1
|
Manescu MD, Catalin B, Baldea I, Mateescu VO, Rosu GC, Boboc IKS, Istrate‐Ofiteru A, Liliac IM, Streba CT, Kumar‐Singh S, Pirici D. Aquaporin 4 modulation drives amyloid burden and cognitive abilities in an APPPS1 mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e70164. [PMID: 40329616 PMCID: PMC12056304 DOI: 10.1002/alz.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Deficiency in the aquaporin-4 (AQP4) water channel has been linked to impaired amyloid beta (Aβ) clearance. However, a detailed morphopathological analysis of amyloid deposition following AQP4 therapeutic modulation remains unexplored. METHODS Two-month-old amyloid precursor protein presenilin 1 (APPPS1) mice were treated daily for 28 days with either the AQP4 facilitator N-(3-(Benzyloxy)pyridin-2-yl) benzene-sulfonamide (TGN-073) or the AQP4 inhibitor N-(1,3,4-thiadiazol-2-yl)pyridine-3-carboxamide dihydrochloride (TGN-020) (both at 200 mg/kg). Controls included vehicle-treated APPPS1 and WT C57BL/6J mice. Comprehensive histopathological, biochemical, and behavioral analyses were conducted. RESULTS Mice treated with AQP4 facilitator showed a significant reduction in total Aβ, fibrillar deposits, and soluble Aβ, while the AQP4 inhibitor caused a substantial increase in brain Aβ. AQP4-facilitator treatment also reduced Aβ40 levels and Aβ40/Aβ42 ratio, whereas the inhibitor treatment increased both Aβ40 and Aβ42. Additionally, facilitator-treated mice demonstrated reduced anxiety and improved memory performance. DISCUSSION These findings suggest that AQP4 modulation is a promising strategy to enhance Aβ clearance and a potential therapeutic target in Alzheimer's disease. HIGHLIGHTS Intramural periarterial drainage of the interstitial fluid mediated by aquaporin-4 (AQP4) is a key element that ensures clearance of catabolites/Aβ peptide from within the brain parenchyma. Inhibition of AQP4 in an APPPS1 mouse model of AD leads to increased amyloid deposition and deficient behavior compared to untreated transgenic animals. Pharmaceutical facilitation of AQP4 in the same APPPS1 mouse model leads to a massive decrease in amyloid burden and improves the behavioral performance of the animals compared to untreated control APPPS1 mice.
Collapse
Affiliation(s)
| | - Bogdan Catalin
- Department of PhysiologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Ioana Baldea
- Department of PhysiologyIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | | | | | | | | | - Ilona Mihaela Liliac
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Costin Teodor Streba
- Department of PulmonologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Samir Kumar‐Singh
- Laboratory of Cell Biology and Histology, Molecular Pathology Group, Faculty of Medical and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - Daniel Pirici
- Department of HistologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| |
Collapse
|
2
|
Wang Y, Huang C, Wang X, Cheng R, Li X, Wang J, Zhang L, Li F, Wang H, Li X, Li Y, Xia Y, Cheng J, Pan X, Jia J, Xiao GD. Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage. Antioxid Redox Signal 2025; 42:687-710. [PMID: 39228046 DOI: 10.1089/ars.2024.0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. [Figure: see text] Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate. Antioxid. Redox Signal. 42, 687-710.
Collapse
Affiliation(s)
- Yecheng Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Caiyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rong Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiahao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fuhao Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hao Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaofan Pan
- Department of Neurology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guo-Dong Xiao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Tiwari YV, Muir ER, Jiang Z, Duong TQ. Diffusion-weighted arterial spin labeling MRI to investigate mannitol-induced blood brain barrier disruption. Magn Reson Imaging 2025; 117:110335. [PMID: 39864601 DOI: 10.1016/j.mri.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (Kw) across the blood brain barrier (BBB). This study aims to further evaluate Kw MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB. METHODS DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13). An approach using only two b-values to detect mannitol-induced changes was also tested. DCE MRI and Evans blue histology were performed on the same animals. Quantitative analysis and pixel-by-pixel correlation were performed amongst Kw, DCE MRI and Evans blue histology. RESULTS Kw in the grey matter in the normal rat brain was 252 ± 38 min-1 (±standard error of the mean). The two b-value approach provided reasonable approximation of multiple-b DW-ASL parameters, reducing acquisition time. Kw is sensitive to mannitol-induced changes in BBB permeability and was reduced to 89 ± 17 min-1 in the affected hemisphere compared to 191 ± 22 min-1 in the unaffected hemisphere (P < 0.05). Regions with abnormality in Kw maps were in general agreement with DCE and Evans blue maps, although there are some distinct differences in location and the change in values. CONCLUSION Kw is sensitive to mannitol-induced changes in the BBB, with BBB disruption confirmed by DCE MRI and Evans blue histology.
Collapse
Affiliation(s)
- Yash Vardhan Tiwari
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Eric R Muir
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Ohene Y, Morrey WJ, Powell E, Smethers KF, Luka N, South K, Berks M, Lawrence CB, Parker GJM, Parkes LM, Boutin H, Dickie BR. MRI detects blood-brain barrier alterations in a rat model of Alzheimer's disease and lung infection. NPJ IMAGING 2025; 3:8. [PMID: 40051735 PMCID: PMC11879872 DOI: 10.1038/s44303-025-00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Pneumonia is a common infection in people suffering with Alzheimer's disease, leading to delirium, critical illness or severe neurological decline, which may be due to an amplified response of the blood-brain barrier (BBB) to peripheral insult. We assess the response of the BBB to repeated Streptococcus pneumoniae lung infection in rat model of Alzheimer's disease (TgF344-AD), at 13- and 18-months old, using dynamic contrast-enhanced (DCE) MRI and filter exchange imaging. Higher BBB water exchange rate is initially detected in infected TgF344-AD rats. BBB water exchange rates correlated with hippocampus aquaporin-4 water channel expression in infected animals. We detected no differences in BBB permeability to gadolinium contrast agent measured by DCE-MRI, confirmed by staining for tight junction proteins, occludin and claudin-5. These findings provide insight into the mechanisms of how peripheral inflammation impacts the BBB.
Collapse
Affiliation(s)
- Yolanda Ohene
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - William J. Morrey
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth Powell
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
| | - Katherine F. Smethers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nadim Luka
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kieron South
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Berks
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B. Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Geoff. J. M. Parker
- Department of Medical Physics and Biomedical Engineering and Department of Neuroinflammation, Centre for Medical Image Computing, UCL, London, UK
- Bioxydyn Limited, Manchester, UK
| | - Laura M. Parkes
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN, Université de Tours, INSERM, Tours, France
| | - Ben R. Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1611-1618. [PMID: 39048663 PMCID: PMC11567900 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Mueller SM, McFarland White K, Fass SB, Chen S, Shi Z, Ge X, Engelbach JA, Gaines SH, Bice AR, Vasek MJ, Garbow JR, Culver JP, Martinez-Lozada Z, Cohen-Salmon M, Dougherty JD, Sapkota D. Evaluation of gliovascular functions of AQP4 readthrough isoforms. Front Cell Neurosci 2023; 17:1272391. [PMID: 38077948 PMCID: PMC10701521 DOI: 10.3389/fncel.2023.1272391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 12/20/2023] Open
Abstract
Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to WT and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. An increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two was unchanged. However, at 100% readthrough, AQP4x localization and the formation of higher order complexes were disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for an increased proportion of endothelial cells with budding vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.
Collapse
Affiliation(s)
- Shayna M. Mueller
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kelli McFarland White
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Siyu Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Zhan Shi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - John A. Engelbach
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Seana H. Gaines
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Annie R. Bice
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael J. Vasek
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Physics, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, United States
- Imaging Science PhD Program, Washington University in St. Louis, Saint Louis, MO, United States
| | - Zila Martinez-Lozada
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, The National Centre for Scientific Research (CNRS), National Institute of Health and Medical Research (INSERM), Université PSL, Paris, France
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, United States
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Darshan Sapkota
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, United States
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
7
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
8
|
Mueller SM, White KM, Fass SB, Chen S, Shi Z, Ge X, Engelbach JA, Gaines SH, Bice AR, Vasek MJ, Garbow JR, Culver JP, Zila Martinez-Lozada, Cohen-Salmon M, Dougherty JD, Sapkota D. Evaluation of gliovascular functions of Aqp4 readthrough isoforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.549379. [PMID: 37546949 PMCID: PMC10401933 DOI: 10.1101/2023.07.21.549379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice. We validated the line and assessed characteristics that are affected by the presence of AQP4x, including AQP4 and α-syntrophin localization, integrity of the BBB, and neurovascular coupling. We compared AllXHom and AllXHet mice to wildtype, and to previously characterized AQP4 NoXHet and NoXHom mice, which cannot produce AQP4x. Increased dose of AQP4x enhanced perivascular localization of α-syntrophin and AQP4, while total protein expression of the two were unchanged. However, at 100% readthrough, AQP4x localization and formation of higher-order complexes was disrupted. Electron microscopy showed that overall blood vessel morphology was unchanged except for increased endothelial cell vesicles in NoXHom mice, which may correspond to a leakier BBB or altered efflux that was identified in NoX mice using MRI. These data demonstrate that AQP4x plays a small but measurable role in maintaining BBB integrity as well as recruiting structural and functional support proteins to the blood vessel. This also establishes a new set of genetic tools for quantitatively modulating AQP4x levels.
Collapse
Affiliation(s)
- Shayna M. Mueller
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kelli McFarland White
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Stuart B. Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Siyu Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zhan Shi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John A. Engelbach
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Seana H Gaines
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael J. Vasek
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joel R. Garbow
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph P. Culver
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Physics, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Imaging Science PhD Program, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Zila Martinez-Lozada
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Intellectual and Development Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Darshan Sapkota
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
9
|
Berliner JA, Lam MA, Najafi E, Hemley SJ, Bilston LE, Stoodley MA. Aquaporin-4 expression and modulation in a rat model of post-traumatic syringomyelia. Sci Rep 2023; 13:9662. [PMID: 37316571 PMCID: PMC10267129 DOI: 10.1038/s41598-023-36538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Aquaporin-4 (AQP4) has been implicated in post-traumatic syringomyelia (PTS), a disease characterised by the formation of fluid-filled cysts in the spinal cord. This study investigated the expression of AQP4 around a mature cyst (syrinx) and the effect of pharmacomodulation of AQP4 on syrinx size. PTS was induced in male Sprague-Dawley rats by computerized spinal cord impact and subarachnoid kaolin injection. Immunofluorescence of AQP4 was carried out on mature syrinx tissue 12 weeks post-surgery. Increased AQP4 expression corresponded to larger, multiloculated cysts (R2 = 0.94), yet no localized changes to AQP4 expression in perivascular regions or the glia limitans were present. In a separate cohort of animals, at 6 weeks post-surgery, an AQP4 agonist (AqF026), antagonist (AqB050), or vehicle was administered daily over 4 days, with MRIs performed before and after the completion of treatment. Histological analysis was performed at 12 weeks post-surgery. Syrinx volume and length were not altered with AQP4 modulation. The correlation between increased AQP4 expression with syrinx area suggests that AQP4 or the glia expressing AQP4 are recruited to regulate water movement. Given this, further investigation should examine AQP4 modulation with dose regimens at earlier time-points after PTS induction, as these may alter the course of syrinx development.
Collapse
Affiliation(s)
- Joel A Berliner
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia.
| | - Magdalena A Lam
- The ANZAC Research Institute, Concord Repatriation General Hospital, Gate 3, Hospital Road, Sydney, NSW, 2139, Australia
| | - Elmira Najafi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Sarah J Hemley
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Sydney, NSW, 2031, Australia
- Faculty of Medicine, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2031, Australia
| | - Marcus A Stoodley
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia
| |
Collapse
|
10
|
Zhong Y, Zhang B, Huang Y, Du J, Liang B, Li Z, Ye R, Wang B, Xian H, Yang X, Rong W, Guo X, Yang X, Huang Z. CircBCL11B acts as a ceRNA to facilitate 1,2-dichloroethane-induced astrocyte swelling via miR-29b-3p/AQP4 axis in SVG p12 cells. Toxicol Lett 2023; 380:40-52. [PMID: 37028497 DOI: 10.1016/j.toxlet.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant found in ambient and residential air, as well as ground and drinking water. Brain edema is the primary pathological consequence of 1,2-DCE overexposure. We found that microRNA (miRNA)-29b dysregulation after 1,2-DCE exposure can aggravate brain edema by suppressing aquaporin 4 (AQP4). Moreover, circular RNAs (circRNAs) can regulate the expression of downstream target genes through miRNA, and affect protein function. However, circRNAs' role in 1,2-DCE-induced brain edema via miR-29b-3p/AQP4 axis remains unclear. To address the mechanism's bottleneck, we explored the circRNA-miRNA-mRNA network underlying 1,2-DCE-driven astrocyte swelling in SVG p12 cells by circRNA sequencing, electron microscopy and isotope 3H labeling combined with the 3-O-methylglucose uptake method. The results showed that 25 and 50mM 1,2-DCE motivated astrocyte swelling, characterized by increased water content, enlarged cell vacuoles, and mitochondrial swelling. This was accompanied by miR-29b-3p downregulation and AQP4 upregulation. We verified that AQP4 were negatively regulated by miR-29b-3p in 1,2-DCE-induced astrocyte swelling. Also, circRNA sequencing highlighted that circBCL11B was upregulated by 1,2-DCE. This was manifested as circBCL11B overexpression playing an endogenous competitive role via upregulating AQP4 by binding to miR-29b-3p, thus leading to astrocyte swelling. Conversely, circBCL11B knockdown reversed the 1,2-DCE-motivated AQP4 upregulation and alleviated the cell swelling. Finally, we demonstrated that the circBCL11B was targeted to miR-29b-3p by fluorescence in situ hybridization and dual-luciferase reporter assay. In conclusion, our findings indicate that circBCL11B acts as a competing endogenous RNA to facilitate 1,2-DCE-caused astrocyte swelling via miR-29b-3p/AQP4 axis. These observations provide new insight into the epigenetic mechanisms underlying 1,2-DCE-induced brain edema.
Collapse
Affiliation(s)
- Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Weifeng Rong
- Institute of Chemical Surveillance, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Xiang Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Xiao M, Hou J, Xu M, Li S, Yang B. Aquaporins in Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:99-124. [PMID: 36717489 DOI: 10.1007/978-981-19-7415-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) mediate water flux between the four distinct water compartments in the central nervous system (CNS). In the present chapter, we mainly focus on the expression and function of the nine AQPs expressed in the CNS, which include five members of aquaporin subfamily: AQP1, AQP4, AQP5, AQP6, and AQP8; three members of aquaglyceroporin subfamily: AQP3, AQP7, and AQP9; and one member of superaquaporin subfamily: AQP11. In addition, AQP1, AQP2, and AQP4 expressed in the peripheral nervous system are also reviewed. AQP4, the predominant water channel in the CNS, is involved both in the astrocyte swelling of cytotoxic edema and the resolution of vasogenic edema and is of pivotal importance in the pathology of brain disorders such as neuromyelitis optica, brain tumors, and neurodegenerative disorders. Moreover, AQP4 has been demonstrated as a functional regulator of recently discovered glymphatic system that is a main contributor to clearance of toxic macromolecule from the brain. Other AQPs are also involved in a variety of important physiological and pathological process in the brain. It has been suggested that AQPs could represent an important target in treatment of brain disorders like cerebral edema. Future investigations are necessary to elucidate the pathological significance of AQPs in the CNS.
Collapse
Affiliation(s)
- Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaoyu Hou
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengmeng Xu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
12
|
The Glymphatic System: a Potential Key Player in Bacterial Meningitis. mBio 2022; 13:e0235022. [PMID: 36286550 PMCID: PMC9765658 DOI: 10.1128/mbio.02350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glial-lymphatic system (glymphatic system) is a recently characterized fluid clearance pathway of the central nervous system. Glymphatic system disfunctions leading to defects in drainage of the cerebrospinal fluid have been associated with several neurological disorders. In their article, J. S. Generoso, S. Thorsdottir, A. Collodel, R. R. E. Santo, et al. (mBio 13:e01886-22, 2022, https://doi.org/10.1128/mBio.01886-22) have now associated impaired glymphatic system functionality to neurological sequelae of murine meningitis caused by Streptococcus pneumoniae. Their work provides an initial and important step into the systematic evaluation of a potential impact of glymphatic system functionality on disease severity and sequelae in meningitis.
Collapse
|
13
|
Qiao N, Zhang J, Zhang Y, Liu X. Synergistic regulation of microglia differentiation by CD93 and integrin β1 in the rat pneumococcal meningitis model. Immunol Lett 2022; 251-252:63-74. [PMID: 36336138 DOI: 10.1016/j.imlet.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/15/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Streptococcus pneumoniae is the main bacterial pathogen of meningitis worldwide, which has a high mortality rate and survivors are prone to central nervous system (CNS) sequelae. In this regard, microglia activation has been associated with injury to the CNS. The aim of this study was to investigate the relationship between CD93, integrin β1, and microglia activation. In the rat pneumococcal meningitis model, we found significant increases of CD93 and integrin β1 expression and differentiation of M1 phenotype microglia. Furthermore, we showed in vitro siRNA-mediated downregulation of CD93 and integrin β1 expression after infecting highly aggressive proliferating immortalized (HAPI) microglia cells with S. pneumoniae. We observed differentiation of S. pneumonia-infected HAPI microglia cells to the M1 phenotype and significant release of soluble CD93 (sCD93) and integrin β1 expression. Complement C1q and metalloproteinases promoted sCD93 release. We also showed that downregulation of CD93 significantly reduced differentiation to M1 microglia and increased differentiation to M2 microglia. However, addition of recombinant CD93 may regulate microglia differentiation to the M1 phenotype. Furthermore, the downregulation of integrin β1 resulted in downregulation of the CD93 protein. In conclusion, interaction between integrin β1 and CD93 promotes differentiation of microglia to the M1 phenotype, increases the release of pro-inflammatory factors, and leads to nervous system injury in pneumococcal meningitis.
Collapse
Affiliation(s)
- Nana Qiao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Ya Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
14
|
Cai J, Kong J, Ma S, Ban Y, Li J, Fan Z. Upregulation of TRPC6 inhibits astrocyte activation and proliferation after spinal cord injury in rats by suppressing AQP4 expression. Brain Res Bull 2022; 190:12-21. [PMID: 36115513 DOI: 10.1016/j.brainresbull.2022.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
AIMS This work investigates the effects and mechanisms of inhibiting TRPC6 (a non-selective cation channel) downregulation on rat astrocyte activation and proliferation following spinal cord injury (SCI) by suppressing AQP4 expression. We used HYP9 (TRPC6-specific agonist) and TGN-020 (AQP4-specific inhibitor) to explore the relationship between TRPC6 and AQP4 and their probable protective effects on SCI. METHODS In a rat SCI model, we randomly assigned female Sprague-Dawley rats into the following four groups: Sham, SCI, SCI+HYP9, and SCI+TGN-020. Western blotting and immunofluorescence staining were used to determine protein expression among groups following SCI. TUNEL and immunofluorescence staining were used to identify changes in the rate of apoptosis and the fraction of surviving neurons after SCI. The Basso-Beattie-Bresnahan open-field locomotor scale was used to identify changes in motor function after SCI. In vitro astrocyte scratch model, we first used the CCK8 assay to test the effects of varying doses of HYP9 or TGN-020 on astrocytes and then split the astrocytes into four groups: Con, Scratch, Scratch+HYP9, and Scratch+TGN-020. Western blotting and immunofluorescence were used to identify changes in the expression of target proteins. RESULTS In vivo and in vitro models, SCI dramatically decreased TRPC6 while considerably upregulating AQP4, glial fibrillary acidic protein (GFAP), and proliferating cell nuclear antigen (PCNA) expression. However, HYP9 or TGN-020 significantly suppressed activation of astrocytes, promoted neurons survival in the anterior horn of the spinal cords, and benefited the recovery of motor function in the hind limbs of rats following SCI. Interestingly, TRPC6 agonists dramatically suppressed AQP4 overexpression, indicating that the probable mechanism of HYP9 benefiting alleviation of SCI may be connected to AQP4 inhibition and astrocyte activation and proliferation reduction. CONCLUSION we discovered for the first time that HYP9 inhibits astrocyte activation and proliferation by inhibiting AQP4 in SCI rats in vivo and in vitro models and that it preserves neuronal survival and functional recovery after SCI.
Collapse
Affiliation(s)
- Jiajun Cai
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jundong Kong
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Song Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yaozu Ban
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
15
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
16
|
Alanazi AH, Adil MS, Lin X, Chastain DB, Henao-Martínez AF, Franco-Paredes C, Somanath PR. Elevated Intracranial Pressure in Cryptococcal Meningoencephalitis: Examining Old, New, and Promising Drug Therapies. Pathogens 2022; 11:783. [PMID: 35890028 PMCID: PMC9321092 DOI: 10.3390/pathogens11070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Despite the availability of effective antifungal therapy, cryptococcal meningoencephalitis (CM) remains associated with elevated mortality. The spectrum of symptoms associated with the central nervous system (CNS) cryptococcosis is directly caused by the high fungal burden in the subarachnoid space and the peri-endothelial space of the CNS vasculature, which results in intracranial hypertension (ICH). Management of intracranial pressure (ICP) through aggressive drainage of cerebrospinal fluid by lumbar puncture is associated with increased survival. Unfortunately, these procedures are invasive and require specialized skills and supplies that are not readily available in resource-limited settings that carry the highest burden of CM. The institution of pharmacologic therapies to reduce the production or increase the resorption of cerebrospinal fluid would likely improve clinical outcomes associated with ICH in patients with CM. Here, we discuss the potential role of multiple pharmacologic drug classes such as diuretics, corticosteroids, and antiepileptic agents used to decrease ICP in various neurological conditions as potential future therapies for CM.
Collapse
Affiliation(s)
- Abdulaziz H. Alanazi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA;
| | - Daniel B. Chastain
- Department of Clinical and Administrative Pharmacy, UGA College of Pharmacy, SWGA Clinical Campus, Phoebe Putney Memorial Hospital, Albany, GA 31701, USA;
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.F.H.-M.); (C.F.-P.)
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.F.H.-M.); (C.F.-P.)
- Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30902, USA; (A.H.A.); (M.S.A.)
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
18
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
20
|
The α-dystrobrevins play a key role in maintaining the structure and function of the extracellular matrix-significance for protein elimination failure arteriopathies. Acta Neuropathol Commun 2021; 9:171. [PMID: 34674769 PMCID: PMC8532274 DOI: 10.1186/s40478-021-01274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
The extracellular matrix (ECM) of the cerebral vasculature provides a pathway for the flow of interstitial fluid (ISF) and solutes out of the brain by intramural periarterial drainage (IPAD). Failure of IPAD leads to protein elimination failure arteriopathies such as cerebral amyloid angiopathy (CAA). The ECM consists of a complex network of glycoproteins and proteoglycans that form distinct basement membranes (BM) around different vascular cell types. Astrocyte endfeet that are localised against the walls of blood vessels are tethered to these BMs by dystrophin associated protein complex (DPC). Alpha-dystrobrevin (α-DB) is a key dystrophin associated protein within perivascular astrocyte endfeet; its deficiency leads to a reduction in other dystrophin associated proteins, loss of AQP4 and altered ECM. In human dementia cohorts there is a positive correlation between dystrobrevin gene expression and CAA. In the present study, we test the hypotheses that (a) the positive correlation between dystrobrevin gene expression and CAA is associated with elevated expression of α-DB at glial-vascular endfeet and (b) a deficiency in α-DB results in changes to the ECM and failure of IPAD. We used human post-mortem brain tissue with different severities of CAA and transgenic α-DB deficient mice. In human post-mortem tissue we observed a significant increase in vascular α-DB with CAA (CAA vrs. Old p < 0.005, CAA vrs. Young p < 0.005). In the mouse model of α-DB deficiency, there was early modifications to vascular ECM (collagen IV and BM thickening) that translated into reduced IPAD efficiency. Our findings highlight the important role of α-DB in maintaining structure and function of ECM, particularly as a pathway for the flow of ISF and solutes out of the brain by IPAD.
Collapse
|
21
|
Pavan C, L R Xavier A, Ramos M, Fisher J, Kritsilis M, Linder A, Bentzer P, Nedergaard M, Lundgaard I. DNase Treatment Prevents Cerebrospinal Fluid Block in Early Experimental Pneumococcal Meningitis. Ann Neurol 2021; 90:653-669. [PMID: 34397111 DOI: 10.1002/ana.26186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Streptococcus pneumoniae is the most common cause of bacterial meningitis, a disease that, despite treatment with antibiotics, still is associated with high mortality and morbidity worldwide. Diffuse brain swelling is a leading cause of morbidity in S pneumoniae meningitis. We hypothesized that neutrophil extracellular traps (NETs) disrupt cerebrospinal fluid (CSF) transport by the glymphatic system and contribute to edema formation in S pneumoniae meningitis. METHODS We used DNase I treatment to disrupt NETs and then assessed glymphatic function by cisterna magna injections of CSF tracers in a rat model of S pneumoniae meningitis. RESULTS Our analysis showed that CSF influx into the brain parenchyma, as well as CSF drainage to the cervical lymph nodes, was significantly reduced in the rat model of S pneumoniae meningitis. Degrading NETs by DNase treatment restored glymphatic transport and eliminated the increase in brain weight in the rats. In contrast, first-line antibiotic treatment had no such effect on restoring fluid dynamics. INTERPRETATION This study suggests that CSF accumulation is responsible for cerebral edema formation and identifies the glymphatic system and NETs as possible new treatment targets in S pneumoniae meningitis. ANN NEUROL 2021;90:653-669.
Collapse
Affiliation(s)
- Chiara Pavan
- Center for Translational Neuromedicine, Faculties of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna L R Xavier
- Center for Translational Neuromedicine, Faculties of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Ramos
- Department of Experimental Medicine Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, University of Lund, Lund, Sweden
| | - Jane Fisher
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Marios Kritsilis
- Department of Experimental Medicine Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, University of Lund, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Peter Bentzer
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculties of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY
| | - Iben Lundgaard
- Department of Experimental Medicine Science, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, University of Lund, Lund, Sweden
| |
Collapse
|
22
|
Streptococcal meningitis reveals the presence of residual streptococci and down-regulated aquaporin 4 in the brain. Arch Microbiol 2021; 203:6329-6335. [PMID: 34562144 DOI: 10.1007/s00203-021-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
The pathology of streptococcal meningitis is poorly understood, even though streptococcal infection induces meningitis. The aim of this study was to clarify the relationship between streptococcal meningitis and aquaporin 4 (AQP4) in the mouse brain. After Streptococcus suis infection, the streptococcal number was calculated, and AQP4 mRNA expression in the brain was quantified at 2 and 7 days after infection. At 7-day post-infection, mice with neurological symptoms showed significantly higher S. suis levels in the brain than mice without neurological symptoms. AQP4 expression was significantly decreased in mice with neurological symptoms than in mice without neurological symptoms. Image analysis demonstrated that S. suis progressed to invade the white matter. Pathological analysis revealed that infected mouse brains had higher inflammation and neurological damage scores than uninfected mouse brains. Therefore, mice with neurological symptoms caused by streptococcal meningitis had high S. suis levels in the brain and reduced AQP4 expression.
Collapse
|
23
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
24
|
Mariajoseph-Antony LF, Kannan A, Panneerselvam A, Loganathan C, Shankar EM, Anbarasu K, Prahalathan C. Role of Aquaporins in Inflammation-a Scientific Curation. Inflammation 2021; 43:1599-1610. [PMID: 32435911 DOI: 10.1007/s10753-020-01247-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is a universal response mechanism existing as inter-communicator of biological systems. Uncontrolled or dysregulated inflammation addresses chronic low-grade effects eventually resulting in multimorbidity. Active solute transport across the membrane establishes varying osmotic gradients. Aquaporins (AQPs) are a class of critical ubiquitously expressed transmembrane proteins that aid in fluid and small solute transport via facilitated diffusion over established osmotic gradients. Numerous significant data features the biological functions of AQPs rendering them as an appropriate biomarker of health and diseases. Besides their physiological role in well-balanced inflammatory responses, it is worth noting the dysregulation of AQPs during any undesirable inflammatory event. Most literature to date clearly sets out AQPs as potential drug targets instigating AQP-based therapies. In light of this conception, the current review provides a compendious overview on the propitious and portentous out-turns of AQPs under inflammation.
Collapse
Affiliation(s)
- Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Esaki M Shankar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Kumarasamy Anbarasu
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
25
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Abstract
Thyroid hormone is essential for brain development and brain function in the adult. During development, thyroid hormone acts in a spatial and temporal-specific manner to regulate the expression of genes essential for normal neural cell differentiation, migration, and myelination. In the adult brain, thyroid hormone is important for maintaining normal brain function. Thyroid hormone excess, hyperthyroidism, and thyroid hormone deficiency, hypothyroidism, are associated with disordered brain function, including depression, memory loss, impaired cognitive function, irritability, and anxiety. Adequate thyroid hormone levels are required for normal brain function. Thyroid hormone acts through a cascade of signaling components: activation and inactivation by deiodinase enzymes, thyroid hormone membrane transporters, and nuclear thyroid hormone receptors. Additionally, the hypothalamic-pituitary-thyroid axis, with negative feedback of thyroid hormone on thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) secretion, regulates serum thyroid hormone levels in a narrow range. Animal and human studies have shown both systemic and local reduction in thyroid hormone availability in neurologic disease and after brain trauma. Treatment with thyroid hormone and selective thyroid hormone analogs has resulted in a reduction in injury and improved recovery. This article will describe the thyroid hormone signal transduction pathway in the brain and the role of thyroid hormone in the aging brain, neurologic diseases, and the protective role when administered after traumatic brain injury. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregory A Brent
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Aquaporins in the nervous structures supplying the digestive organs – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Aquaporins (AQPs) are a family of integral membrane proteins which form pores in cell membranes and take part in the transport of water, contributing to the maintenance of water and electrolyte balance and are widely distributed in various tissues and organs. The high expression of AQPs has been described in the digestive system, where large-scale absorption and secretion of fluids occurs. AQPs are also present in the nervous system, but the majority of studies have involved the central nervous system. This paper is a review of the literature concerning relatively little-known issues, i.e. the distribution and functions of AQPs in nervous structures supplying the digestive organs.
Collapse
|
28
|
Woo YH, Martinez LR. Cryptococcus neoformans-astrocyte interactions: effect on fungal blood brain barrier disruption, brain invasion, and meningitis progression. Crit Rev Microbiol 2021; 47:206-223. [PMID: 33476528 DOI: 10.1080/1040841x.2020.1869178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptococcus neoformans is an opportunistic, neurotropic, and encapsulated fungus that causes life-threatening cryptococcal meningitis (CM), especially in regions of the world where AIDS is endemic. The polysaccharide capsule of C. neoformans is the fungus major virulent factor, being copiously released during infection and causing immunosuppressive defects in the host. Although the capsular material is commonly associated with reactive astrocytes in fatal CM, little is known about the molecular and cellular interactions among astroglia and C. neoformans. As astrocytes also make up the neurovascular unit at the blood-brain barrier (BBB), which C. neoformans must transverse to colonize the central nervous system and cause CM; these cells may play a significant regulatory role in the prevention and progression of infection. For example, astrocytes are implicated in neurological disease including the regulation of cerebral intracranial pressure, immune function, and water homeostasis. Hence, in this review, we provide a general overview of astroglia biology and discuss the current knowledge on C. neoformans-astrocyte interactions including their involvement in the development of CM. This "gliocentric view" of cerebral cryptococcosis suggests that therapeutic interventions particularly targeting at preserving the neuroprotective function of astrocytes may be used in preventing and managing C. neoformans BBB transmigration, brain invasion, colonization, and meningitis.
Collapse
Affiliation(s)
- Yeon Hwa Woo
- Department of Metallurgical, Materials and Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Zhan YA, Qiu XL, Wang XZ, Zhao N, Qian KJ. Reducing LncRNA-5657 expression inhibits the brain inflammatory reaction in septic rats. Neural Regen Res 2021; 16:1288-1293. [PMID: 33318407 PMCID: PMC8284287 DOI: 10.4103/1673-5374.301022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Our preliminary study found that the long noncoding RNA (LncRNA)-5657 can reduce the expression of inflammatory factors during inflammatory reactions in rat glial cells. However, the role played by LncRNA-5657 during septic brain injury remains unclear. In the present study, rat models of septic encephalopathy were established by cecal ligation and puncture, and then the rats were treated with a hippocampal injection small hairpin RNA (shRNA) against LncRNA-5657 (sh-LnCRNA-5657). The sh-LncRNA-5657 treatment reduced the level of neuronal degeneration and necrosis in the rat hippocampus, reduced the immunoreactivities of aquaporin 4, heparanase, and metallopeptidase-9, and lowered the level of tumor necrosis factor-alpha. Glial cells were pre-treated with sh-LncRNA-5657 and then treated with 1 µg/mL lipopolysaccharide. Sh-LncRNA-5657 transfection decreased the expression of LncRNA-5657 in lipopolysaccharide-treated glial cells and decreased the mRNA and protein levels of tumor necrosis factor-alpha, interleukin-1β, and interleukin-6. These findings suggested that LncRNA-5657 expression can significantly reduce the inflammatory reaction during septic encephalopathy and induce protective effects against this disease. This study was approved by the Institutional Ethics Committee at the First Affiliated Hospital of Nanchang University of China (approval No. 2017-004) in 2017.
Collapse
Affiliation(s)
- Yi-An Zhan
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin-Liang Qiu
- Department of Critical Care Medicine, Xingguo County People's Hospital, Ganzhou, Jiangxi Province, China
| | - Xu-Zhen Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ning Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ke-Jian Qian
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
30
|
Jorgačevski J, Zorec R, Potokar M. Insights into Cell Surface Expression, Supramolecular Organization, and Functions of Aquaporin 4 Isoforms in Astrocytes. Cells 2020; 9:cells9122622. [PMID: 33297299 PMCID: PMC7762321 DOI: 10.3390/cells9122622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporin 4 (AQP4) is the most abundant water channel in the central nervous system (CNS). Its expression is confined to non-neuronal glial cells, predominantly to astrocytes that represent a heterogeneous glial cell type in the CNS. The membrane of astrocyte processes, which align brain capillaries and pia, is particularly rich in AQP4. Several isoforms of AQP4 have been described; however, only some (AQP4a (M1), AQP4 c (M23), AQP4e, and AQP4ex) have been identified in the plasma membrane assemblies of astrocytes termed orthogonal arrays of particles (OAPs). Intracellular splicing isoforms (AQP4b, AQP4d, AQP4f, AQP4-Δ4) have been documented, and most of them are postulated to have a role in the cell surface distribution of the plasma membrane isoforms and in the formation of OAPs in murine and human astrocytes. Although OAPs have been proposed to play various roles in the functioning of astrocytes and CNS tissue as a whole, many of these still need to be described. OAPs are studied primarily from the perspective of understanding water permeability regulation through the plasma membrane and of their involvement in cell adhesion and in the dynamics of astrocytic processes. This review describes the cellular distribution of various AQP4 isoforms and their implications in OAP assembly, which is regulated by several intracellular and extracellular proteins.
Collapse
Affiliation(s)
- Jernej Jorgačevski
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (J.J.); (R.Z.)
- Celica Biomedical, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1543-7020; Fax: +386-1543-7036
| |
Collapse
|
31
|
Belmaati Cherkaoui M, Vacca O, Izabelle C, Boulay AC, Boulogne C, Gillet C, Barnier JV, Rendon A, Cohen-Salmon M, Vaillend C. Dp71 contribution to the molecular scaffold anchoring aquaporine-4 channels in brain macroglial cells. Glia 2020; 69:954-970. [PMID: 33247858 DOI: 10.1002/glia.23941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Intellectual disability in Duchenne muscular dystrophy has been associated with the loss of dystrophin-protein 71, Dp71, the main dystrophin-gene product in the adult brain. Dp71 shows major expression in perivascular macroglial endfeet, suggesting that dysfunctional glial mechanisms contribute to cognitive impairments. In the present study, we investigated the molecular alterations induced by a selective loss of Dp71 in mice, using semi-quantitative immunogold analyses in electron microscopy and immunofluorescence confocal analyses in brain sections and purified gliovascular units. In macroglial pericapillary endfeet of the cerebellum and hippocampus, we found a drastic reduction (70%) of the polarized distribution of aquaporin-4 (AQP4) channels, a 50% reduction of β-dystroglycan, and a complete loss of α1-syntrophin. Interestingly, in the hippocampus and cortex, these effects were not homogeneous: AQP4 and AQP4ex isoforms were mostly lost around capillaries but preserved in large vessels corresponding to pial arteries, penetrating cortical arterioles, and arterioles of the hippocampal fissure, indicating the presence of Dp71-independent pools of AQP4 in these vascular structures. In conclusion, the depletion of Dp71 strongly alters the distribution of AQP4 selectively in macroglial perivascular endfeet surrounding capillaries. This effect likely affects water homeostasis and blood-brain barrier functions and may thus contribute to the synaptic and cognitive defects associated with Dp71 deficiency.
Collapse
Affiliation(s)
| | - Ophélie Vacca
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Charlotte Izabelle
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Unité Mixte de Recherche 7241CNRS, Unité 1050 INSERM, PSL Research University, Paris, France
| | - Claire Boulogne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cynthia Gillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Vianney Barnier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Alvaro Rendon
- UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Sorbonne Universités, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Unité Mixte de Recherche 7241CNRS, Unité 1050 INSERM, PSL Research University, Paris, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Pro-Inflammatory Role of AQP4 in Mice Subjected to Intrastriatal Injections of the Parkinsonogenic Toxin MPP. Cells 2020; 9:cells9112418. [PMID: 33167342 PMCID: PMC7694382 DOI: 10.3390/cells9112418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Aquaporin-4 (AQP4) is critically involved in brain water and volume homeostasis and has been implicated in a wide range of pathological conditions. Notably, evidence has been accrued to suggest that AQP4 plays a proinflammatory role by promoting release of astrocytic cytokines that activate microglia and other astrocytes. Neuroinflammation is a hallmark of Parkinson’s disease (PD), and we have previously shown that astrocytes in substantia nigra (SN) are enriched in AQP4 relative to cortical astrocytes, and that their complement of AQP4 is further increased following treatment with the parkinsonogenic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Here, we investigated the effect of Aqp4 deletion on microglial activation in mice subjected to unilateral intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP+, the toxic metabolite of MPTP). Our results show that MPP+ injections lead to a pronounced increase in the expression level of microglial activating genes in the ventral mesencephalon of wild type (WT) mice, but not Aqp4−/− mice. We also show, in WT mice, that MPP+ injections cause an upregulation of nigral AQP4 and swelling of astrocytic endfeet. These findings are consistent with the idea that AQP4 plays a pro-inflammatory role in Parkinson’s disease, secondary to the dysregulation of astrocytic volume homeostasis.
Collapse
|
33
|
Zhang H, Liu J, Liu Y, Su C, Fan G, Lu W, Feng L. Hypertonic saline improves brain edema resulting from traumatic brain injury by suppressing the NF-κB/IL-1β signaling pathway and AQP4. Exp Ther Med 2020; 20:71. [PMID: 32963601 PMCID: PMC7490798 DOI: 10.3892/etm.2020.9199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/17/2020] [Indexed: 12/05/2022] Open
Abstract
Although hypertonic saline (HS) has been extensively applied to treat brain edema in the clinic, the precise mechanism underlying its function remains poorly understood. Therefore, the aim of the present study was to investigate the therapeutic mechanism of HS in brain edema in terms of aquaporins and inflammatory factors. In the present study, traumatic brain injury (TBI) was established in male adult Sprague-Dawley rats, which were continuously administered 10% HS by intravenous injection for 2 days. In addition, brain edema and brain water content were detected by MRI and wet/dry ratio analysis and histological examination, respectively. Immunohistochemical staining for albumin and western blotting for occludin, zonula occludens-1 and claudin-5 was performed to evaluate the integrity of the blood-brain barrier. Aquaporin 4 (AQP4) expression was also analyzed using western blotting and reverse transcription-quantitative PCR, whilst interleukin (IL)-1β and NF-κB levels were measured using ELISA. It was demonstrated that HS treatment significantly reduced brain edema in TBI rats and downregulated AQP4 expression in cerebral cortical tissues around the contusion site. In addition, IL-1β and NF-κB levels were found to be downregulated after 10% HS treatment. Therefore, results from the present study suggested that HS may protect against brain edema induced by TBI by modulating the expression levels of AQP4, NF-κB and IL-1β.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Jun Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yunzhen Liu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Chunhai Su
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Gaoyang Fan
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Wenpeng Lu
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Lei Feng
- Department of Neurosurgery, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
34
|
Zhang H, Chen J, Wang H, Lu X, Li K, Yang C, Wu F, Xu Z, Nie H, Ding B, Guo Z, Li Y, Wang J, Li Y, Dai Z. Serum Metabolomics Associating With Circulating MicroRNA Profiles Reveal the Role of miR-383-5p in Rat Hippocampus Under Simulated Microgravity. Front Physiol 2020; 11:939. [PMID: 33013433 PMCID: PMC7461998 DOI: 10.3389/fphys.2020.00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Microgravity impacts various aspects of human health. Yet the mechanisms of spaceflight-induced health problems are not elucidated. Here, we mapped the fusion systemic analysis of the serum metabolome and the circulating microRNAome in a hindlimb unloading rat model to simulate microgravity. The response of serum metabolites and microRNAs to simulated microgravity was striking. Integrated pathway analysis of altered serum metabolites and target genes of the significantly altered circulating miRNAs with Integrated Molecular Pathway-Level Analysis (IMPaLA) software was mainly suggestive of modulation of neurofunctional signaling pathways. Particularly, we revealed significantly increased miR-383-5p and decreased aquaporin 4 (AQP4) in the hippocampus. Using rabies virus glycoprotein-modified exosomes, delivery of miR-383-5p inhibited the expression of AQP4 not only in rat C6 glioma cells in vitro but also in the hippocampus in vivo. Using bioinformatics to map the crosstalk between the circulating metabolome and miRNAome could offer opportunities to understand complex biological systems under microgravity. Our present results suggested that the change of miR-383-5p level and its regulation of target gene AQP4 was one of the potential molecular mechanisms of microgravity-induced cognitive impairment in the hippocampus.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jian Chen
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xin Lu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zihan Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Huan Nie
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Bai Ding
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zhifeng Guo
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinfu Wang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
35
|
Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood-brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med 2020; 85:326-333. [PMID: 32910547 PMCID: PMC8432141 DOI: 10.1002/mrm.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Purpose A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood–brain barrier (BBB) to be an important component of functional failure underlying age‐related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. Methods A multiple‐echo‐time arterial spin‐labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7‐ and 27‐month‐old mice to measure changes in water permeability across the BBB with aging. Results We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1‐fold increase in mRNA expression of aquaporin‐4 water channels and a 7.1‐fold decrease in mRNA expression of α‐syntrophin protein, which anchors aquaporin‐4 to the BBB. Conclusion Age‐related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Phoebe G Evans
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
36
|
Trametinib Toxicities in Patients With Low-grade Gliomas and Diabetes Insipidus: Related Findings? J Pediatr Hematol Oncol 2020; 42:e248-e250. [PMID: 30676433 DOI: 10.1097/mph.0000000000001427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low-grade gliomas (LGG) represent the most common form of primary central nervous system tumor arising in childhood. There is growing evidence to support the role of the mitogen-activated protein kinase pathway in driving tumor growth and MEK inhibitors are being investigated in clinical trials for refractory and unresectable LGGs. As MEK inhibitors progress through clinical trials, drug toxicities have been identified. We report on 2 pediatric patients with LGG and known diabetes insipidus who developed severe hyponatraemia associated with significant decreases in desmopressin doses after starting trametinib. We review potential mechanisms for this sodium imbalance by examining the interaction between MEK inhibition and aquaporin channel physiology. We recommend close monitoring of serum sodium levels and clinical status in patients with diabetes insipidus who have optic-hypothalamic gliomas and are started on treatment with MEK inhibitors.
Collapse
|
37
|
Liu X, Ding H, Li X, Deng Y, Liu X, Wang K, Wen M, Chen S, Jiang W, Zeng H. Hypercapnia Exacerbates the Blood-Brain Barrier Disruption Via Promoting HIF-1a Nuclear Translocation in the Astrocytes of the Hippocampus: Implication in Further Cognitive Impairment in Hypoxemic Adult Rats. Neurochem Res 2020; 45:1674-1689. [PMID: 32328929 PMCID: PMC7224048 DOI: 10.1007/s11064-020-03038-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Hypercapnia in combination with hypoxemia is usually present in severe respiratory disease in the intensive care unit (ICU) and can lead to more severe cognitive dysfunction. Increasing evidence has indicated that the compromised blood–brain barrier (BBB) in the hippocampus in hypoxemia conditions can result in cognitive dysfunction. However, the role and underlying mechanism of hypercapnia in the BBB disruption remains poorly known. A rat model of hypercapnia was first established in this study by intubation and mechanical ventilation with a small-animal ventilator. After this, the cognitive function of the experimental rats was assessed by the Morris water maze test. The BBB permeability was evaluated by the Evans Blue (EB) test and brain water content (BWC). Western blot analysis was carried out to detect the protein expressions of total and nuclear hypoxia-inducible factor-1α (HIF-1α), matrixmetalloproteinase-9 (MMP-9) and Aquaporins-4 (AQP-4) in the hippocampus tissue. Double immunofluorescence further verified the protein expression of different biomarkers was localized in the astrocytes of the hippocampus. Hypercapnia alone did not disrupt the BBB, but it could further enhance the BBB permeability in hypoxemia. Concomitantly, up-regulation of nuclear HIF-1α, AQP-4, MMP-9 protein expression along with increased degradation of the occludin and claudin-5 proteins was found in the hypercapnia rat model, while the total HIF-1α remained unchanged. Interestingly, these changes were independent of the acidosis induced by hypercapnia. Of note, after premedication of 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α nuclear translocation), the disrupted BBB could be restored resulting in improvement of the cognitive impairment. Meanwhile, accumulation of nuclear HIF-1α, protein expression of AQP-4 and MMP-9 and protein degradation of the occludin and claudin-5 were decreased. Thus, our study demonstrated that hypercapnia can further disrupt the BBB through promoting HIF-1α nuclear translocation and up-regulation of AQP-4 and MMP-9 in hypoxemia. It is therefore suggested that the cascade of hypercapnia-induced nuclear HIF-1α protein translocation in hypoxia-activated astrocytes may be a potential target for ameliorating cognitive impairment.
Collapse
Affiliation(s)
- Xinqiang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xusheng Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaoyu Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Kangrong Wang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Shenglong Chen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wenqiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongke Zeng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China. .,Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Shchepareva ME, Zakharova MN. Functional Role of Aquaporins in the Nervous System under Normal and Pathological Conditions. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
MicroRNA-29b-3p aggravates 1,2-dichloroethane-induced brain edema by targeting aquaporin 4 in Sprague-Dawley rats and CD-1 mice. Toxicol Lett 2020; 319:160-167. [DOI: 10.1016/j.toxlet.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
|
40
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Altered Waste Disposal System in Aging and Alzheimer's Disease: Focus on Astrocytic Aquaporin-4. Front Pharmacol 2020; 10:1656. [PMID: 32063858 PMCID: PMC7000422 DOI: 10.3389/fphar.2019.01656] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diverse cell types included in the general population named glia, astrocytes emerge as being the focus of a growing body of research aimed at characterizing their heterogeneous and complex functions. Alterations of both their morphology and activities have been linked to a variety of neurological diseases. One crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules. Several data demonstrate that aquaporin-4 (AQP-4), a protein expressed by astrocytes, is crucially important for facilitating the removal of waste products from the brain. Aquaporins are water channels found in all district of the human organism and the most abundant isoform in the brain is AQP-4. This protein is involved in a myriad of astrocytic activities, including calcium signal transduction, potassium buffering, synaptic plasticity, astrocyte migration, glial scar formation and neuroinflammation. The highest density of AQP-4 is found at the astrocytic domains closest to blood vessels, the endfeet that envelop brain vessels, with low to zero expression in other astrocytic membrane regions. Increased AQP-4 expression and loss of polarization have recently been documented in altered physiological conditions. Here we review the latest findings related to aging and Alzheimer’s disease (AD) on this topic, as well as the available knowledge on pharmacological tools to target AQP-4.
Collapse
Affiliation(s)
- Marta Valenza
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Epitech Group SpA, Saccolongo, Italy
| | - Roberta Facchinetti
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Università Telematica Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
42
|
Noël G, Tham DKL, MacVicar BA, Moukhles H. Agrin plays a major role in the coalescence of the aquaporin-4 clusters induced by gamma-1-containing laminin. J Comp Neurol 2019; 528:407-418. [PMID: 31454080 DOI: 10.1002/cne.24763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/13/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
Abstract
The basement membrane that seperates the endothelial cells and astrocytic endfeet that comprise the blood-brain barrier is rich in collagen, laminin, agrin, and perlecan. Previous studies have demonstrated that the proper recruitment of the water-permeable channel aquaporin-4 (AQP4) to astrocytic endfeet is dependent on interactions between laminin and the receptor dystroglycan. In this study, we conducted a deeper investigation into how the basement membrane might further regulate the expression, localization, and function of AQP4, using primary astrocytes as a model system. We found that treating these cells with laminin causes endogenous agrin to localize to the cell surface, where it co-clusters with β-dystroglycan (β-DG). Conversely, agrin sliencing profoundly disrupts β-DG clustering. As in the case of laminin111, Matrigel™, a complete basement membrane analog, also causes the clustering of AQP4 and β-DG. This clustering, whether induced by laminin111 or Matrigel™ is inhibited when the astrocytes are first incubated with an antibody against the γ1 subunit of laminin, suggesting that the latter is crucial to the process. Finally, we showed that laminin111 appears to negatively regulate AQP4-mediated water transport in astrocytes, suppressing the cell swelling that occurs following a hypoosmotic challenge. This suppression is abolished if DG expression is silenced, again demonstrating the central role of this receptor in relaying the effects of laminin.
Collapse
Affiliation(s)
- Geoffroy Noël
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Kai Long Tham
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian A MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Huang Y, Li SN, Zhou XY, Zhang LX, Chen GX, Wang TH, Xia QJ, Liang N, Zhang X. The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A. Front Neurosci 2019; 13:584. [PMID: 31258460 PMCID: PMC6587679 DOI: 10.3389/fnins.2019.00584] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Spinal cord edema, mainly including vasogenic and cytotoxic edema, influences neurological outcome after spinal cord contusion (SCC). Aquaporin 4 (AQP4) is the most ubiquitous water channel in the central nervous system (CNS), which is a rate-limiting factor in vasogenic edema expressing in brain injury, and it contributes to the formation of cytotoxic edema locating in astrocytes. However, little is known about the regulatory mechanism of AQP4 within vasogenic and cytotoxic edema in SCC, and whether the regulation mechanism of AQP4 is related to Cytochrome coxidase (COX5A) affecting energy metabolism. Therefore, the SCC model is established by Allen’s method, and the degree of edema and neuronal area is measured. The motor function of rats is evaluated by the Basso, Beattie, and Bresnahan (BBB) scoring system. Meanwhile, AQP4 and COX5A are detected by real-time quantitative PCR (qRT-PCR) and western blot (WB). The localization of targeted protein is exhibited by immunohistochemical staining (IHC) and immunofluorescence (IF). Additionally, the methodology of AQP4 lentivirus-mediated RNA interference (AQP4-RNAi) is used to reveal the effect on edema of SCC and the regulating molecular mechanism. Firstly, we observe that the tissue water content increases after SCC and decreases after the peak value of tissue water content at 3 days (P < 0.05) with abundant expression of AQP4 protein locating around vascular endothelial cells (VECs), which suggests that the increasing AQP4 promotes water reabsorption and improves vasogenic edema in the early stage of SCC. However, the neuronal area is larger than in the sham group in the 7 days (P < 0.05) with the total water content of spinal cord decrease. Meanwhile, AQP4 migrates from VECs to neuronal cytomembrane, which indicates that AQP4 plays a crucial role in aggravating the formation and development of cytotoxic edema in the middle stages of SCC. Secondly, AQP4-RNAi is used to elucidate the mechanism of AQP4 to edema of SCC. The neuronal area shrinks and the area of cytotoxic edema reduces after AQP4 downregulation. The BBB scores are significantly higher than in the vector group after AQP4-RNAi at 5, 7, and 14 (P < 0.05). There is a relationship between AQP4 and COX5A shown by bioinformatics analysis. After AQP4 inhibition, the expression of COX5A is significantly upregulated in the swelling astrocytes. Therefore, the inhibition of AQP4 expression reduces cytotoxic edema in SCC and improves motor function, which may be associated with upregulation of COX5A via affecting energy metabolism. Moreover, it is not clear how the inhibition of AQP4 directly causes the upregulation of COX5A.
Collapse
Affiliation(s)
- Yuan Huang
- Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Sheng-Nan Li
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiu-Ya Zhou
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Gang-Xian Chen
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China.,Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Liang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
44
|
Tong F, Zou Y, Liang Y, Lei H, Lopsong T, Liu Y, Le Grange JM, He G, Zhou Y. The Water Diffusion of Brain Following Hypoglycemia in Rats – A Study with Diffusion Weighted Imaging and Neuropathologic Analysis. Neuroscience 2019; 409:58-68. [DOI: 10.1016/j.neuroscience.2019.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
|
45
|
Mamtilahun M, Tang G, Zhang Z, Wang Y, Tang Y, Yang GY. Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema. Curr Drug Targets 2019; 20:748-755. [DOI: 10.2174/1389450120666190214115309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Brain edema primarily occurs as a consequence of various cerebral injuries including
ischemic stroke. Excessive accumulation of brain water content causes a gradual expansion of brain
parenchyma, decreased blood flow and increased intracranial pressure and, ultimately, cerebral herniation
and death. Current clinical treatment for ischemic edema is very limited, therefore, it is urgent to
develop novel treatment strategies. Mounting evidence has demonstrated that AQP4, a water channel
protein, is closely correlated with brain edema and could be an optimal therapeutic target for the reduction
of ischemic brain edema. AQP4 is prevalently distributed in the central nervous system, and
mainly regulates water flux in brain cells under normal and pathological conditions. This review focuses
on the underlying mechanisms of AQP4 related to its dual role in edema formation and elimination.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guanghui Tang
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
46
|
Glober NK, Sprague S, Ahmad S, Mayfield KG, Fletcher LM, Digicaylioglu MH, Sayre NL. Acetazolamide Treatment Prevents Redistribution of Astrocyte Aquaporin 4 after Murine Traumatic Brain Injury. NEUROSCIENCE JOURNAL 2019; 2019:2831501. [PMID: 31187032 PMCID: PMC6521570 DOI: 10.1155/2019/2831501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
After traumatic brain injury (TBI), multiple ongoing processes contribute to worsening and spreading of the primary injury to create a secondary injury. One major process involves disrupted fluid regulation to create vascular and cytotoxic edema in the affected area. Although understanding of factors that influence edema is incomplete, the astrocyte water channel Aquaporin 4 (AQP4) has been identified as an important mediator and therefore attractive drug target for edema prevention. The FDA-approved drug acetazolamide has been administered safely to patients for years in the United States. To test whether acetazolamide altered AQP4 function after TBI, we utilized in vitro and in vivo models of TBI. Our results suggest that AQP4 localization is altered after TBI, similar to previously published reports. Treatment with acetazolamide prevented AQP4 reorganization, both in human astrocyte in vitro and in mice in vivo. Moreover, acetazolamide eliminated cytotoxic edema in our in vivo mouse TBI model. Our results suggest a possible clinical role for acetazolamide in the treatment of TBI.
Collapse
Affiliation(s)
- Nancy K. Glober
- Department of Emergency Medicine, Stanford University, Palo Alto, California, USA
| | - Shane Sprague
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sadiya Ahmad
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Katherine G. Mayfield
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lauren M. Fletcher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Murat H. Digicaylioglu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Naomi L. Sayre
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- South Texas Veteran's Health Care System, San Antonio, Texas, USA
| |
Collapse
|
47
|
Wang L, Tang H, Wang C, Hu Y, Wang S, Shen L. Aquaporin 4 deficiency alleviates experimental colitis in mice. FASEB J 2019; 33:8935-8944. [PMID: 31034776 DOI: 10.1096/fj.201802769rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aquaporin (AQP) 4 is expressed in the basolateral membrane of colonic epithelial cells, and the purpose of this study was to explore the mechanistic role of AQP4 in experimental colitis. Experimental colitis was induced in AQP4 knockout (AQP4-/-) CD-1 mice and AQP4 wild-type (AQP4wt) mice by oral administration of dextran sulfate sodium (DSS). Experimental colitis was clinically established. Compared with AQP4wt mice, AQP4-/- mice showed increased tolerance to DSS-induced experimental colitis, including lesser degree of weight loss, diarrhea and bleeding, lower disease activity index scores, longer colon lengths, and lesser histologic scores. DSS-treated AQP4-/- mice had lower serum levels of IL-6 and TNF, higher IL-10 level, and lesser inflammatory cell infiltration. DSS-treated AQP4-/- mice also had lower immunostaining of NF-κB p65 as well as nuclear levels of p65 and phosphorylated p65. Sequencing of 16S rRNA indicated that DSS-treated AQP4-/- mice maintained intestinal microbial diversity and had higher Firmicutes/Bacteroidetes ratios and greater relative abundance of Erysipelotrichaceae species. These results suggested for the first time that AQP4 deficiency alleviates experimental colitis in mice. Our study helps to understand the pathogenesis of inflammatory bowel diseases, and blocking AQP4 may represent a novel therapeutic approach for ulcerative colitis.-Wang, L., Tang, H., Wang, C., Hu, Y., Wang, S., Shen, L. Aquaporin 4 deficiency alleviates experimental colitis in mice.
Collapse
Affiliation(s)
- Liuhua Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
| | - Hua Tang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuhuan Hu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shoulin Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Mautes AE, Schwerdtfeger K, Oertel J. Brain Edema Formation and Functional Outcome After Surgical Decompression in Murine Closed Head Injury Are Modulated by Acetazolamide Administration. Front Neurol 2019; 10:273. [PMID: 30972006 PMCID: PMC6443632 DOI: 10.3389/fneur.2019.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Acetazolamide (ACZ), carbonic anhydrase inhibitor, has been successfully applied in several neurosurgical conditions for diagnostic or therapeutic purposes. Furthermore, neuroprotective and anti-edematous properties of ACZ have been postulated. However, its use in traumatic brain injury (TBI) is limited, since ACZ-caused vasodilatation according to the Monro-Kellie doctrine may lead to increased intracranial blood volume / raise of intracranial pressure. We hypothesized that these negative effects of ACZ will be reduced or prevented, if the drug is administered after already performed decompression. To test this hypothesis, we used a mouse model of closed head injury (CHI) and decompressive craniectomy (DC). Mice were assigned into following experimental groups: sham, DC, CHI, CHI+ACZ, CHI+DC, and CHI+DC+ACZ (n = 8 each group). 1d and 3d post injury, the neurological function was assessed according to Neurological Severity Score (NSS) and Beam Balance Score (BBS). At the same time points, brain edema was quantified by MRI investigations. Functional impairment and edema volume were compared between groups and over time. Among the animals without skull decompression, the group additionally treated with acetazolamide demonstrated the most severe functional impairment. This pattern was reversed among the mice with decompressive craniectomy: CHI+DC treated but not CHI+DC+ACZ treated animals showed a significant neurological deficit. Accordingly, radiological assessment revealed most severe edema formation in the CHI+DC group while in CHI+DC+ACZ animals, volume of brain edema did not differ from DC-only animals. In our CHI model, the response to acetazolamide treatment varies between animals with decompressive craniectomy and those without surgical treatment. Opening the cranial vault potentially creates an opportunity for acetazolamide to exert its beneficial effects while vasodilatation-related risks are attenuated. Therefore, we recommend further exploration of this potentially beneficial drug in translational research projects.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany.,Institute of Interventional and Diagnostic Radiology, Karlsruhe Municipal Hospital, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
49
|
Farr GW, Hall CH, Farr SM, Wade R, Detzel JM, Adams AG, Buch JM, Beahm DL, Flask CA, Xu K, LaManna JC, McGuirk PR, Boron WF, Pelletier MF. Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience 2019; 404:484-498. [PMID: 30738082 DOI: 10.1016/j.neuroscience.2019.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/23/2023]
Abstract
Cerebral edema in ischemic stroke can lead to increased intracranial pressure, reduced cerebral blood flow and neuronal death. Unfortunately, current therapies for cerebral edema are either ineffective or highly invasive. During the development of cytotoxic and subsequent ionic cerebral edema water enters the brain by moving across an intact blood brain barrier and through aquaporin-4 (AQP4) at astrocyte endfeet. Using AQP4-expressing cells, we screened small molecule libraries for inhibitors that reduce AQP4-mediated water permeability. Additional functional assays were used to validate AQP4 inhibition and identified a promising structural series for medicinal chemistry. These efforts improved potency and revealed a compound we designated AER-270, N-[3,5-bis (trifluoromethyl)phenyl]-5-chloro-2-hydroxybenzamide. AER-270 and a prodrug with enhanced solubility, AER-271 2-{[3,5-Bis(trifluoromethyl) phenyl]carbamoyl}-4-chlorophenyl dihydrogen phosphate, improved neurological outcome and reduced swelling in two models of CNS injury complicated by cerebral edema: water intoxication and ischemic stroke modeled by middle cerebral artery occlusion.
Collapse
Affiliation(s)
- George W Farr
- Aeromics, Inc., Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | - Ramon Wade
- Aeromics, Inc., Cleveland, OH 44106, USA
| | | | | | | | - Derek L Beahm
- Department of Biology, Buffalo State College, Buffalo, NY 14222, USA
| | - Christopher A Flask
- Departments of Radiology, Biomedical Engineering and Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kui Xu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph C LaManna
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
50
|
Zhang L, Jin YP. Toxic effects of combined treatment of 1,2-dichloroethane and ethanol on mouse brain and the related mechanisms. J Biochem Mol Toxicol 2019; 33:e22294. [PMID: 30664321 DOI: 10.1002/jbt.22294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/06/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to explore the mechanisms of brain damage induced by the combined treatment of mice with 1,2-dichloroethane (1,2-DCE) and ethanol. Mice were divided into control group; 1,2-DCE-intoxicated group; ethanol-treated group; and low-, medium-, and high-dose combined treatment groups. Histological observations along with brain organ coefficients and water content were used to measure the brain damage directly and indirectly. The levels of nonprotein sulfhydryls, malondialdehyde (MDA), and superoxide dismutase activity were used as parameters to evaluate oxidative stress in the brain. Protein and messenger RNA (mRNA) levels of cytochrome P450 2E1 (CYP2E1), zonula occludens-1 (occludin and zo-1), aquaporin-4 (AQP4), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase (HO)-1, and the γ-glutamyl cysteine synthetase catalytic and modulatory subunits (γ-GCSc, GR, and γ-GCSm) in the brain were examined by Western blot analysis and quantitative polymerase chain reaction analysis, respectively. Effects of the combined treatment of 1,2-DCE and ethanol were evaluated by analysis of variance with a factorial design. The results suggested that combined exposure to ethanol and 1,2-DCE synergistically increased CYP2E1 protein and mRNA levels, accelerated the metabolism of ethanol and 1,2-DCE in the brain tissue, induced high production of reactive oxygen species (ROS), and increased MDA levels, thereby damaging the blood-brain barrier and causing obvious pathological changes in brain tissue. However, the increased level of ROS activated the Nrf2 signal transduction pathway, promoting the expression of HO-1 and glutathione-related antioxidant enzymes in the brain to protect the cells from oxidative damage.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.,Department of Community Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Ya-Ping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|