1
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Borowiec M, Gorzkiewicz M, Grzesik J, Walczak-Drzewiecka A, Salkowska A, Rodakowska E, Steczkiewicz K, Rychlewski L, Dastych J, Ginalski K. Towards Engineering Novel PE-Based Immunotoxins by Targeting Them to the Nucleus. Toxins (Basel) 2016; 8:E321. [PMID: 27834892 PMCID: PMC5127118 DOI: 10.3390/toxins8110321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Exotoxin A (PE) from Pseudomonas aeruginosa is a bacterial ADP-ribosyltransferase, which can permanently inhibit translation in the attacked cells. Consequently, this toxin is frequently used in immunotoxins for targeted cancer therapies. In this study, we propose a novel modification to PE by incorporating the NLS sequence at its C-terminus, to make it a selective agent against fast-proliferating cancer cells, as a nucleus-accumulated toxin should be separated from its natural substrate (eEF2) in slowly dividing cells. Here, we report the cytotoxic activity and selected biochemical properties of newly designed PE mutein using two cellular models: A549 and HepG2. We also present a newly developed protocol for efficient purification of recombinant PE and its muteins with very high purity and activity. We found that furin cleavage is not critical for the activity of PE in the analyzed cell lines. Surprisingly, we observed increased toxicity of the toxin accumulated in the nucleus. This might be explained by unexpected nuclease activity of PE and its potential ability to cleave chromosomal DNA, which seems to be a putative alternative intoxication mechanism. Further experimental investigations should address this newly detected activity to identify catalytic residues and elucidate the molecular mechanism responsible for this action.
Collapse
Affiliation(s)
- Marta Borowiec
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Michal Gorzkiewicz
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Joanna Grzesik
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Anna Salkowska
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | | | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| | - Leszek Rychlewski
- BioInfoBank Institute, Sw. Marcin 80/82 r.355, Poznan 61-809, Poland.
| | - Jaroslaw Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, Lodz 93-232, Poland.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, Warsaw 02-089, Poland.
| |
Collapse
|
3
|
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278:4683-700. [PMID: 21585657 PMCID: PMC3179548 DOI: 10.1111/j.1742-4658.2011.08182.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and the ongoing efforts to convert this toxin into a treatment for cancer.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
4
|
Méré J, Chopard C, Bonhoure A, Morlon-Guyot J, Beaumelle B. Increasing stability and toxicity of Pseudomonas exotoxin by attaching an antiproteasic Peptide. Biochemistry 2011; 50:10052-60. [PMID: 22014283 DOI: 10.1021/bi2010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypsin-like activities are present within the endocytic pathway and allow cells to inactivate a fraction of incoming toxins, such as Pseudomonas exotoxin (PE), that require endocytic uptake before reaching the cytosol to inactivate protein synthesis. PE is a favorite toxin for building immunotoxins. The latter are promising molecules to fight cancer or transplant rejection, and producing more active toxins is a key challenge. More broadly, increasing protein stability is a potentially useful approach to improve the efficiency of therapeutic proteins. We report here that fusing an antiproteasic peptide (bovine pancreatic trypsin inhibitor, BPTI) to PE increases its toxicity to human cancer cell lines by 20-40-fold. Confocal microscopic examination of toxin endocytosis, digestion, and immunoprecipitation experiments showed that the fused antiproteasic peptide specifically protects PE from trypsin-like activities. Hence, the attached BPTI acts as a bodyguard for the toxin within the endocytic pathway. Moreover, it increased the PE elimination half-time in mice by 70%, indicating that the fused BPTI stabilizes the toxin in vivo. This BPTI-fusion approach may be useful for protecting other circulating or internalized proteins of therapeutic interest from premature degradation.
Collapse
Affiliation(s)
- Jocelyn Méré
- CPBS, UMR 5236 CNRS, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
5
|
Debaisieux S, Rayne F, Yezid H, Beaumelle B. The ins and outs of HIV-1 Tat. Traffic 2011; 13:355-63. [PMID: 21951552 DOI: 10.1111/j.1600-0854.2011.01286.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/19/2011] [Accepted: 09/19/2011] [Indexed: 12/18/2022]
Abstract
HIV-1 encodes for the small basic protein Tat (86-101 residues) that drastically enhances the efficiency of viral transcription. The mechanism enabling Tat nuclear import is not yet clear, but studies using reporter proteins fused to the Tat basic domain indicate that Tat could reach the nucleus by passive diffusion. Tat also uses an unusual transcellular transport pathway. The first step of this pathway involves high-affinity binding of Tat to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P(2)), a phospholipid that is concentrated in the inner leaflet of the plasma membrane and enables Tat recruitment at this level. Tat then crosses the plasma membrane to reach the outside medium. Although unconventional, Tat secretion by infected cells is highly active, and export is the major destination for HIV-1 Tat. Secreted Tat can bind to a variety of cell types using several different receptors. Most of them will allow Tat endocytosis. Upon internalization, low endosomal pH triggers a conformational change in Tat that results in membrane insertion. Later steps of Tat translocation to the target-cell cytosol are assisted by Hsp90, a general cytosolic chaperone. Cytosolic Tat can trigger various cell responses. Indeed, accumulating evidence suggests that extracellular Tat acts as a viral toxin that affects the biological activity of different cell types and has a key role in acquired immune-deficiency syndrome development. This review focuses on some of the recently identified molecular details underlying the unusual transcellular transport pathway used by Tat, such as the role of the single Trp in Tat for its membrane insertion and translocation.
Collapse
Affiliation(s)
- Solène Debaisieux
- CPBS, UMR 5236 CNRS, Université de Montpellier, 1919 Route de Mende, 34923, Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
6
|
Moreau D, Kumar P, Wang SC, Chaumet A, Chew SY, Chevalley H, Bard F. Genome-wide RNAi screens identify genes required for Ricin and PE intoxications. Dev Cell 2011; 21:231-44. [PMID: 21782526 DOI: 10.1016/j.devcel.2011.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/21/2011] [Accepted: 06/09/2011] [Indexed: 12/11/2022]
Abstract
Protein toxins such as Ricin and Pseudomonas exotoxin (PE) pose major public health challenges. Both toxins depend on host cell machinery for internalization, retrograde trafficking from endosomes to the ER, and translocation to cytosol. Although both toxins follow a similar intracellular route, it is unknown how much they rely on the same genes. Here we conducted two genome-wide RNAi screens identifying genes required for intoxication and demonstrating that requirements are strikingly different between PE and Ricin, with only 13% overlap. Yet factors required by both toxins are present from the endosomes to the ER, and, at the morphological level, the toxins colocalize in multiple structures. Interestingly, Ricin, but not PE, depends on Golgi complex integrity and colocalizes significantly with a medial Golgi marker. Our data are consistent with two intertwined pathways converging and diverging at multiple points and reveal the complexity of retrograde membrane trafficking in mammalian cells.
Collapse
Affiliation(s)
- Dimitri Moreau
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
7
|
Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugnière M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J 2010; 29:1348-62. [PMID: 20224549 DOI: 10.1038/emboj.2010.32] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/17/2010] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription relies on its transactivating Tat protein. Although devoid of a signal sequence, Tat is released by infected cells and secreted Tat can affect uninfected cells, thereby contributing to HIV-1 pathogenesis. The mechanism and the efficiency of Tat export remained to be documented. Here, we show that, in HIV-1-infected primary CD4(+) T-cells that are the main targets of the virus, Tat accumulates at the plasma membrane because of its specific binding to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). This interaction is driven by a specific motif of the Tat basic domain that recognizes a single PI(4,5)P(2) molecule and is stabilized by membrane insertion of Tat tryptophan side chain. This original recognition mechanism enables binding to membrane-embedded PI(4,5)P(2) only, but with an unusually high affinity that allows Tat to perturb the PI(4,5)P(2)-mediated recruitment of cellular proteins. Tat-PI(4,5)P(2) interaction is strictly required for Tat secretion, a process that is very efficient, as approximately 2/3 of Tat are exported by HIV-1-infected cells during their lifespan. The function of extracellular Tat in HIV-1 infection might thus be more significant than earlier thought.
Collapse
Affiliation(s)
- Fabienne Rayne
- CPBS, UMR 5236 CNRS, Case 100, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Morlon-Guyot J, Méré J, Bonhoure A, Beaumelle B. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Infect Immun 2009; 77:3090-9. [PMID: 19380469 PMCID: PMC2708563 DOI: 10.1128/iai.01390-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/07/2009] [Accepted: 04/13/2009] [Indexed: 01/09/2023] Open
Abstract
Exotoxin A is a major virulence factor of Pseudomonas aeruginosa. This toxin binds to a specific receptor on animal cells, allowing endocytosis of the toxin. Once in endosomes, the exotoxin can be processed by furin to generate a C-terminal toxin fragment that lacks the receptor binding domain and is retrogradely transported to the endoplasmic reticulum for retrotranslocation to the cytosol through the Sec61 channel. The toxin then blocks protein synthesis by ADP ribosylation of elongation factor 2, thereby triggering cell death. A shorter intracellular route has also been described for this toxin. It involves direct translocation of the entire toxin from endosomes to the cytosol and therefore does not rely on furin-mediated cleavage. To examine the implications of endosomal translocation in the intoxication process, we investigated whether the toxin required furin-mediated processing in order to kill cells. We used three different approaches. We first fused to the N terminus of the toxin proteins with different unfolding abilities so that they inhibited or did not inhibit endosomal translocation of the chimera. We then assayed the amount of toxin fragments delivered to the cytosol during cell intoxication. Finally we used furin inhibitors and examined the fate and intracellular localization of the toxin and its receptor. The results showed that exotoxin cytotoxicity results largely from endosomal translocation of the entire toxin. We found that the C-terminal fragment was unstable in the cytosol.
Collapse
|
9
|
Yezid H, Konate K, Debaisieux S, Bonhoure A, Beaumelle B. Mechanism for HIV-1 Tat insertion into the endosome membrane. J Biol Chem 2009; 284:22736-46. [PMID: 19549783 DOI: 10.1074/jbc.m109.023705] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human immunodeficiency virus, type 1, transactivating protein Tat is a small protein that is strictly required for viral transcription and multiplication within infected cells. The infected cells actively secrete Tat using an unconventional secretion pathway. Extracellular Tat can affect different cell types and induce severe cell dysfunctions ranging from cell activation to cell death. To elicit most cell responses, Tat needs to reach the cell cytosol. To this end, Tat is endocytosed, and low endosomal pH will then trigger Tat translocation to the cytosol. Although this translocation step is critical for Tat cytosolic delivery, how Tat could interact with the endosome membrane is unknown, and the key residues involved in this interaction require identification. We found that, upon acidification below pH 6.0 (i.e. within the endosomal pH range), Tat inserts into model membranes such as monolayers or lipid vesicles. This insertion process relies on Tat single Trp, Trp-11, which is not needed for transactivation and could be replaced by another aromatic residue for membrane insertion. Nevertheless, Trp-11 is strictly required for translocation. Tat conformational changes induced by low pH involve a sensor made of its first acidic residue (Glu/Asp-2) and the end of its basic domain (residues 55-57). Mutation of one of these elements results in membrane insertion above pH 6.5. Tat basic domain is also required for efficient Tat endocytosis and membrane insertion. Together with the strict conservation of Tat Trp among different virus isolates, our results point to an important role for Tat-membrane interaction in the multiplication of human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Hocine Yezid
- Centre d'Etudes d'Agents Pathogènes et Biotechnologies pour la Santé, UMR 5236 CNRS, Université Montpellier II, 34095 Montpellier, France
| | | | | | | | | |
Collapse
|
10
|
Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, FitzGerald DJ, Pastan I. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009; 113:3792-800. [PMID: 18988862 PMCID: PMC2670794 DOI: 10.1182/blood-2008-08-173195] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/28/2008] [Indexed: 11/20/2022] Open
Abstract
Immunotoxins based on Pseudomonas exotoxin A (PE) are promising anticancer agents that combine a variable fragment (Fv) from an antibody to a tumor-associated antigen with a 38-kDa fragment of PE (PE38). The intoxication pathway of PE immunotoxins involves receptor-mediated internalization and trafficking through endosomes/lysosomes, during which the immunotoxin undergoes important proteolytic processing steps but must otherwise remain intact for eventual transport to the cytosol. We have investigated the proteolytic susceptibility of PE38 immunotoxins to lysosomal proteases and found that cleavage clusters within a limited segment of PE38. We subsequently generated mutants containing deletions in this region using HA22, an anti-CD22 Fv-PE38 immunotoxin currently undergoing clinical trials for B-cell malignancies. One mutant, HA22-LR, lacks all identified cleavage sites, is resistant to lysosomal degradation, and retains excellent biologic activity. HA22-LR killed chronic lymphocytic leukemia cells more potently and uniformly than HA22, suggesting that lysosomal protease digestion may limit immunotoxin efficacy unless the susceptible domain is eliminated. Remarkably, mice tolerated doses of HA22-LR at least 10-fold higher than lethal doses of HA22, and these higher doses exhibited markedly enhanced antitumor activity. We conclude that HA22-LR advances the therapeutic efficacy of HA22 by using an approach that may be applicable to other PE-based immunotoxins.
Collapse
MESH Headings
- ADP Ribose Transferases/adverse effects
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/pharmacokinetics
- ADP Ribose Transferases/pharmacology
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Bacterial Toxins/adverse effects
- Bacterial Toxins/genetics
- Bacterial Toxins/pharmacokinetics
- Bacterial Toxins/pharmacology
- Clinical Trials as Topic
- Endosomes/metabolism
- Exotoxins/adverse effects
- Exotoxins/genetics
- Exotoxins/pharmacokinetics
- Exotoxins/pharmacology
- Female
- Humans
- Immunoglobulin Variable Region/adverse effects
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/pharmacology
- Immunotoxins/adverse effects
- Immunotoxins/genetics
- Immunotoxins/pharmacokinetics
- Immunotoxins/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lysosomes/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutation
- Sialic Acid Binding Ig-like Lectin 2
- Virulence Factors/adverse effects
- Virulence Factors/genetics
- Virulence Factors/pharmacokinetics
- Virulence Factors/pharmacology
- Xenograft Model Antitumor Assays
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Campos SK, Ozbun MA. Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One 2009; 4:e4463. [PMID: 19214230 PMCID: PMC2636891 DOI: 10.1371/journal.pone.0004463] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Minor capsid protein L2 performs an indispensable but uncharacterized role in human papillomavirus infections. A neutralizing B cell epitope has recently been mapped to the N-terminus of HPV16 L2, residues 17-36, and exposure of this region of L2 has been implicated in translocation of incoming virions from the endo/lysosomal compartment to the cellular cytoplasm. Here we examine the redox state of Cys22 and Cys28 two highly conserved cysteines located within this epitope. We also investigate the infectivity of virions containing L2 single and double cysteine point mutants. METHODOLOGY AND PRINCIPAL FINDINGS Denaturing/non-reducing gel analysis and thiol labeling experiments of wild type and cysteine mutant HPV16 virion particles strongly support the existence of a buried intramolecular C22-C28 disulfide bond. The disulfide was confirmed by tandem mass spectrometry of L2 protein from non-reduced virions. Single C22S and C28S and the double C22/28S mutants were non-infectious but had no apparent defects in cell binding, endocytosis, or trafficking to lysosomes by 8 h post infection. During infection with L2 mutant particles, there was a marked decrease in L2 levels compared to wild type L2-containing virions, suggesting a failure of mutant L2/genome complexes to exit the endo/lysosomal compartment. CONCLUSIONS AND SIGNIFICANCE L2 residues C22 and C28 are bound as an intramolecular disulfide bond in HPV16 virions and are necessary for infectivity. Previous work has suggested that the furin-dependent exposure of the 17-36 epitope and subsequent interaction of this region with an unknown receptor is necessary for egress from the endo/lysosomal compartment and infection. Identification of the C22-C28 disulfide suggests that reduction of this disufide bond may be necessary for exposure of 17-36 and HPV16 infection.
Collapse
Affiliation(s)
- Samuel K. Campos
- The Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Michelle A. Ozbun
- The Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
12
|
Perier A, Chassaing A, Raffestin S, Pichard S, Masella M, Ménez A, Forge V, Chenal A, Gillet D. Concerted Protonation of Key Histidines Triggers Membrane Interaction of the Diphtheria Toxin T Domain. J Biol Chem 2007; 282:24239-45. [PMID: 17584737 DOI: 10.1074/jbc.m703392200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation domain (T domain) of the diphtheria toxin contributes to the transfer of the catalytic domain from the cell endosome to the cytosol, where it blocks protein synthesis. Translocation is initiated when endosome acidification induces the interaction of the T domain with the membrane of the compartment. We found that the protonation of histidine side chains triggers the conformational changes required for membrane interaction. All histidines are involved in a concerted manner, but none is indispensable. However, the preponderance of each histidine varies according to the transition observed. The pair His(223)-His(257) and His(251) are the most sensitive triggers for the formation of the molten globule state in solution, whereas His(322)-His(323) and His(251) are the most sensitive triggers for membrane binding. Interestingly, the histidines are located at key positions throughout the structure of the protein, in hinges and at the interface between each of the three layers of helices forming the domain. Their protonation induces local destabilizations, disrupting the tertiary structure and favoring membrane interaction. We propose that the selection of histidine residues as triggers of membrane interaction enables the T domain to initiate translocation at the rather mild pH found in the endosome, contributing to toxin efficacy.
Collapse
Affiliation(s)
- Aurélie Perier
- Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette F-91191, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Srivastava J, Barber DL, Jacobson MP. Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda) 2007; 22:30-9. [PMID: 17289928 DOI: 10.1152/physiol.00035.2006] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Changes in intracellular pH regulate many cell behaviors, including proliferation, migration, and transformation. However, our understanding of how physiological changes in pH affect protein conformations and macromolecular assemblies is limited. We present design principles, current modeling predictions, and examples of pH sensors or proteins that have activities or ligand-binding affinities that are regulated by changes in intracellular pH.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Department of Cell and Tissue Biology, Unicversity of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
14
|
Rodríguez M, Torrent G, Bosch M, Rayne F, Dubremetz JF, Ribó M, Benito A, Vilanova M, Beaumelle B. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci 2007; 120:1405-11. [PMID: 17374640 DOI: 10.1242/jcs.03427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Onconase is an RNase with a very specific property because it is selectively toxic to transformed cells. This toxin is thought to recognize cell surface receptors, and the protection conferred by metabolic poisons against Onconase toxicity indicated that this RNase relies on endocytic uptake to kill cells. Nevertheless, its internalization pathway has yet to be unraveled. We show here that Onconase enters cells using AP-2/clathrin-mediated endocytosis. It is then routed, together with transferrin, to the receptor recycling compartment. Increasing the Onconase concentration in this structure using tetanus toxin light chain expression enhanced Onconase toxicity, indicating that recycling endosomes are a key compartment for Onconase cytosolic delivery. This intracellular destination is specific to Onconase because other (and much less toxic) RNases follow the default pathway to late endosomes/lysosomes. Drugs neutralizing endosomal pH increased Onconase translocation efficiency from purified endosomes during cell-free translocation assays by preventing Onconase dissociation from its receptor at endosomal pH. Consistently, endosome neutralization enhanced Onconase toxicity up to 100-fold. Onconase translocation also required cytosolic ATP hydrolysis. This toxin therefore shows an unusual entry process that relies on clathrin-dependent endocytic uptake and then neutralization of low endosomal pH for efficient translocation from the endosomal lumen to the cytosol.
Collapse
Affiliation(s)
- Montserrat Rodríguez
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Universitat de Girona, Campus de Montilivi s/n E-17071 Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tilley SJ, Saibil HR. The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 2006; 16:230-6. [PMID: 16563740 DOI: 10.1016/j.sbi.2006.03.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/06/2006] [Accepted: 03/14/2006] [Indexed: 01/13/2023]
Abstract
A remarkable group of proteins challenge the notions that protein sequence determines a unique three-dimensional structure, and that membrane and soluble proteins are very distinct. The pore-forming toxins typically transform from soluble, monomeric proteins to oligomers that form transmembrane channels. Recent structural studies provide ideas about how these changes take place. The recently solved structures of the beta-pore-forming toxins LukS, epsilon-toxin and intermedilysin confirm that the pore-forming regions are initially folded up on the surfaces of the soluble precursors. To create the transmembrane pores, these regions must extend and refold into membrane-inserted beta-barrels.
Collapse
Affiliation(s)
- Sarah J Tilley
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|