1
|
Quinn M, Carrillo AJ, Halilovic L, Borkovich KA. RNAseq and targeted metabolomics implicate RIC8 in regulation of energy homeostasis, amino acid compartmentation, and asexual development in Neurospora crassa. mBio 2024; 15:e0313324. [PMID: 39555920 PMCID: PMC11633382 DOI: 10.1128/mbio.03133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Heterotrimeric G protein signaling pathways control growth and development in eukaryotes. In the multicellular fungus Neurospora crassa, the guanine nucleotide exchange factor RIC8 regulates heterotrimeric Gα subunits. In this study, we used RNAseq and liquid chromatography-mass spectrometry (LC-MS) to profile the transcriptomes and metabolomes of N. crassa wild type, the Gα subunit mutants Δgna-1 and Δgna-3, and Δric8 strains. These strains exhibit defects in growth and asexual development (conidiation), with wild-type and Δgna-1 mutants producing hyphae in submerged cultures, while Δgna-3 and Δric8 mutants develop conidiophores, particularly in the Δric8 mutant. RNAseq analysis showed that the Δgna-1 mutant possesses 159 mis-regulated genes, while Δgna-3 and Δric8 strains have more than 1,000 each. Many of the mis-regulated genes are involved in energy homeostasis, conidiation, or metabolism. LC-MS revealed changes in levels of primary metabolites in the mutants, with several arginine metabolic intermediates impacted in Δric8 strains. The differences in metabolite levels could not be fully explained by the expression or activity of pathway enzymes. However, transcript levels for two predicted vacuolar arginine transporters were affected in Δric8 mutants. Analysis of arginine and ornithine levels in transporter mutants yielded support for altered compartmentation of arginine and ornithine between the cytosol and vacuole in Δric8 strains. Furthermore, we validated previous reports that arginine and ornithine levels are low in wild-type conidia. Our results suggest that RIC8 regulates asexual sporulation in N. crassa at least in part through altered expression of vacuolar transporter genes and the resultant mis-compartmentation of arginine and ornithine. IMPORTANCE Resistance to inhibitors of cholinesterase-8 (RIC8) is an important regulator of heterotrimeric Gα proteins in eukaryotes. In the filamentous fungus Neurospora crassa, mutants lacking ric8 undergo inappropriate asexual development (macroconidiation) during submerged growth. Our work identifies a role for RIC8 in regulating expression of transporter genes that retain arginine and ornithine in the vacuole (equivalent of the animal lysosome) and relates this function to the developmental defect. Arginine is a critical cellular metabolite, both as an amino acid for protein synthesis and as a precursor for an array of compounds, including proline, ornithine, citrulline, polyamines, creatine phosphate, and nitric oxide. These results have broad relevance to human physiology and disease, as arginine modulates immune, vascular, hormonal, and other functions in humans.
Collapse
Affiliation(s)
- Monique Quinn
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Alexander J. Carrillo
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Katherine A. Borkovich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Ferreira JCC, Sousa RPCL, Preto A, Sousa MJ, Gonçalves MST. Novel Benzo[ a]phenoxazinium Chlorides Functionalized with Sulfonamide Groups as NIR Fluorescent Probes for Vacuole, Endoplasmic Reticulum, and Plasma Membrane Staining. Int J Mol Sci 2023; 24:3006. [PMID: 36769330 PMCID: PMC9918004 DOI: 10.3390/ijms24033006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The demand for new fluorophores for different biological target imaging is increasing. Benzo[a]phenoxazine derivatives are fluorochromophores that show promising optical properties for bioimaging, namely fluorescent emission at the NIR of the visible region, where biological samples have minimal fluorescence emission. In this study, six new benzo[a]phenoxazinium chlorides possessing sulfonamide groups at 5-amino-positions were synthesized and their optical and biological properties were tested. Compared with previous probes evaluated using fluorescence microscopy, using different S. cerevisiae strains, these probes, with sulfonamide groups, stained the vacuole membrane and/or the perinuclear membrane of the endoplasmic reticulum with great specificity, with some fluorochromophores capable of even staining the plasma membrane. Thus, the addition of a sulfonamide group to the benzo[a]phenoxazinium core increases their specificity and attributes for the fluorescent labeling of cell applications and fractions, highlighting them as quite valid alternatives to commercially available dyes.
Collapse
Affiliation(s)
- João C. C. Ferreira
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rui P. C. L. Sousa
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A. Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Isik E, Balkan Ç, Karl V, Karakaya HÇ, Hua S, Rauch S, Tamás MJ, Koc A. Identification of novel arsenic resistance genes in yeast. Microbiologyopen 2022; 11:e1284. [PMID: 35765185 PMCID: PMC9055376 DOI: 10.1002/mbo3.1284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.
Collapse
Affiliation(s)
- Esin Isik
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Çiğdem Balkan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Vivien Karl
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Sansan Hua
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ahmet Koc
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
- Department of Genetics, School of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
4
|
Ohnishi S, Kawano-Kawada M, Yamamoto Y, Akiyama K, Sekito T. A vacuolar membrane protein Vsb1p contributes to the vacuolar compartmentalization of basic amino acids in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2022; 86:763-769. [PMID: 35289847 DOI: 10.1093/bbb/zbac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/12/2022]
Abstract
Accumulation levels of Arg, Lys, and His in vacuoles of Schizosaccharomyces pombe cells were drastically decreased by the disruption of SPAC24H6.11c (vsb1+) gene identified by a homology search with the VSB1 gene of Saccharomyces cerevisiae. The Vsb1p fused with green fluorescent protein particularly localized at vacuolar membranes in S. pombe cells. Overexpression of vsb1+ markedly increased vacuolar levels of basic amino acids; however, overexpression of the vsb1D174A mutant did not affect the levels of these amino acids. These results suggest that the vsb1+ contributes to the accumulation of basic amino acids into the vacuoles of S. pombe, and the aspartate residue in the putative first transmembrane domain conserved among fungal homologs is crucial for the function of Vsb1p.
Collapse
Affiliation(s)
- Shota Ohnishi
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Advanced Research Support Center, Ehime University, Matsuyama, Japan
| | - Yusuke Yamamoto
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Koichi Akiyama
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Advanced Research Support Center, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
5
|
A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells. mBio 2021; 12:e0302021. [PMID: 34781731 PMCID: PMC8593675 DOI: 10.1128/mbio.03020-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microorganisms typically maintain cellular homeostasis despite facing large fluctuations in their surroundings. Microbes that reside on human mucosal surfaces may experience significant variations in nutrient and ion availability as well as pH. Whether the mechanisms employed by these microbial cells to sustain homeostasis directly impact on the interplay with the host’s mucosae remains unclear. Here, we report that the previously uncharacterized transcription regulator ZCF8 in the human-associated yeast Candida albicans maintains vacuole homeostasis when the fungus faces fluctuations in nitrogen. Genome-wide identification of genes directly regulated by Zcf8p followed by fluorescence microscopy to define their subcellular localization uncovered the fungal vacuole as a top target of Zcf8p regulation. Deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and luminal pH and rendered the fungus resistant or susceptible to nigericin and brefeldin A, two drugs that impair vacuole and associated functions. Furthermore, we establish that the regulator modulates C. albicans attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Our findings, therefore, suggest that fungal vacuole physiology regulation is intrinsically linked to, and shapes to a significant extent, the physical interactions that Candida cells establish with mammalian mucosal surfaces.
Collapse
|
6
|
The Histidine Ammonia Lyase of Trypanosoma cruzi Is Involved in Acidocalcisome Alkalinization and Is Essential for Survival under Starvation Conditions. mBio 2021; 12:e0198121. [PMID: 34724827 PMCID: PMC8561398 DOI: 10.1128/mbio.01981-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, accumulates polyphosphate (polyP) and Ca2+ inside acidocalcisomes. The alkalinization of this organelle stimulates polyP hydrolysis and Ca2+ release. Here, we report that histidine ammonia lyase (HAL), an enzyme that catalyzes histidine deamination with production of ammonia (NH3) and urocanate, is responsible for acidocalcisome alkalinization. Histidine addition to live parasites expressing HAL fused to the pH-sensitive emission biosensor green fluorescent protein (GFP) variant pHluorin induced alkalinization of acidocalcisomes. PolyP decreased HAL activity of epimastigote lysates or the recombinant protein but did not cause its polyphosphorylation, as determined by the lack of HAL electrophoretic shift on NuPAGE gels using both in vitro and in vivo conditions. We demonstrate that HAL binds strongly to polyP and localizes to the acidocalcisomes and cytosol of the parasite. Four lysine residues localized in the HAL C-terminal region are instrumental for its polyP binding, its inhibition by polyP, its function inside acidocalcisomes, and parasite survival under starvation conditions. Expression of HAL in yeast deficient in polyP degradation decreased cell fitness. This effect was enhanced by histidine and decreased when the lysine-rich C-terminal region was deleted. In conclusion, this study highlights a mechanism for stimulation of acidocalcisome alkalinization linked to amino acid metabolism.
Collapse
|
7
|
Kawano-Kawada M, Ichimura H, Ohnishi S, Yamamoto Y, Kawasaki Y, Sekito T. Ygr125w/Vsb1-dependent accumulation of basic amino acids into vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1157-1164. [PMID: 33704406 DOI: 10.1093/bbb/zbab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 01/23/2023]
Abstract
The Ygr125w was previously identified as a vacuolar membrane protein by a proteomic analysis. We found that vacuolar levels of basic amino acids drastically decreased in ygr125wΔ cells. Since N- or C-terminally tagged Ygr125w was not functional, an expression plasmid of YGR125w with HA3-tag inserted in its N-terminal hydrophilic region was constructed. Introduction of this plasmid into ygr125w∆ cells restored the vacuolar levels of basic amino acids. We successfully detected the uptake activity of arginine by the vacuolar membrane vesicles depending on HA3-YGR125w expression. A conserved aspartate residue in the predicted first transmembrane helix (D223) was indispensable for the accumulation of basic amino acids. YGR125w has been recently reported as a gene involved in vacuolar storage of arginine; and it is designated as VSB1. Taken together, our findings indicate that Ygr125w/Vsb1 contributes to the uptake of arginine into vacuoles and vacuolar compartmentalization of basic amino acids.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan.,Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Haruka Ichimura
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Shota Ohnishi
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yusuke Yamamoto
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yumi Kawasaki
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Division of Cell-Free Life Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
8
|
Kawano-Kawada M, Ueda T, Mori H, Ichimura H, Takegawa K, Sekito T. Stm1 is a vacuolar PQ-loop protein involved in the transport of basic amino acids in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183507. [PMID: 33189720 DOI: 10.1016/j.bbamem.2020.183507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
The stm1+ (SPAC17C9.10) gene of Schizosaccharomyces pombe is closely related to genes encoding vacuolar PQ-loop proteins, Ypq1, Ypq2, and Ypq3, of Saccharomyces cerevisiae. When stm1+ fused with GFP was expressed in fission or budding yeast, Stm1-GFP localized at the vacuolar membrane. Isolated vacuolar membrane vesicles from S. cerevisiae cells overexpressing stm1+ exhibited stm1+-dependent arginine and lysine uptake activity. Exchange activity of arginine and histidine/arginine, as observed for Ypq2 of S. cerevisiae, was also detected in the vesicles expressing stm1+. The expression levels of stm1+ in S. pombe cells significantly affected the vacuolar contents of lysine, histidine, and arginine. These results suggest that Stm1 is a vacuolar PQ-loop protein involved in the transport of basic amino acids across the vacuolar membrane.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Advanced Research Support Center (ADRES), Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Taisuke Ueda
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hikari Mori
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Ichimura
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Division of Cell-Free Life Science, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
9
|
Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane. PLoS Genet 2020; 16:e1008966. [PMID: 32776922 PMCID: PMC7440668 DOI: 10.1371/journal.pgen.1008966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/20/2020] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen. The lysosome-like vacuole of the yeast Saccharomyces cerevisiae is an important storage compartment for diverse nutrients, including the cationic amino acid arginine, which accumulates at high concentrations in this organelle in nitrogen-replete cells. When these cells are transferred to a nitrogen-free medium, vacuolar arginine is mobilized to the cytosol, where it is used as an alternative nitrogen source to sustain growth. Although this phenomenon has been observed since the 1980s, the identity of the vacuolar transporters involved in the accumulation and the mobilization of arginine is not well established, and whether these processes are regulated according to nutritional cues remains unknown. In this study, we exploited in vitro and in vivo uptake assays in vacuoles to identify and characterize Vsb1 and Ypq2 as vacuolar membrane proteins mediating import and export of arginine, respectively. We further provide evidence that Vsb1 and Ypq2 are inversely regulated according to the nitrogen status of the cell. Our study sheds new light on the poorly studied topic of the diversity and metabolic control of vacuolar transporters. It also raises novel questions about the molecular mechanisms underlying their coordinated regulation and, by extension, the regulation of lysosomal transporters in human cells.
Collapse
|
10
|
Leitão MIPS, Rama Raju B, Cerqueira NMFSA, Sousa MJ, Gonçalves MST. Benzo[a]phenoxazinium chlorides: Synthesis, antifungal activity, in silico studies and evaluation as fluorescent probes. Bioorg Chem 2020; 98:103730. [PMID: 32199304 DOI: 10.1016/j.bioorg.2020.103730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Four new benzo[a]phenoxazinium chlorides with combinations of chloride, ethyl ester and methyl as terminals of the amino substituents were synthesized. These compounds were characterized and their optical properties were studied in absolute dry ethanol and water. Their antiproliferative activity was tested against Saccharomyces cerevisiae in a broth microdilution assay, along with an array of 36 other benzo[a]phenoxazinium chlorides. Minimum Inhibitory Concentration (MIC) values between 1.56 and >200 µM were observed. Fluorescence microscopy studies, used to assess the intracellular distribution of the dyes, showed that these benzo[a]phenoxazinium chlorides function as efficient and site specific probes for the detection of the vacuole membrane. The added advantage of some of the compounds, that displayed the lower MIC values, was the simultaneous staining of both the vacuole membrane and the perinuclear membrane of endoplasmic reticulum (ER). Molecular docking studies were performed on the human membrane protein oxidosqualene cyclase (OSC), using the crystal structure available on PDB (code 1W6K). The results showed that these most active compounds accommodated better in the active sites of ER enzyme OSC suggesting this enzyme as a potential target. As a whole, the results demonstrate that the benzo[a]phenoxazinium chlorides are interesting alternatives to the available commercial dyes. Changes in the substituents of these compounds can tailor both their staining specificity and antimicrobial activity.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - B Rama Raju
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M F S A Cerqueira
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Sameiro T Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
11
|
Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. Cysteine Toxicity Drives Age-Related Mitochondrial Decline by Altering Iron Homeostasis. Cell 2020; 180:296-310.e18. [PMID: 31978346 PMCID: PMC7164368 DOI: 10.1016/j.cell.2019.12.035] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/06/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and lysosomes are functionally linked, and their interdependent decline is a hallmark of aging and disease. Despite the long-standing connection between these organelles, the function(s) of lysosomes required to sustain mitochondrial health remains unclear. Here, working in yeast, we show that the lysosome-like vacuole maintains mitochondrial respiration by spatially compartmentalizing amino acids. Defects in vacuole function result in a breakdown in intracellular amino acid homeostasis, which drives age-related mitochondrial decline. Among amino acids, we find that cysteine is most toxic for mitochondria and show that elevated non-vacuolar cysteine impairs mitochondrial respiration by limiting intracellular iron availability through an oxidant-based mechanism. Cysteine depletion or iron supplementation restores mitochondrial health in vacuole-impaired cells and prevents mitochondrial decline during aging. These results demonstrate that cysteine toxicity is a major driver of age-related mitochondrial deterioration and identify vacuolar amino acid compartmentation as a cellular strategy to minimize amino acid toxicity.
Collapse
Affiliation(s)
- Casey E Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Troy K Coody
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mi-Young Jeong
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis R Winge
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
13
|
Nitrogen deprivation elicits dimorphism, capsule biosynthesis and autophagy in Papiliotrema laurentii strain RY1. Micron 2019; 124:102708. [DOI: 10.1016/j.micron.2019.102708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
|
14
|
Hsp90 Mediates Membrane Deformation and Exosome Release. Mol Cell 2019; 71:689-702.e9. [PMID: 30193096 DOI: 10.1016/j.molcel.2018.07.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
Hsp90 is an essential chaperone that guards proteome integrity and amounts to 2% of cellular protein. We now find that Hsp90 also has the ability to directly interact with and deform membranes via an evolutionarily conserved amphipathic helix. Using a new cell-free system and in vivo measurements, we show this amphipathic helix allows exosome release by promoting the fusion of multivesicular bodies (MVBs) with the plasma membrane. We dissect the relationship between Hsp90 conformation and membrane-deforming function and show that mutations and drugs that stabilize the open Hsp90 dimer expose the helix and allow MVB fusion, while these effects are blocked by the closed state. Hence, we structurally separated the Hsp90 membrane-deforming function from its well-characterized chaperone activity, and we show that this previously unrecognized function is required for exosome release.
Collapse
|
15
|
Kawano-Kawada M, Kakinuma Y, Sekito T. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role. Biol Pharm Bull 2019; 41:1496-1501. [PMID: 30270317 DOI: 10.1248/bpb.b18-00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In yeast cells growing under nutrient-rich condition approximately 50% of total amino acids are accumulated in the vacuoles; however, the composition of amino acids in the cytosol and in the vacuoles is quite different. The vacuoles, like lysosomes, degrade proteins transported into their lumen and produce amino acids. These amino acids should be quickly excreted to the cytosol under nutrient starvation condition and recycled for de novo protein synthesis. These suggest that specific machineries that transport amino acids into and out of the vacuoles operate at the vacuolar membrane. Several families of transporter involved in the vacuolar compartmentalization of amino acids have been identified and characterized using budding yeast Saccharomyces cerevisiae. In this review, we describe the vacuolar amino acid transporters identified so far and introduce recent findings on their activity and physiological function.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Department of Biosicence, Graduate School of Agriculture, Ehime University.,Advanced Research Support Center (ADRES), Ehime University
| | - Yoshimi Kakinuma
- Department of Biosicence, Graduate School of Agriculture, Ehime University
| | - Takayuki Sekito
- Department of Biosicence, Graduate School of Agriculture, Ehime University
| |
Collapse
|
16
|
Nehls U, Plassard C. Nitrogen and phosphate metabolism in ectomycorrhizas. THE NEW PHYTOLOGIST 2018; 220:1047-1058. [PMID: 29888395 DOI: 10.1111/nph.15257] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 05/23/2023]
Abstract
1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Bremen, 28359, Germany
| | - Claude Plassard
- Eco & Sols, Université de Montpellier, INRA, CIRAD, IRD, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
17
|
Dannenmaier S, Stiller SB, Morgenstern M, Lübbert P, Oeljeklaus S, Wiedemann N, Warscheid B. Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis. Anal Chem 2018; 90:10501-10509. [PMID: 30102515 PMCID: PMC6300314 DOI: 10.1021/acs.analchem.8b02557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Knowledge about the functions of individual proteins on a system-wide level is crucial to fully understand molecular mechanisms underlying cellular processes. A considerable part of the proteome across all organisms is still poorly characterized. Mass spectrometry is an efficient technology for the global study of proteins. One of the most prominent methods for accurate proteome-wide comparative quantification is stable isotope labeling by amino acids in cell culture (SILAC). However, application of SILAC to prototrophic organisms such as Saccharomyces cerevisiae, also known as baker's yeast, is compromised since they are able to synthesize all amino acids on their own. Here, we describe an advanced strategy, termed 2nSILAC, that allows for in vivo labeling of prototrophic baker's yeast using heavy arginine and lysine under fermentable and respiratory growth conditions, making it a suitable tool for the global study of protein functions. This generic 2nSILAC strategy allows for directly using and systematically screening yeast mutant strain collections available to the scientific community. We exemplarily demonstrate its high potential by analyzing the effects of mitochondrial gene deletions in mitochondrial fractions using quantitative mass spectrometry revealing the role of Coi1 for the assembly of cytochrome c oxidase (respiratory chain complex IV).
Collapse
|
18
|
Zhang P, Hu X. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2018. [DOI: 10.1007/s11274-018-2430-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1. Appl Microbiol Biotechnol 2017; 101:5005-5018. [PMID: 28409382 PMCID: PMC5486834 DOI: 10.1007/s00253-017-8277-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
The action of benzoic acid in the food and beverage industries is compromised by the ability of spoilage yeasts to cope with this food preservative. Benzoic acid occurs naturally in many plants and is an intermediate compound in the biosynthesis of many secondary metabolites. The understanding of the mechanisms underlying the response and resistance to benzoic acid stress in the eukaryotic model yeast is thus crucial to design more suitable strategies to deal with this toxic lipophilic weak acid. In this study, the Saccharomyces cerevisiae multidrug transporter Tpo1 was demonstrated to confer resistance to benzoic acid. TPO1 transcript levels were shown to be up-regulated in yeast cells suddenly exposed to this stress agent. This up-regulation is under the control of the Gcn4 and Stp1 transcription factors, involved in the response to amino acid availability, but not under the regulation of the multidrug resistance transcription factors Pdr1 and Pdr3 that have binding sites in TPO1 promoter region. Benzoic acid stress was further shown to affect the intracellular pool of amino acids and polyamines. The observed decrease in the concentration of these nitrogenous compounds, registered upon benzoic acid stress exposure, was not found to be dependent on Tpo1, although the limitation of yeast cells on nitrogenous compounds was found to activate Tpo1 expression. Altogether, the results described in this study suggest that Tpo1 is one of the key players standing in the crossroad between benzoic acid stress response and tolerance and the control of the intracellular concentration of nitrogenous compounds. Also, results can be useful to guide the design of more efficient preservation strategies and the biotechnological synthesis of benzoic acid or benzoic acid-derived compounds.
Collapse
|
20
|
Carmona-Gutierrez D, Hughes AL, Madeo F, Ruckenstuhl C. The crucial impact of lysosomes in aging and longevity. Ageing Res Rev 2016; 32:2-12. [PMID: 27125853 DOI: 10.1016/j.arr.2016.04.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/26/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes are the main catabolic organelles of a cell and play a pivotal role in a plethora of cellular processes, including responses to nutrient availability and composition, stress resistance, programmed cell death, plasma membrane repair, development, and cell differentiation. In line with this pleiotropic importance for cellular and organismal life and death, lysosomal dysfunction is associated with many age-related pathologies like Parkinson's and Alzheimer's disease, as well as with a decline in lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to promote longevity. Here, we analyze the current knowledge on the prominent influence of lysosomes on aging-related processes, such as their executory and regulatory roles during general and selective macroautophagy, or their storage capacity for amino acids and ions. In addition, we review and discuss the roles of lysosomes as active players in the mechanisms underlying known lifespan-extending interventions like, for example, spermidine or rapamycin administration. In conclusion, this review aims at critically examining the nature and pliability of the different layers, in which lysosomes are involved as a control hub for aging and longevity.
Collapse
|
21
|
Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes. PLoS One 2016; 11:e0164175. [PMID: 27711131 PMCID: PMC5053447 DOI: 10.1371/journal.pone.0164175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/21/2016] [Indexed: 01/04/2023] Open
Abstract
Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments.
Collapse
|
22
|
Comparative transcriptome assembly and genome-guided profiling for Brettanomyces bruxellensis LAMAP2480 during p-coumaric acid stress. Sci Rep 2016; 6:34304. [PMID: 27678167 PMCID: PMC5039629 DOI: 10.1038/srep34304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
Brettanomyces bruxellensis has been described as the main contaminant yeast in wine production, due to its ability to convert the hydroxycinnamic acids naturally present in the grape phenolic derivatives, into volatile phenols. Currently, there are no studies in B. bruxellensis which explains the resistance mechanisms to hydroxycinnamic acids, and in particular to p-coumaric acid which is directly involved in alterations to wine. In this work, we performed a transcriptome analysis of B. bruxellensis LAMAP248rown in the presence and absence of p-coumaric acid during lag phase. Because of reported genetic variability among B. bruxellensis strains, to complement de novo assembly of the transcripts, we used the high-quality genome of B. bruxellensis AWRI1499, as well as the draft genomes of strains CBS2499 and0 g LAMAP2480. The results from the transcriptome analysis allowed us to propose a model in which the entrance of p-coumaric acid to the cell generates a generalized stress condition, in which the expression of proton pump and efflux of toxic compounds are induced. In addition, these mechanisms could be involved in the outflux of nitrogen compounds, such as amino acids, decreasing the overall concentration and triggering the expression of nitrogen metabolism genes.
Collapse
|
23
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|
24
|
Kawano-Kawada M, Chardwiriyapreecha S, Manabe K, Sekito T, Akiyama K, Takegawa K, Kakinuma Y. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2016; 80:2291-2297. [PMID: 27555098 DOI: 10.1080/09168451.2016.1220819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3(∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3+ but was not completely rescued by the expression of avt3(∆1-270). The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- a Faculty of Agriculture , Ehime University , Matsuyama , Japan.,b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | | | - Kunio Manabe
- b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Takayuki Sekito
- b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Koichi Akiyama
- a Faculty of Agriculture , Ehime University , Matsuyama , Japan.,b Advanced Research Support Center (ADRES) , Ehime University , Matsuyama , Japan
| | - Kaoru Takegawa
- c Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | | |
Collapse
|
25
|
Lei H, Gao X, Wu WD, Wu Z, Chen XD. Aerosol-Assisted Fast Formulating Uniform Pharmaceutical Polymer Microparticles with Variable Properties toward pH-Sensitive Controlled Drug Release. Polymers (Basel) 2016; 8:E195. [PMID: 30979289 PMCID: PMC6432404 DOI: 10.3390/polym8050195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP)-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric) delivery of orally-administered drugs.
Collapse
Affiliation(s)
- Hong Lei
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xingmin Gao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Winston Duo Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhangxiong Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
26
|
Proteome scale census of major facilitator superfamily transporters in Trichoderma reesei using protein sequence and structure based classification enhanced ranking. Gene 2016; 585:166-176. [PMID: 27041239 DOI: 10.1016/j.gene.2016.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
Trichoderma spp. have been acknowledged as potent bio-control agents against microbial pathogens and also as plant growth promoters. Various secondary metabolites are attributed for these beneficial activities. Major facilitator superfamily (MFS) includes the large proportion of efflux-pumps which are linked with membrane transport of these secondary metabolites. We have carried out a proteome-wide identification of MFS transporters using protein sequence and structure based hierarchical method in Trichoderma reesei. 448 proteins out of 9115 were detected to carry transmembrane helices. MFS specific intragenic gene duplication and its context with transport function have been presented. Finally, using homology based techniques, domains and motifs of MFS families have been identified and utilized to classify them. From query dataset of 448 transmembrane proteins, 148 proteins are identified as potential MFS transporters. Sugar porter, drug: H(+) antiporter-1, monocarboxylate porter and anion: cation symporter emerged as major MFS families with 51, 35, 17 and 11 members respectively. Representative protein tertiary structures of these families are homology modeled for structure-function analysis. This study may help to understand the molecular basis of secretion and transport of agriculturally valuable secondary metabolites produced by these bio-control fungal agents which may be exploited in future for enhancing its biotechnological applications in eco-friendly sustainable development.
Collapse
|
27
|
Manabe K, Kawano-Kawada M, Ikeda K, Sekito T, Kakinuma Y. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2016; 80:1125-30. [PMID: 26928127 DOI: 10.1080/09168451.2016.1141041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.
Collapse
Affiliation(s)
- Kunio Manabe
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| | - Miyuki Kawano-Kawada
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan.,b Advanced Research Support Center (ADRES), Ehime University , Matsuyama , Japan
| | - Koichi Ikeda
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| | - Takayuki Sekito
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| | - Yoshimi Kakinuma
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| |
Collapse
|
28
|
Uytterhoeven V, Lauwers E, Maes I, Miskiewicz K, Melo MN, Swerts J, Kuenen S, Wittocx R, Corthout N, Marrink SJ, Munck S, Verstreken P. Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron 2016; 88:735-48. [PMID: 26590345 DOI: 10.1016/j.neuron.2015.10.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
Synapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Elsa Lauwers
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium.
| | - Ine Maes
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Katarzyna Miskiewicz
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Manuel N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jef Swerts
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Sabine Kuenen
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Rafaël Wittocx
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB Bio-Imaging Core Facility, Herestraat 49, 3000 Leuven, Belgium
| | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sebastian Munck
- VIB Bio-Imaging Core Facility, Herestraat 49, 3000 Leuven, Belgium
| | - Patrik Verstreken
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Zhang P, Du G, Zou H, Chen J, Xie G, Shi Z, Zhou J. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:20910. [PMID: 26865023 PMCID: PMC4750040 DOI: 10.1038/srep20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Kawano-Kawada M, Pongcharoen P, Kawahara R, Yasuda M, Yamasaki T, Akiyama K, Sekito T, Kakinuma Y. Vba4p, a vacuolar membrane protein, is involved in the drug resistance and vacuolar morphology of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2016; 80:279-87. [DOI: 10.1080/09168451.2015.1083401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.
Collapse
Affiliation(s)
- Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Pongsanat Pongcharoen
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Rieko Kawahara
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Mayu Yasuda
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Takashi Yamasaki
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Koichi Akiyama
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| |
Collapse
|
31
|
Nishida I, Watanabe D, Tsolmonbaatar A, Kaino T, Ohtsu I, Takagi H. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2016; 62:132-9. [DOI: 10.2323/jgam.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ikuhisa Nishida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | | | - Tomohiro Kaino
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Iwao Ohtsu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
32
|
Function and Regulation of Fungal Amino Acid Transporters: Insights from Predicted Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:69-106. [PMID: 26721271 DOI: 10.1007/978-3-319-25304-6_4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amino acids constitute a major nutritional source for probably all fungi. Studies of model species such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans have shown that they possess multiple amino acid transporters. These proteins belong to a limited number of superfamilies, now defined according to protein fold in addition to sequence criteria, and differ in subcellular location, substrate specificity range, and regulation. Structural models of several of these transporters have recently been built, and the detailed molecular mechanisms of amino acid recognition and translocation are now being unveiled. Furthermore, the particular conformations adopted by some of these transporters in response to amino acid binding appear crucial to promoting their ubiquitin-dependent endocytosis and/or to triggering signaling responses. We here summarize current knowledge, derived mainly from studies on S. cerevisiae and A. nidulans, about the transport activities, regulation, and sensing role of fungal amino acid transporters, in relation to predicted structure.
Collapse
|
33
|
Candida Efflux ATPases and Antiporters in Clinical Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:351-376. [PMID: 26721282 DOI: 10.1007/978-3-319-25304-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida.
Collapse
|
34
|
Lunprom S, Pongcharoen P, Sekito T, Kawano-Kawada M, Kakinuma Y, Akiyama K. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 79:1972-9. [DOI: 10.1080/09168451.2015.1058703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.
Collapse
Affiliation(s)
| | | | | | - Miyuki Kawano-Kawada
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| | | | - Koichi Akiyama
- Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Japan
| |
Collapse
|
35
|
Chardwiriyapreecha S, Manabe K, Iwaki T, Kawano-Kawada M, Sekito T, Lunprom S, Akiyama K, Takegawa K, Kakinuma Y. Functional Expression and Characterization of Schizosaccharomyces pombe Avt3p as a Vacuolar Amino Acid Exporter in Saccharomyces cerevisiae. PLoS One 2015; 10:e0130542. [PMID: 26083598 PMCID: PMC4471098 DOI: 10.1371/journal.pone.0130542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, Avt3p and Avt4p mediate the extrusion of several amino acids from the vacuolar lumen into the cytosol. SpAvt3p of Schizosaccharomyces pombe, a homologue of these vacuolar amino acid transporters, has been indicated to be involved in spore formation. In this study, we confirmed that GFP-SpAvt3p localized to the vacuolar membrane in S. pombe. The amounts of various amino acids increased significantly in the vacuolar pool of avt3Δ cells, but decreased in that of avt3+-overexpressing avt3Δ cells. These results suggest that SpAvt3p participates in the vacuolar compartmentalization of amino acids in S. pombe. To examine the export activity of SpAvt3p, we expressed the avt3+ gene in S. cerevisiae cells. We found that the heterologously overproduced GFP-SpAvt3p localized to the vacuolar membrane in S. cerevisiae. Using the vacuolar membrane vesicles isolated from avt3+-overexpressing S. cerevisiae cells, we detected the export activities of alanine and tyrosine in an ATP-dependent manner. These activities were inhibited by the addition of a V-ATPase inhibitor, concanamycin A, thereby suggesting that the activity of SpAvt3p is dependent on a proton electrochemical gradient generated by the action of V-ATPase. In addition, the amounts of various amino acids in the vacuolar pools of S. cerevisiae cells were decreased by the overproduction of SpAvt3p, which indicated that SpAvt3p was functional in S. cerevisiae cells. Thus, SpAvt3p is a vacuolar transporter that is involved in the export of amino acids from S. pombe vacuoles.
Collapse
Affiliation(s)
- Soracom Chardwiriyapreecha
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Kunio Manabe
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Tomoko Iwaki
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Siriporn Lunprom
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
| | - Koichi Akiyama
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
36
|
Tone J, Yoshimura A, Manabe K, Murao N, Sekito T, Kawano-Kawada M, Kakinuma Y. Characterization of Avt1p as a vacuolar proton/amino acid antiporter in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 79:782-9. [DOI: 10.1080/09168451.2014.998621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Several genes for vacuolar amino acid transport were reported in Saccharomyces cerevisiae, but have not well been investigated. We characterized AVT1, a member of the AVT vacuolar transporter family, which is reported to be involved in lifespan of yeast. ATP-dependent uptake of isoleucine and histidine by the vacuolar vesicles of an AVT exporter mutant was lost by introducing avt1∆ mutation. Uptake activity was inhibited by the V-ATPase inhibitor: concanamycin A and a protonophore. Isoleucine uptake was inhibited by various neutral amino acids and histidine, but not by γ-aminobutyric acid, glutamate, and aspartate. V-ATPase-dependent acidification of the vesicles was declined by the addition of isoleucine or histidine, depending upon Avt1p. Taken together with the data of the amino acid contents of vacuolar fractions in cells, the results suggested that Avt1p is a proton/amino acid antiporter important for vacuolar compartmentalization of various amino acids.
Collapse
Affiliation(s)
- Junichi Tone
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Ayumi Yoshimura
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Kunio Manabe
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Nami Murao
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Integrated Center for Sciences (INCS), Ehime University, Matsuyama, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Integrated Center for Sciences (INCS), Ehime University, Matsuyama, Japan
| |
Collapse
|
37
|
Tone J, Yamanaka A, Manabe K, Murao N, Kawano-Kawada M, Sekito T, Kakinuma Y. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 79:190-5. [DOI: 10.1080/09168451.2014.963501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Active transport systems for various amino acids operate in the vacuolar membrane of Saccharomyces cerevisiae. The gene families for vacuolar amino acid transporters were identified by reverse genetics experiments. In the AVT transporter family, Avt1p works for active uptake of amino acid into vacuole, and Avt3p, Avt4p, and Avt6p for active extrusion of amino acid from vacuole to cytosol. Here, we found green fluorescent protein-tagged Avt7p, an unidentified member of the AVT family, localized to the vacuolar membrane of S. cerevisiae. Disruption of the AVT7 gene enhanced both vacuolar contents of several amino acids and uptake activities of glutamine and proline by vacuolar membrane vesicles. Efficiency of spore formation was impaired by the disruption of the AVT7 gene, suggesting the physiological importance of Avt7p-dependent efflux of amino acid from vacuoles under nutrient-poor condition.
Collapse
Affiliation(s)
- Junichi Tone
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Atsushi Yamanaka
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Kunio Manabe
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Nami Murao
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Miyuki Kawano-Kawada
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Integrated Center for Sciences (INCS), Ehime University, Matsuyama, Japan
| | - Takayuki Sekito
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Integrated Center for Sciences (INCS), Ehime University, Matsuyama, Japan
| |
Collapse
|
38
|
Li M, Rong Y, Chuang YS, Peng D, Emr SD. Ubiquitin-dependent lysosomal membrane protein sorting and degradation. Mol Cell 2015; 57:467-78. [PMID: 25620559 DOI: 10.1016/j.molcel.2014.12.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/22/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
As an essential organelle in the cell, the lysosome is responsible for digestion and recycling of intracellular components, storage of nutrients, and pH homeostasis. The lysosome is enclosed by a special membrane to maintain its integrity, and nutrients are transported across the membrane by numerous transporters. Despite their importance in maintaining nutrient homeostasis and regulating signaling pathways, little is known about how lysosomal membrane protein lifetimes are regulated. We identified a yeast vacuolar amino acid transporter, Ypq1, that is selectively sorted and degraded in the vacuolar lumen following lysine withdrawal. This selective degradation process requires a vacuole anchored ubiquitin ligase (VAcUL-1) complex composed of Rsp5 and Ssh4. We propose that after ubiquitination, Ypq1 is selectively sorted into an intermediate compartment. The ESCRT machinery is then recruited to sort the ubiquitinated Ypq1 into intraluminal vesicles (ILVs). Finally, the compartment fuses with the vacuole and delivers ILVs into the lumen for degradation.
Collapse
Affiliation(s)
- Ming Li
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Yueguang Rong
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Ya-Shan Chuang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dan Peng
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
39
|
Sekito T, Nakamura K, Manabe K, Tone J, Sato Y, Murao N, Kawano-Kawada M, Kakinuma Y. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant. Biosci Biotechnol Biochem 2014; 78:1199-202. [PMID: 25229858 DOI: 10.1080/09168451.2014.918489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Saccharomyces cerevisiae Ypq1p is a vacuolar membrane protein of the PQ-loop protein family. We found that ATP-dependent uptake activities of amino acids by vacuolar membrane vesicles were impaired by ypq1∆ mutation. Loss of lysine uptake was most remarkable, and the uptake was recovered by overproduction of Ypq1p. Ypq1p is thus involved in transport of amino acids into vacuoles.
Collapse
Affiliation(s)
- Takayuki Sekito
- a Faculty of Agriculture, Department of Applied Bioresource Science , Ehime University , Matsuyama , Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sekito T, Chardwiriyapreecha S, Sugimoto N, Ishimoto M, Kawano-Kawada M, Kakinuma Y. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 78:969-75. [PMID: 25036121 DOI: 10.1080/09168451.2014.910095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.
Collapse
Affiliation(s)
- Takayuki Sekito
- a Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture , Ehime University , Matsuyama , Japan
| | | | | | | | | | | |
Collapse
|
41
|
Van Zeebroeck G, Rubio-Texeira M, Schothorst J, Thevelein JM. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor. Mol Microbiol 2014; 93:213-33. [PMID: 24852066 PMCID: PMC4285233 DOI: 10.1111/mmi.12654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 12/14/2022]
Abstract
The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. l-lysine, l-histidine and l-tryptophan are transported by Gap1 but do not trigger signalling. Unlike l-histidine, l-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and d-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, l-Asp-γ-l-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of l-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1Y395C by ubiquitination- and endocytosis-deficient Gap1K9R,K16R. Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes.
Collapse
Affiliation(s)
- Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Belgium; Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Leuven-Heverlee, Flanders, B-3001, Belgium
| | | | | | | |
Collapse
|
42
|
Vba5p, a Novel Plasma Membrane Protein Involved in Amino Acid Uptake and Drug Sensitivity inSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 76:1993-5. [DOI: 10.1271/bbb.120455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
A Simple and Specific Procedure to Permeabilize the Plasma Membrane ofSchizosaccharomyces pombe. Biosci Biotechnol Biochem 2014; 73:2090-5. [DOI: 10.1271/bbb.90319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 2014; 5:180. [PMID: 24847282 PMCID: PMC4021133 DOI: 10.3389/fphys.2014.00180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years. The discussion has now shifted toward the possibility of at least some MDR/MXR transporters exerting their effect as the result of a natural physiological role in the cell, rather than through the direct export of cytotoxic compounds, while the hypothesis that MDR/MXR transporters may have evolved in nature for other purposes than conferring chemoprotection has been gaining momentum in recent years. This review focuses on the drug transporters of the Major Facilitator Superfamily (MFS; drug:H+ antiporters) in the model yeast Saccharomyces cerevisiae. New insights into the natural roles of these transporters are described and discussed, focusing on the knowledge obtained or suggested by post-genomic research. The new information reviewed here provides clues into the unexpectedly complex roles of these transporters, including a proposed indirect regulation of the stress response machinery and control of membrane potential and/or internal pH, with a special emphasis on a genome-wide view of the regulation and evolution of MDR/MXR-MFS transporters.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Paulo J Dias
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
45
|
Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 2014; 127:5093-104. [DOI: 10.1242/jcs.159772] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles has been unknown. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, showed that cytosolic polyP cannot be imported whereas polyP produced by the VTC complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which likely constitute the translocation channel, block not only polyP translocation but also synthesis. Since they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP may be one reason for the existence of acidocalcisomes in eukaryotes.
Collapse
|
46
|
Dias PJ, Sá-Correia I. The drug:H⁺ antiporters of family 2 (DHA2), siderophore transporters (ARN) and glutathione:H⁺ antiporters (GEX) have a common evolutionary origin in hemiascomycete yeasts. BMC Genomics 2013; 14:901. [PMID: 24345006 PMCID: PMC3890622 DOI: 10.1186/1471-2164-14-901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Saccharomyces cerevisiae 14-spanner Drug:H+ Antiporter family 2 (DHA2) are transporters of the Major Facilitator Superfamily (MFS) involved in multidrug resistance (MDR). Although poorly characterized, DHA2 family members were found to participate in the export of structurally and functionally unrelated compounds or in the uptake of amino acids into the vacuole or the cell. In S. cerevisiae, the four ARN/SIT family members encode siderophore transporters and the two GEX family members encode glutathione extrusion pumps. The evolutionary history of DHA2, ARN and GEX genes, encoding 14-spanner MFS transporters, is reconstructed in this study. RESULTS The translated ORFs of 31 strains from 25 hemiascomycetous species, including 10 pathogenic Candida species, were compared using a local sequence similarity algorithm. The constraining and traversing of a network representing the pairwise similarity data gathered 355 full size proteins and retrieved ARN and GEX family members together with DHA2 transporters, suggesting the existence of a close phylogenetic relationship among these 14-spanner major facilitators. Gene neighbourhood analysis was combined with tree construction methodologies to reconstruct their evolutionary history and 7 DHA2 gene lineages, 5 ARN gene lineages, and 1 GEX gene lineage, were identified. The S. cerevisiae DHA2 proteins Sge1, Azr1, Vba3 and Vba5 co-clustered in a large phylogenetic branch, the ATR1 and YMR279C genes were proposed to be paralogs formed during the Whole Genome Duplication (WGD) whereas the closely related ORF YOR378W resides in its own lineage. Homologs of S. cerevisiae DHA2 vacuolar proteins Vba1, Vba2 and Vba4 occur widespread in the Hemiascomycetes. Arn1/Arn2 homologs were only found in species belonging to the Saccharomyces complex and are more abundant in the pre-WGD species. Arn4 homologs were only found in sub-telomeric regions of species belonging to the Sacharomyces sensu strictu group (SSSG). Arn3 type siderophore transporters are abundant in the Hemiascomycetes and form an ancient gene lineage extending to the filamentous fungi. CONCLUSIONS The evolutionary history of DHA2, ARN and GEX genes was reconstructed and a common evolutionary root shared by the encoded proteins is hypothesized. A new protein family, denominated DAG, is proposed to span these three phylogenetic subfamilies of 14-spanner MFS transporters.
Collapse
Affiliation(s)
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
47
|
Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 2013; 48:1455-68. [PMID: 24126084 DOI: 10.1016/j.exger.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.
Collapse
|
48
|
Functional expression of Schizosaccharomyces pombe Vba2p in the vacuolar membrane of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2013; 77:1988-90. [PMID: 24018691 DOI: 10.1271/bbb.130387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A vacuolar membrane protein, Vba2p of Schizosaccharomyces pombe, is involved in basic amino acid uptake by intact cells. Here we found evidence that Vba2p mediated ATP-dependent lysine uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. Vba2p was also responsible for quinidine sensitivity, and the addition of lysine improved cell growth on quinidine-containing media. These findings should be useful for further characterization of Vba2p.
Collapse
|
49
|
Gutiérrez A, Beltran G, Warringer J, Guillamón JM. Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS One 2013; 8:e67166. [PMID: 23826223 PMCID: PMC3691127 DOI: 10.1371/journal.pone.0067166] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022] Open
Abstract
The capacity of wine yeast to utilize the nitrogen available in grape must directly correlates with the fermentation and growth rates of all wine yeast fermentation stages and is, thus, of critical importance for wine production. Here we precisely quantified the ability of low complexity nitrogen compounds to support fast, efficient and rapidly initiated growth of four commercially important wine strains. Nitrogen substrate abundance in grape must failed to correlate with the rate or the efficiency of nitrogen source utilization, but well predicted lag phase length. Thus, human domestication of yeast for grape must growth has had, at the most, a marginal impact on wine yeast growth rates and efficiencies, but may have left a surprising imprint on the time required to adjust metabolism from non growth to growth. Wine yeast nitrogen source utilization deviated from that of the lab strain experimentation, but also varied between wine strains. Each wine yeast lineage harbored nitrogen source utilization defects that were private to that strain. By a massive hemizygote analysis, we traced the genetic basis of the most glaring of these defects, near inability of the PDM wine strain to utilize methionine, as consequence of mutations in its ARO8, ADE5,7 and VBA3 alleles. We also identified candidate causative mutations in these genes. The methionine defect of PDM is potentially very interesting as the strain can, in some circumstances, overproduce foul tasting H2S, a trait which likely stems from insufficient methionine catabolization. The poor adaptation of wine yeast to the grape must nitrogen environment, and the presence of defects in each lineage, open up wine strain optimization through biotechnological endeavors.
Collapse
Affiliation(s)
- Alicia Gutiérrez
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna (Valencia), Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili. Tarragona, Spain
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jose M. Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Paterna (Valencia), Spain
- Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Universitat Rovira i Virgili. Tarragona, Spain
| |
Collapse
|
50
|
An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 2012; 492:261-5. [PMID: 23172144 PMCID: PMC3521838 DOI: 10.1038/nature11654] [Citation(s) in RCA: 422] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 10/04/2012] [Indexed: 12/30/2022]
Abstract
Mitochondria have a central role in ageing. They are considered to be both a target of the ageing process and a contributor to it. Alterations in mitochondrial structure and function are evident during ageing in most eukaryotes, but how this occurs is poorly understood. Here we identify a functional link between the lysosome-like vacuole and mitochondria in Saccharomyces cerevisiae, and show that mitochondrial dysfunction in replicatively aged yeast arises from altered vacuolar pH. We found that vacuolar acidity declines during the early asymmetric divisions of a mother cell, and that preventing this decline suppresses mitochondrial dysfunction and extends lifespan. Surprisingly, changes in vacuolar pH do not limit mitochondrial function by disrupting vacuolar protein degradation, but rather by reducing pH-dependent amino acid storage in the vacuolar lumen. We also found that calorie restriction promotes lifespan extension at least in part by increasing vacuolar acidity via conserved nutrient-sensing pathways. Interestingly, although vacuolar acidity is reduced in aged mother cells, acidic vacuoles are regenerated in newborn daughters, coinciding with daughter cells having a renewed lifespan potential. Overall, our results identify vacuolar pH as a critical regulator of ageing and mitochondrial function, and outline a potentially conserved mechanism by which calorie restriction delays the ageing process. Because the functions of the vacuole are highly conserved throughout evolution, we propose that lysosomal pH may modulate mitochondrial function and lifespan in other eukaryotic cells.
Collapse
|