length; in stem cells the mutations inhibit TERT silencing following differentiation into adult cells. The TERT promoter mutations cause an epigenetic switch on the mutant allele along with recruitment of pol II following the binding of GABPA/B1 complex that leads to mono-allelic expression. Thus, the TERT promoter mutations hold potential as biomarkers as well as future therapeutic targets.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
12
|
Zhang F, Cheng D, Wang S, Zhu J. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene. Genes (Basel) 2016; 7:genes7070030. [PMID: 27367732 PMCID: PMC4962000 DOI: 10.3390/genes7070030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT), is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - De Cheng
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, PO Box 1495, Spokane, WA 99210, USA.
| |
Collapse
|
13
|
Abstract
OBJECTIVE Child-rearing environments have been associated with morbidity in adult rhesus monkeys. We examine whether such links are also seen with leukocyte telomere length. METHODS To determine telomere length in leukocytes, blood was collected from 11 adult female monkeys aged 7 to 10 years who had been exposed to different rearing environments between birth and 7 months. Four had been reared with their mothers in typical social groups composed of other female monkeys, their offspring, and 1 to 2 adult male monkeys. The other 7 had been reared in either small groups of peers or individual cages with extensive peer interaction daily. After 7 months, all shared a common environment. RESULTS Telomere lengths were longer for those adults who had been reared with their mothers in social groups (median = 16.0 kb, interquartile range = 16.5-15.4) than for those who were reared without their mothers (median = 14.0 kb, interquartile range = 14.3-12.7; 2.2 kb/telomere difference, p < .027). CONCLUSIONS This observation adds to emerging knowledge about early adverse child-rearing conditions and their potential for influencing later morbidity. Because newborns were randomly assigned to the mother or other rearing conditions, the findings are not confounded by other conditions that co-occur with adverse child-rearing environments in humans (e.g., prenatal stress, nutrition and health as well as postnatal nutrition and negative life experiences over and above rearing conditions).
Collapse
|
14
|
Qing H, Aono J, Findeisen HM, Jones KL, Heywood EB, Bruemmer D. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition. J Cell Physiol 2015; 231:1276-82. [PMID: 26505494 DOI: 10.1002/jcp.25226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/17/2022]
Abstract
Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors.
Collapse
Affiliation(s)
- Hua Qing
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky.,Department of Endocrinology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Aono
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Hannes M Findeisen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Karrie L Jones
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Elizabeth B Heywood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
15
|
Cheng D, Zhao Y, Wang S, Jia W, Kang J, Zhu J. Human Telomerase Reverse Transcriptase (hTERT) Transcription Requires Sp1/Sp3 Binding to the Promoter and a Permissive Chromatin Environment. J Biol Chem 2015; 290:30193-203. [PMID: 26487723 DOI: 10.1074/jbc.m115.662221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
The transcription of human telomerase gene hTERT is regulated by transcription factors (TFs), including Sp1 family proteins, and its chromatin environment. To understand its regulation in a relevant chromatin context, we employed bacterial artificial chromosome reporters containing 160 kb of human genomic sequence containing the hTERT gene. Upon chromosomal integration, the bacterial artificial chromosomes recapitulated endogenous hTERT expression, contrary to transient reporters. Sp1/Sp3 expression did not correlate with hTERT promoter activity, and these TFs bound to the hTERT promoters in both telomerase-positive and telomerase-negative cells. Mutation of the proximal GC-box resulted in a dramatic decrease of hTERT promoter activity, and mutations of all five GC-boxes eliminated its transcriptional activity. Neither mutations of GC-boxes nor knockdown of endogenous Sp1 impacted promoter binding by other TFs, including E-box-binding proteins, and histone acetylation and trimethylation of histone H3K9 at the hTERT promoter in telomerase-positive and -negative cells. The result indicated that promoter binding by Sp1/Sp3 was essential, but not a limiting step, for hTERT transcription. hTERT transcription required a permissive chromatin environment. Importantly, our data also revealed different functions of GC-boxes and E-boxes in hTERT regulation; although GC-boxes were essential for promoter activity, factors bound to the E-boxes functioned to de-repress hTERT promoter.
Collapse
Affiliation(s)
- De Cheng
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Yuanjun Zhao
- the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| | - Shuwen Wang
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210
| | - Wenwen Jia
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiyue Zhu
- From the Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington 99210, the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, and
| |
Collapse
|
16
|
Wu TT, Chen C, Chen SM, Xu Y, Wang Y, Chen Z, Wang F, Xiao BK, Tao ZZ. Nuclear translocation of telomerase reverse transcriptase is a critical process in lymphatic metastasis of nasopharyngeal carcinoma. Oncol Lett 2014; 9:265-269. [PMID: 25435972 PMCID: PMC4246691 DOI: 10.3892/ol.2014.2689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/08/2014] [Indexed: 01/21/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the predominant functional unit of telomerase and maintains the telomere length and the stability of chromosomes. Recently, TERT has been shown to be a critical factor in a number of other biological processes, including cell proliferation and cancer metastasis. In addition, although numerous studies have been conducted, the subcellular localization of the TERT protein and the association of such with cancer metastasis remains unclear. To investigate the involvement of TERT in in vivo metastasis, quantum dots-based immunofluorescence and western blot analysis were conducted to detect changes in the subcellular localization of TERT in human nasopharyngeal carcinoma (NPC) tissues and metastatic lymph nodes. To further investigate, metastatic and non-metastatic models of NPC were generated using 5-8F (high metastasis capability) and 6-10B (low metastasis capability) cell lines, respectively. It was found that TERT protein was overexpressed in NPC tissue samples and metastatic lymph nodes and TERT was predominantly located in the cytoplasm of primary NPC tissues, while TERT was predominantly located in the nucleus of the metastatic lymph nodes. The ratio of cytoplasmic TERT/nuclear TERT for the primary tumor of the 6-10B cell line was almost six-fold higher than that of the metastatic lymph nodes of the 5-8F cell line. TERT translocation from the cytoplasm to nucleus may present a critical step in the lymphatic metastasis of NPC. Thus, TERT translocation may be more useful than TERT expression level and telomerase activity for predicting the metastasis of NPC.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhe Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo-Kui Xiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
17
|
Zhao Y, Cheng D, Wang S, Zhu J. Dual roles of c-Myc in the regulation of hTERT gene. Nucleic Acids Res 2014; 42:10385-98. [PMID: 25170084 PMCID: PMC4176324 DOI: 10.1093/nar/gku721] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/04/2022] Open
Abstract
Human telomerase gene hTERT is important for cancer and aging. hTERT promoter is regulated by multiple transcription factors (TFs) and its activity is dependent on the chromatin environment. However, it remains unsolved how the interplay between TFs and chromatin environment controls hTERT transcription. In this study, we employed the recombinase-mediated BAC targeting and BAC recombineering techniques to dissect the functions of two proximal E-box sites at -165 and +44 nt in regulating the hTERT promoter in the native genomic contexts. Our data showed that mutations of these sites abolished promoter binding by c-Myc/Max, USF1 and USF2, decreased hTERT promoter activity, and prevented its activation by overexpressed c-Myc. Upon inhibition of histone deacetylases, mutant and wildtype promoters were induced to the same level, indicating that the E-boxes functioned to de-repress the hTERT promoter and allowed its transcription in a repressive chromatin environment. Unexpectedly, knockdown of endogenous c-Myc/Max proteins activated hTERT promoter. This activation did not require the proximal E-boxes but was accompanied by increased promoter accessibility, as indicated by augmented active histone marks and binding of multiple TFs at the promoter. Our studies demonstrated that c-Myc/Max functioned in maintaining chromatin-dependent repression of the hTERT gene in addition to activating its promoter.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - De Cheng
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Shuwen Wang
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| | - Jiyue Zhu
- Department of C & M Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington, USA
| |
Collapse
|
18
|
Eldholm V, Haugen A, Zienolddiny S. CTCF mediates the TERT enhancer-promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene. Int J Cancer 2013; 134:2305-13. [PMID: 24174344 DOI: 10.1002/ijc.28570] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 01/18/2023]
Abstract
Telomerase activation is a hallmark of cancer. Although the regulation of the telomerase reverse transcriptase catalytic subunit (TERT), the rate-limiting factor for telomerase activity, has been studied intensively it remains incompletely understood. In cells devoid of telomerase activity, TERT is embedded in a region of condensed chromatin and the chromatin remodeling protein CCCTC-binding factor (CTCF) has been implicated in the inhibition of TERT expression. The importance of TERT activation for cellular immortalization and carcinogenesis is attested by the fact that the gene is expressed in more than 90% of immortal cell lines and tumors and that gain of TERT is the most frequent amplification event in early stage lung cancer. This study was designed to study the mechanisms of regulation of the TERT gene expression by the CTCF transcription factor in three human lung cancer cell lines, A427, A549 and H838. Depletion of CTCF by siRNA resulted in reduced TERT mRNA levels in two (A427 and A549) of the three cell lines. A novel enhancer element was identified approximately 4.5 kb upstream of the TERT transcription start site. Chromatin immunoprecipitation experiments revealed recruitment of CTCF to this enhancer element. Chromosome conformation capture experiments demonstrated the presence of CTCF-dependent chromatin loops between this enhancer element and the TERT proximal promoter in A427 and A549 cell lines. In summary, the results show that CTCF plays an important role in maintaining TERT expression in a subset of human lung cancer cell lines. This role may be due to CTCF-dependent enhancer-promoter interactions.
Collapse
Affiliation(s)
- Vegard Eldholm
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
19
|
Xu M, Katzenellenbogen RA, Grandori C, Galloway DA. An unbiased in vivo screen reveals multiple transcription factors that control HPV E6-regulated hTERT in keratinocytes. Virology 2013; 446:17-24. [PMID: 24074563 DOI: 10.1016/j.virol.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 01/23/2023]
Abstract
Activation of telomerase by human papillomavirus 16 (HPV16) E6 is a critical step for cell immortalization and transformation in human foreskin keratinocytes (HFKs). Multiple transcription factors have been identified as being involved in E6-induced hTERT expression. Here, we adapted an unbiased in vivo screen using a LacO-LacI system in human cells to discover hTERT promoter-interacting regulators. This approach allowed us to identify a novel hTERT repressor, Maz, which bound the hTERT promoter. E6 expression reduced Maz binding and correspondingly increased Sp1 binding at the hTERT promoter. Knockdown of Maz further increased histone acetylation, as well as hTERT expression in the presence of E6. Overall, these data indicate the utility of a novel screen for promoter-interacting and transcription-regulating proteins. These data also highlight multiple factors that normally regulate hTERT repression in HFKs, and therefore are targeted by E6 for hTERT expression.
Collapse
Affiliation(s)
- Mei Xu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
20
|
Wahlström T, Belikov S, Arsenian Henriksson M. Chromatin dynamics at the hTERT promoter during transcriptional activation and repression by c-Myc and Mnt in Xenopus leavis oocytes. Exp Cell Res 2013; 319:3160-9. [PMID: 23860446 DOI: 10.1016/j.yexcr.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
Abstract
The transcription factors c-Myc and Mnt regulate gene expression through dimerization with Max and binding to E-boxes in target genes. While c-Myc activates gene expression via recruitment of histone modifying complexes, Mnt acts as a transcriptional repressor. Here, we used the Xenopus leavis oocyte system to address the effect of c-Myc and Mnt on transcription and chromatin remodeling over the E-box region in the human telomerase reverse transcriptase (hTERT) promoter. As expected we found elevated and decreased levels of hTERT transcription upon exogenously expressed c-Myc/Max and Mnt/Max, respectively. In addition, we confirmed binding of these heterodimers to both E-boxes already enriched with H3K9ac and H4K16ac. These chromatin marks were further enhanced upon c-Myc/Max binding followed by increased DNA accessibility in the E-box region. In contrast, Mnt/Max inhibited Myc-induced transcription and mediated repression through complete chromatin condensation and deacetylation of H3K9 and H4K16 across the E-box region. Importantly, Mnt was able to counteract c-Myc mediated activation even when expressed at low levels, suggesting Mnt to act as a strong repressor by closing the chromatin structure. Collectively our data demonstrate that the balance between c-Myc and Mnt activity determines the transcriptional outcome of the hTERT promoter by modulation of the chromatin architecture.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
21
|
McKenna DJ, Doherty BA, Downes CS, McKeown SR, McKelvey-Martin VJ. Use of the comet-FISH assay to compare DNA damage and repair in p53 and hTERT genes following ionizing radiation. PLoS One 2012; 7:e49364. [PMID: 23145163 PMCID: PMC3492288 DOI: 10.1371/journal.pone.0049364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
The alkaline single cell gel electrophoresis (comet) assay can be combined with fluorescent in situ hybridisation (FISH) methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s) provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s). In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS) fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR), this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.
Collapse
Affiliation(s)
- Declan J McKenna
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Polanská E, Dobšáková Z, Dvořáčková M, Fajkus J, Štros M. HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction. Chromosoma 2012; 121:419-31. [PMID: 22544226 DOI: 10.1007/s00412-012-0373-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 01/09/2023]
Abstract
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
Collapse
Affiliation(s)
- Eva Polanská
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Nicholls C, Li H, Wang JQ, Liu JP. Molecular regulation of telomerase activity in aging. Protein Cell 2011; 2:726-38. [PMID: 21976062 DOI: 10.1007/s13238-011-1093-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022] Open
Abstract
The process of aging is mitigated by the maintenance and repair of chromosome ends (telomeres), resulting in extended lifespan. This review examines the molecular mechanisms underlying the actions and regulation of the enzyme telomerase reverse transcriptase (TERT), which functions as the primary mechanism of telomere maintenance and regulates cellular life expectancy. Underpinning increased cell proliferation, telomerase is also a key factor in facilitating cancer cell immortalization. The review focuses on aspects of hormonal regulations of telomerase, and the intracellular pathways that converge to regulate telomerase activity with an emphasis on molecular interactions at protein and gene levels. In addition, the basic structure and function of two key telomerase enzyme components-the catalytic subunit TERT and the template RNA (TERC) are discussed briefly.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
25
|
Jia W, Wang S, Horner JW, Wang N, Wang H, Gunther EJ, DePinho RA, Zhu J. A BAC transgenic reporter recapitulates in vivo regulation of human telomerase reverse transcriptase in development and tumorigenesis. FASEB J 2010; 25:979-89. [PMID: 21135040 DOI: 10.1096/fj.10-173989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is tightly regulated in humans relative to mice, owing to the differential regulation of TERT genes. To explore hTERT regulation in vivo, we engineered mice with a 160-kb transgenic bacterial artificial chromosome (BAC) spanning the hTERT locus with a Renilla luciferase (Rluc) cassette downstream of its promoter. Analysis of multiple founder lines revealed that the Rluc expression profile from the transgenic hTERT reporter locus reproduced that of the native hTERT gene in all tissues and organs examined, demonstrating that genetic sequence determined the species-specific developmental regulation of the hTERT gene and that mouse epigenetic and transcription machineries faithfully regulated hTERT transcription. Thus, these mice allowed detailed analyses of developmental hTERT regulation. Both the transgenic hTERT reporter and the endogenous mTERT locus were expressed in early embryonic stages, and their mRNA levels progressively decreased throughout embryonic and postnatal development. Whereas hTERT transcription was much lower than mTERT expression in most organs, it increased significantly during postnatal development of thymus, testis, and ovary. In testis, the Rluc mRNA was enriched in elongating spermatids of seminiferous tubules. In addition, the transcription of transgenic hTERT reporter, but surprisingly not the endogenous mTERT gene, was activated during Wnt1-induced mammary tumorigenesis, allowing the monitoring of tumor development via noninvasive bioluminescent imaging. Collectively, our results demonstrate that the hTERT transgenic reporter system recapitulates the developmental regulation of the hTERT gene in a chromosomal position-independent manner and serves as a legitimate model to explore telomerase regulation in the development of normal and neoplastic tissues in vivo.
Collapse
Affiliation(s)
- Wenwen Jia
- Shaanxi Center for Stem Cell Engineering and Technology, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Micheli E, Martufi M, Cacchione S, De Santis P, Savino M. Self-organization of G-quadruplex structures in the hTERT core promoter stabilized by polyaminic side chain perylene derivatives. Biophys Chem 2010; 153:43-53. [PMID: 21036459 DOI: 10.1016/j.bpc.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 01/05/2023]
Abstract
hTERT core promoter regulates telomerase transcription in human cells, thus its structural features are of large interest. We have found that the G-rich hTERT core promoter region, corresponding to the major DNase I hypersensitive site in chromatin organization, contains nine putative G-quadruplex forming sequences (PQS) and is unfavorable for nucleosome formation. Here we show that four PQS are effectively able to form stable parallel intramolecular G-quadruplexes, using PAGE and CD spectroscopy analysis. The PQS-region, as a whole, appears to be organized in three self-interacting G-quadruplexes, probably giving rise to a helicoidal superstructure, as shown by CD and polymerase stop assay. POL-HPDI drugs, that we previously found useful in selectively stabilizing telomeric G-quadruplex, are able to stabilize both the single intramolecular G-quadruplex and the PQS-region superstructure. The features of their induced CD spectra suggest that POL-HPDIs bind to single G-quadruplexes and to whole PQS-region superstructure, mainly by end-stacking interactions.
Collapse
Affiliation(s)
- Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, "Sapienza" Università di Roma, Italy
| | | | | | | | | |
Collapse
|
27
|
Liu Z, Li G, Wei S, Niu J, Wang LE, Sturgis EM, Wei Q. Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2010; 31:1977-81. [PMID: 20802237 DOI: 10.1093/carcin/bgq179] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) of TERT-rs2736098 (C > T) and CLPTM1L-rs401681(C > T) at the 5p15.33 locus are significantly associated with cancer risk as reported in genome-wide association studies (GWAS), but there are no reported studies for squamous cell carcinoma of the head and neck (SCCHN). In a case-control study of 1079 SCCHN cases and 1115 cancer-free controls of non-Hispanic whites who were frequency matched by age and sex, we genotyped for these two SNPs and assessed their associations with SCCHN risk. Compared with the CC genotypes of each polymorphism, the associations of a slightly reduced risk of SCCHN with the variant genotypes of CT + TT of both polymorphisms were approaching statistical significance [Odds ratio (OR) = 0.90, 95% confidence interval (CI) = 0.76-1.08 for TERT-rs2736098 and OR = 0.86, 95% CI = 0.71-1.04 for CLPTM1L-rs401681, respectively]. When the two SNPs were combined, the variant genotypes of the two SNPs were significantly associated a moderately reduced risk of SCCHN (OR = 0.82, 95% CI = 0.67-0.99), and the number of variant genotypes was associated with a significantly reduced risk in a dose-response manner (P = 0.028). Furthermore, the reduced risk was more pronounced in ever smokers, ever drinkers and patients with oropharyngeal cancer. Our results suggested that these two SNPs at the 5p15.33 locus may be associated with a reduced risk of SCCHN, particularly for their combined effect. Although we added additional evidence for the association of the two SNPs with cancer risk as reported in GWAS, additional studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Mathew R, Jia W, Sharma A, Zhao Y, Clarke LE, Cheng X, Wang H, Salli U, Vrana KE, Robertson GP, Zhu J, Wang S. Robust activation of the human but not mouse telomerase gene during the induction of pluripotency. FASEB J 2010; 24:2702-15. [PMID: 20354136 DOI: 10.1096/fj.09-148973] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pluripotent stem cells (PSCs) express telomerase and have unlimited proliferative potential. To study telomerase activation during reprogramming, 3 classes of embryonic stem cell (ESC)-like clones were isolated from mouse fibroblasts containing a transgenic hTERT reporter. Class I expressed few pluripotency markers, whereas class II contained many, but not Oct4, Nanog, and Sox2. Neither class of cells differentiated efficiently. Class III cells, the fully reprogrammed induced PSCs (iPSCs), expressed all pluripotency markers, formed teratomas indistinguishable from those of mESCs, and underwent efficient osteogenic differentiation in vitro. Interestingly, whereas the endogenous mTERT gene expression was only moderately increased during reprogramming, the hTERT promoter was strongly activated in class II cells and was further elevated in class III cells. Treatment of class II cells with chemical inhibitors of MEKs and glycogen synthase kinase 3 resulted in their further reprogramming into class III cells, accompanied by a strong activation of hTERT promoter. In reprogrammed human cells, the endogenous telomerase level, although variable among different clones, was dramatically elevated. Only in cells with the highest telomerase were telomeres restored to the lengths in hESCs. Our data, for the first time, demonstrated that the hTERT promoter was strongly activated in discrete steps, revealing a critical difference in human and mouse cell reprogramming. Because telomere elongation is crucial for self-renewal of hPSCs and replicative aging of their differentiated progeny, these findings have important implications in the generation and applications of iPSCs.
Collapse
Affiliation(s)
- Renjith Mathew
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu J, Zhao Y, Wang S. Chromatin and epigenetic regulation of the telomerase reverse transcriptase gene. Protein Cell 2010; 1:22-32. [PMID: 21203995 DOI: 10.1007/s13238-010-0014-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 12/03/2009] [Indexed: 01/30/2023] Open
Abstract
Telomerase expression and telomere maintenance are critical for long-term cell proliferation and survival, and they play important roles in development, aging, and cancer. Cumulating evidence has indicated that regulation of the rate-limiting subunit of human telomerase reverse transcriptase gene (hTERT) is a complex process in normal cells and many cancer cells. In addition to a number of transcriptional activators and repressors, the chromatin environment and epigenetic status of the endogenous hTERT locus are also pivotal for its regulation in normal human somatic cells and in tumorigenesis.
Collapse
Affiliation(s)
- Jiyue Zhu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
30
|
Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells. Leukemia 2010; 24:613-22. [PMID: 20072159 DOI: 10.1038/leu.2009.283] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The expression of hTERT gene, encoding the catalytic subunit of telomerase, is a feature of most cancer cells. Changes in the chromatin environment of its promoter and binding of transcriptional factors have been reported in differentiating cells when its transcription is repressed. However, it is not clear whether these changes are directly involved in this repression or only linked to differentiation. In a maturation-resistant acute promyelocytic leukemia (APL) cell line (NB4-LR1), we have previously identified a new pathway of retinoid-induced hTERT repression independent of differentiation. Using a variant of this cell line (NB4-LR1(SFD)), which resists to this repression, we show that although distinct patterns of histone modifications and transcription factor binding at the proximal domain of hTERT gene promoter could concur to modulate its expression, this region is not sufficient to the on/off switch of hTERT by retinoids. DNA methylation analysis of the hTERT promoter led to the identification of two distinct functional domains, a proximal one, fully unmethylated in both cell lines, and a distal one, significantly methylated in NB4-LR1(SFD) cells, whose methylation was further re-enforced by retinoid treatment. Interestingly, we showed that the binding to this distal domain of a known hTERT repressor, WT1, was defective only in NB4-LR1(SFD) cells. We propose that epigenetic modifications targeting this distal region could modulate the binding of hTERT repressors and account either for hTERT reactivation and resistance to retinoid-induced hTERT downregulation.
Collapse
|
31
|
Zhao Y, Wang S, Popova EY, Grigoryev SA, Zhu J. Rearrangement of upstream sequences of the hTERT gene during cellular immortalization. Genes Chromosomes Cancer 2010; 48:963-74. [PMID: 19672873 DOI: 10.1002/gcc.20698] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomerase expression, resulting from transcriptional activation of the hTERT gene, allows cells to acquire indefinite proliferative potential during cellular immortalization and tumorigenesis. However, mechanisms of hTERT gene activation in many immortal cell lines and cancer cells are poorly understood. Here, we report our studies on hTERT activation using genetically related pairs of telomerase-negative (Tel(-)) and -positive (Tel(+)) fibroblast lines. First, whereas transiently transfected plasmid reporters did not recapitulate the endogenous hTERT promoter, the promoter in chromosomally integrated bacterial artificial chromosome (BAC) reporters was activated in a subset of Tel(+) cells, indicating that activation of the hTERT promoter required native chromatin context and/or distal regulatory elements. Second, the hTERT gene, located near the telomere of chromosome 5p, was translocated in all three Tel(+) cell lines but not in their parental precrisis cells and Tel(-) immortal siblings. The breakage points were mapped to regions upstream of the hTERT promoter, indicating that the hTERT gene was the target of these chromosomal rearrangements. In two Tel(+) cell lines, translocation of the endogenous hTERT gene appeared to be the major mechanism of its activation as the activity of hTERT promoter in many chromosomally integrated BAC reporters, with intact upstream and downstream neighboring loci, remained relatively low. Therefore, our results suggest that rearrangement of upstream sequences is an important new mechanism of hTERT promoter activation during cellular immortalization. The chromosomal rearrangements likely occurred during cellular crisis and facilitated by telomere dysfunction. Such translocations allowed the hTERT promoter to escape from the native condensed chromatin environment.
Collapse
Affiliation(s)
- Yuanjun Zhao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
32
|
Wang S, Hu C, Zhu J. Distinct and temporal roles of nucleosomal remodeling and histone deacetylation in the repression of the hTERT gene. Mol Biol Cell 2010; 21:821-32. [PMID: 20053684 PMCID: PMC2828968 DOI: 10.1091/mbc.e09-06-0456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcriptional silencing of the hTERT gene during HL60 cell differentiation was a biphasic process. The initial repression was accompanied by the loss of c-Myc binding and disappearance of a nucleosome-free region at the core promoter. The subsequent nucleosomal remodeling and histone modifications at the promoter stabilized this repression. hTERT, the human telomerase reverse transcriptase, is highly expressed in stem cells and embryonic tissues but undetectable in most adult somatic cells. To understand its repression mechanisms in somatic cells, we investigated the endogenous hTERT gene regulation during differentiation of human leukemic HL60 cells. Our study revealed that silencing of the hTERT promoter was a biphasic process. Within 24 h after initiation of differentiation, hTERT mRNA expression decreased dramatically, accompanied by increased expression of Mad1 gene and disappearance of a nucleosome-free region at the hTERT core promoter. Subsequent to this early repression, nucleosomal remodeling continued at the promoter and downstream region for several days, as demonstrated by micrococcal nuclease and restriction enzyme accessibility assays. This later nucleosomal remodeling correlated with stable silencing of the hTERT promoter. Progressive changes of core histone modifications occurred throughout the entire differentiation process. Surprisingly, inhibition of histone deacetylation at the hTERT promoter did not prevent hTERT repression or nucleosomal deposition, indicating that nucleosomal deposition at the core promoter, but not histone deacetylation, was the cause of transcriptional repression. Our data also suggested that succeeding nucleosomal remodeling and histone deacetylation worked in parallel to establish the stable repressive status of hTERT gene in human somatic cells.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
33
|
Wang S, Zhao Y, Leiby MA, Zhu J. Studying human telomerase gene transcription by a chromatinized reporter generated by recombinase-mediated targeting of a bacterial artificial chromosome. Nucleic Acids Res 2009; 37:e111. [PMID: 19528078 PMCID: PMC2761251 DOI: 10.1093/nar/gkp511] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endogenous human telomerase reverse transcriptase (hTERT) gene is repressed in somatic cells. To study the mechanisms of its repression, we developed a strategy of retrovirus-directed Cre recombinase-mediated BAC targeting, or RMBT, to generate single-copy integrations of BAC at pre-engineered chromosomal sites. This technique involved retroviral transduction of acceptor loci, containing an HSV thymidine kinase marker, and subsequent integration of BAC constructs into the acceptor sites, utilizing the loxP and lox511 sites present in the vector backbones. The BAC reporter, with a Renilla luciferase cassette inserted downstream of the hTERT promoter, was retrofitted with a puromycin marker. Through puromycin selection and ganciclovir counter-selection, a targeting efficiency of over 50% was achieved. We demonstrated that the activity and chromatin structures of the hTERT promoter in chromosomally integrated BAC reporter recapitulated its endogenous counterpart of the host cells. Therefore, we have established a genetically amendable platform to study chromatin and epigenetic regulation of the hTERT gene. The highly efficient and versatile RMBT technique has general applicability for studying largely unexplored chromatin-dependent mechanisms of promoter regulation of various genes.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
34
|
Wang S, Zhao Y, Hu C, Zhu J. Differential repression of human and mouse TERT genes during cell differentiation. Nucleic Acids Res 2009; 37:2618-29. [PMID: 19270068 PMCID: PMC2677880 DOI: 10.1093/nar/gkp125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differential regulation of telomerase reverse transcriptase (TERT) contributes to the distinct aging and tumorigenic processes in humans and mice. Here, we report that the hTERT gene was strongly repressed during differentiation of human cells, whereas modest mTERT expression was detected in terminally differentiated and post-mitotic cells. The stringent hTERT repression depended on the native chromatin environment because transiently transfected hTERT promoters were not repressed in differentiated cells. Conversely, the transiently transfected mTERT core promoter was repressed during cell differentiation, suggesting that the repression of mTERT promoter did not require its endogenous chromatin structures. To understand the mechanisms of this differential regulation, we examined chromatin structures of the endogenous TERT loci during cell differentiation. In both human and mouse cells, repression was accompanied by the loss of multiple DNase I hypersensitive sites at the TERT promoters and their upstream regions, revealing positions of potential regulatory elements. Interestingly, the hTERT locus was located within a nuclease-resistant chromatin domain in human cells, whereas a corresponding chromatin domain was not detected for the mTERT locus. Taken together, our study indicated that, unlike the repression of mTERT gene, the condensed native chromatin environment of hTERT locus was central to its silencing during cell differentiation.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
35
|
Zhu Q, Liu C, Ge Z, Fang X, Zhang X, Strååt K, Björkholm M, Xu D. Lysine-specific demethylase 1 (LSD1) Is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLoS One 2008; 3:e1446. [PMID: 18197256 PMCID: PMC2180196 DOI: 10.1371/journal.pone.0001446] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/18/2007] [Indexed: 01/09/2023] Open
Abstract
Background Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. Methodology/Principal Findings In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT mRNA was observed when LSD1 and histone deacetylases (HDACs) were both inhibited. Small interference RNA-mediated depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3 acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression was accompanied by the LSD1 recruitment to the hTERT promoter. Conclusions/Significance LSD1 represses hTERT transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings contribute to better understandings of hTERT/telomerase regulation, which may be implicated in the development of therapeutic strategies for telomerase dysregulation-associated human diseases including cancers.
Collapse
Affiliation(s)
- Qingjun Zhu
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Cheng Liu
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Zheng Ge
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Fang
- Institute of Urology, The Second Hospital, Shandong University, Jinan, People's Republic of China
| | - Xi Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Klas Strååt
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Björkholm
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Dawei Xu
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Rossetti L, D'Isa G, Mauriello C, Varra M, De Santis P, Mayol L, Savino M. A model for triple helix formation on human telomerase reverse transcriptase (hTERT) promoter and stabilization by specific interactions with the water soluble perylene derivative, DAPER. Biophys Chem 2007; 129:70-81. [PMID: 17560709 DOI: 10.1016/j.bpc.2007.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/14/2007] [Accepted: 05/14/2007] [Indexed: 01/07/2023]
Abstract
The promoter of human telomerase reverse transcriptase (hTERT) gene, in the region from -1000 to +1, contains two homopurine-homopyrimidine sequences (-835/-814 and -108/-90), that can be considered as potential targets to triple helix forming oligonucleotides (TFOs) for applying antigene strategy. We have chosen the sequence (-108/-90) on the basis of its unfavorable chromatin organization, evaluated by theoretical nucleosome positioning and nuclease hypersensitive sites mapping. On this sequence, anti-parallel triplex with satisfactory thermodynamic stability is formed by two TFOs, having different lengths. Triplex stability is significantly increased by specific interactions with the perylene derivative N,N'-bis[3,3'-(dimethylamino) propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER). Since DAPER is a symmetric molecule, the induced Circular Dichroism (CD) spectra in the range 400-600 nm allows us to obtain information on drug binding to triplex and duplex DNA. The drug-induced ellipticity is significantly higher in the case of triplex with respect to duplex and, surprisingly, it increases at decreasing of DNA. A model is proposed where self-stacked DAPER binds to triplex or to duplex narrow grooves.
Collapse
Affiliation(s)
- Luigi Rossetti
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Piazzale Aldo Moro, 5, c.a.p. 00185, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu C, Fang X, Ge Z, Jalink M, Kyo S, Björkholm M, Gruber A, Sjöberg J, Xu D. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 2007; 67:2626-31. [PMID: 17363582 DOI: 10.1158/0008-5472.can-06-4126] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent evidence has accumulated that the dynamic histone methylation mediated by histone methyltransferases and demethylases plays key roles in regulation of chromatin structure and transcription. In the present study, we show that SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase implicated in oncogenesis, directly trans-activates the telomerase reverse transcriptase (hTERT) gene that is essential for cellular immortalization and transformation. SMYD3 occupies its binding motifs on the hTERT promoter and is required for maintenance of histone H3-K4 trimethylation, thereby contributing to inducible and constitutive hTERT expression in normal and malignant human cells. Knocking down SMYD3 in tumor cells abolished trimethylation of H3-K4, attenuated the occupancy by the trans-activators c-MYC and Sp1, and led to diminished histone H3 acetylation in the hTERT promoter region, which was coupled with down-regulation of hTERT mRNA and telomerase activity. These results suggest that SMYD3-mediated trimethylation of H3-K4 functions as a licensing element for subsequent transcription factor binding to the hTERT promoter. The present findings provide significant insights into regulatory mechanisms of hTERT/telomerase expression; moreover, identification of the hTERT gene as a direct target of SMYD3 contributes to a better understanding of SMYD3-mediated cellular transformation.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang S, Hu C, Zhu J. Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol Biol Cell 2006; 18:669-77. [PMID: 17151355 PMCID: PMC1783791 DOI: 10.1091/mbc.e06-09-0840] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The human telomerase reverse transcriptase hTERT is highly expressed in undifferentiated embryonic cells and silenced in the majority of somatic cells. To investigate the mechanisms of hTERT silencing, we have developed a novel reporter using a bacterial artificial chromosome (BAC) that contained the entire hTERT gene and its neighboring loci, hCRR9 and hXtrp2. Firefly and Renilla luciferases were used to monitor transcription from the hTERT and hCRR9 promoters, respectively. In mouse embryonic stem cells stably integrated with the BAC reporter, both hTERT and hCRR9 promoters were highly expressed. Upon differentiation into embryoid bodies and further into mineral-producing osteogenic cells, the hTERT promoter activity decreased progressively, whereas the hCRR9 promoter remained highly active, both resembling their endogenous counterparts. In fully differentiated cells, the hTERT promoter was completely silenced and adopted a chromatin structure that was similar to its native counterpart in human cells. Inhibition of histone deacetylases led to the opening of the hTERT promoter and partially relieved repression, suggesting that histone deacetylation was necessary but not sufficient for hTERT silencing. Thus, our result demonstrated that developmental silencing of the human TERT locus could be recapitulated in a chromosomal position-independent manner during the differentiation of mouse embryonic stem cells.
Collapse
MESH Headings
- Acetylation
- Animals
- Cell Differentiation/genetics
- Cells, Cultured
- Chromosomes, Artificial, Bacterial/genetics
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/enzymology
- Gene Expression Regulation, Developmental
- Gene Silencing
- Genes, Reporter
- Histones/metabolism
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Promoter Regions, Genetic
- Receptors, CCR
- Receptors, Chemokine/genetics
- Telomerase/genetics
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chunguang Hu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Jiyue Zhu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
39
|
Bulanenkova S, Snezhkov E, Nikolaev L, Sverdlov E. Identification and mapping of open chromatin regions within a 140 kb polygenic locus of human chromosome 19 using E. coli Dam methylase. Genetica 2006; 130:83-92. [PMID: 16897455 DOI: 10.1007/s10709-006-0026-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Using transient expression of the E. coli Dam methylase gene and analysis of the distribution of methylated GATC sites, we studied the distribution of open chromatin regions within a 140 kb long human genome segment in HEK-293 cells. Dam methylated sites were found in gene introns, exons, and intergenic regions, and their distribution along DNA was uneven. There were regions of high and low density of Dam methylated GATC sites, presumably corresponding to "open" and "closed" chromatin regions, respectively, and to the functional profile of the genomic locus under study. The Dam methylation profile was also generally in agreement with transcriptional activity of genes in the locus. Moreover, DNA regions accessible to Dam methylase apparently coincided with those hypersensitive to DNase I.
Collapse
Affiliation(s)
- Svetlana Bulanenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
40
|
Abstract
Telomeres are complex structures which serve to protect chromosome ends. Telomere shortening occurs in normal somatic cells reaching a point in which cells senesce. Senescence can be counteracted by activating telomerase. Telomerase activity is present in a majority of cancer cells and requires the upregulation of the reverse transcriptase component called hTERT. Because telomerase activity is essential for proliferation of most cancer cells, therapeutic strategies have been developed to inhibit its activity. These strategies centre on targeting the active site, hTERT and hTERC expression, core enzyme stability and telomeric DNA. Successful approaches involve a combination of traditional drugs with telomerase inhibitors. Disrupting the functional expression of hTERT is particularly effective in agreement with evidence that hTERT is an antiapoptotic factor in some cancer cells. In addition, approaches that stabilise DNA secondary structures may disrupt telomere maintenance through a variety of routes making them, potentially, very potent in attack-ing cancer cells.
Collapse
Affiliation(s)
- Terace M Fletcher
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15 Street, Miami, FL 33136, USA.
| |
Collapse
|
41
|
|