1
|
Glavinovic T, Thanassoulis G, de Graaf J, Couture P, Hegele RA, Sniderman AD. Physiological Bases for the Superiority of Apolipoprotein B Over Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol as a Marker of Cardiovascular Risk. J Am Heart Assoc 2022; 11:e025858. [PMID: 36216435 PMCID: PMC9673669 DOI: 10.1161/jaha.122.025858] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2019, the European Society of Cardiology/European Atherosclerosis Society stated that apolipoprotein B (apoB) was a more accurate marker of cardiovascular risk than low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol. Since then, the evidence has continued to mount in favor of apoB. This review explicates the physiological mechanisms responsible for the superiority of apoB as a marker of the cardiovascular risk attributable to the atherogenic apoB lipoprotein particles chylomicron remnants, very low-density lipoprotein, and low-density lipoprotein particles. First, the nature and relative numbers of these different apoB particles will be outlined. This will make clear why low-density lipoprotein particles are almost always the major determinants of cardiovascular risk and why the concentrations of triglycerides and LDL-C may obscure this relation. Next, the mechanisms that govern the number of very low-density lipoprotein and low-density lipoprotein particles will be outlined because, except for dysbetalipoproteinemia, the total number of apoB particles determines cardiovascular risk, Then, the mechanisms that govern the cholesterol mass within very low-density lipoprotein and low-density lipoprotein particles will be reviewed because these are responsible for the discordance between the mass of cholesterol within apoB particles, measured either as LDL-C or non-high-density lipoprotein cholesterol, and the number of apoB particles measured as apoB, which creates the superior predictive power of apoB over LDL-C and non-high-density lipoprotein cholesterol. Finally, the major apoB dyslipoproteinemias will be briefly outlined. Our objective is to provide a physiological framework for health care givers to understand why apoB is a more accurate marker of cardiovascular risk than LDL-C or non-high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Tamara Glavinovic
- Division of Nephrology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - George Thanassoulis
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Jacqueline de Graaf
- University of Nijmegen Radboud University Medical CenterDepartment of General Internal MedicineNijmegenthe Netherlands
| | - Patrick Couture
- Université LavalCentre Hospitalier Universitaire de QuébecQuebecCanada
| | - Robert A. Hegele
- Robarts Research Institute and Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Allan D. Sniderman
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
2
|
Pretreatment of buckwheat globulin by ultra-high pressure: Effects on enzymatic hydrolysis and final hydrolysate lipid metabolism regulation capacities. Food Chem 2022; 379:132102. [DOI: 10.1016/j.foodchem.2022.132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
|
3
|
Basavaraju P, Balasubramani R, Kathiresan DS, Devaraj I, Babu K, Alagarsamy V, Puthamohan VM. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front Cardiovasc Med 2022; 8:788852. [PMID: 35071357 PMCID: PMC8770923 DOI: 10.3389/fcvm.2021.788852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years. In this review, we have contributed a handful of information on such genetic polymorphisms that include APOE, ApoA1/B ratio, and A1/C3/A4/A5 gene cluster-based population genetic studies carried throughout the world, to elaborately discuss the effects of various genetic polymorphisms in imparting various medical conditions, such as obesity, cardiovascular, stroke, Alzheimer's disease, diabetes, vascular complications, and other associated risks.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Rubadevi Balasubramani
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Divya Sri Kathiresan
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ilakkiyapavai Devaraj
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Kavipriya Babu
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vasanthakumar Alagarsamy
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
- *Correspondence: Vinayaga Moorthi Puthamohan
| |
Collapse
|
4
|
Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur J Med Genet 2020; 63:103831. [DOI: 10.1016/j.ejmg.2019.103831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
|
5
|
Page MM, Bell DA, Watts GF. Widening the spectrum of genetic testing in familial hypercholesterolaemia: Will it translate into better patient and population outcomes? Clin Genet 2019; 97:543-555. [PMID: 31833051 DOI: 10.1111/cge.13685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Familial hypercholesterolaemia (FH) is caused by pathogenic variants in LDLR, APOB or PCSK9. Impaired low-density lipoprotein (LDL) receptor function leads to decreased LDL catabolism and premature atherosclerotic cardiovascular disease (ASCVD). Thousands of LDLR variants are known, but assignation of pathogenicity requires accurate phenotyping, family studies and assessment of LDL receptor function. Precise, genetic diagnosis of FH using targeted next generation sequencing allows for optimal treatment, distinguishing FH from pathogenically distinct disorders requiring different treatment. Polygenic hypercholesterolaemia resulting from an accumulation of LDL cholesterol-raising single nucleotide polymorphisms (SNPs) could also be suspected by this approach. Similarly, ASCVD risk could be estimated by broader sequencing of cholesterol and non-cholesterol-related genes. Both of these areas require further research. The clinical management of FH, focusing on the primary or secondary prevention of ASCVD, has been boosted by PCSK9 inhibitor therapy. The efficacy of PCSK9 inhibitors in homozygous FH may be partly predicted by the LDLR variants. While expanded genetic testing in FH is clinically useful in providing an accurate diagnosis and enabling cost-effective testing of relatives, further research is needed to establish its value in improving clinical outcomes.
Collapse
Affiliation(s)
- Michael M Page
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, Western Diagnostic Pathology, Perth, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, PathWest Fiona Stanley Hospital and Royal Perth Hospital, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
6
|
Doonan LM, Fisher EA, Brodsky JL. Can modulators of apolipoproteinB biogenesis serve as an alternate target for cholesterol-lowering drugs? Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:762-771. [PMID: 29627384 DOI: 10.1016/j.bbalip.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/23/2022]
Abstract
Understanding the molecular defects underlying cardiovascular disease is necessary for the development of therapeutics. The most common method to lower circulating lipids, which reduces the incidence of cardiovascular disease, is statins, but other drugs are now entering the clinic, some of which have been approved. Nevertheless, patients cannot tolerate some of these therapeutics, the drugs are costly, and/or the treatments are approved for only rare forms of disease. Efforts to find alternative treatments have focused on other factors, such as apolipoproteinB (apoB), which transports cholesterol in the blood stream. The levels of apoB are regulated by endoplasmic reticulum (ER) associated degradation as well as by a post ER degradation pathway in model systems, and we suggest that these events provide novel therapeutic targets. We discuss first how cardiovascular disease arises and how cholesterol is regulated, and then summarize the mechanisms of action of existing treatments for cardiovascular disease. We then review the apoB biosynthetic pathway, focusing on steps that might be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Lynley M Doonan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Edward A Fisher
- Departments of Medicine (Cardiology) and Cell Biology and the Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY 10016, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC. Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 2012; 16:1184-95. [PMID: 22304330 PMCID: PMC3823072 DOI: 10.1111/j.1582-4934.2012.01543.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Measuring biomarkers to identify and assess illness is a strategy growing in popularity and relevance. Although already in clinical use for treating and predicting cancer, no biological measurement is used clinically for any psychiatric disorder. Biomarkers could predict the course of a medical problem, and aid in determining how and when to treat. Several studies have indicated that of candidate psychiatric biomarkers detected using proteomic techniques, cholesterol and associated proteins, specifically apolipoproteins (Apos), may be of interest. Cholesterol is necessary for brain development and its synthesis continues at a lower rate in the adult brain. Apos are the protein component of lipoproteins responsible for lipid transport. There is extensive evidence that the levels of cholesterol and Apos may be disturbed in psychiatric disorders, including autistic spectrum disorders (ASD). Here, we describe putative serum biomarkers for psychiatric disorders, and the role of cholesterol and Apos in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Alisa G Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Christoffersen C, Benn M, Christensen PM, Gordts PLSM, Roebroek AJM, Frikke-Schmidt R, Tybjaerg-Hansen A, Dahlbäck B, Nielsen LB. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J Lipid Res 2012; 53:2198-2204. [PMID: 22826357 DOI: 10.1194/jlr.p023697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 µM, P = 0.003, and 1.23 ± 0.10 µM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 µM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.
Collapse
Affiliation(s)
| | - Marianne Benn
- Department of Clinical Biochemistry, Herlev University Hospital, Herlev, Denmark
| | | | - Philip L S M Gordts
- Center of Human Genetics, Experimental Mouse Genetics, Katholieke Universiteit, Leuven, Belgium
| | - Anton J M Roebroek
- Center of Human Genetics, Experimental Mouse Genetics, Katholieke Universiteit, Leuven, Belgium
| | | | - Anne Tybjaerg-Hansen
- Department of Laboratory Medicine, Wallenberg Laboratory, Skåne University Hospital, Lund University, Malmö, Sweden; and
| | - Björn Dahlbäck
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Benn M. Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review. Atherosclerosis 2009; 206:17-30. [PMID: 19200547 DOI: 10.1016/j.atherosclerosis.2009.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/25/2022]
Abstract
Apolipoprotein B is a key component in lipid metabolism. Subendothelial retention of apolipoprotein B containing lipoproteins is a necessary initiating event in atherogenesis, and high plasma levels of apolipoprotein B is a risk factor for atherosclerosis, whereas low levels may provide protection. The present review examines, with focus on general population studies, apolipoprotein B levels as a predictor of ischemic cardiovascular disease, as well as the association of mutations and polymorphisms in APOB with plasma apolipoprotein B levels, and risk of ischemic cardiovascular disease. The studies can be summarized as follows: (1) apolipoprotein B predicts ischemic cardiovascular events in both genders, and is better than LDL cholesterol in this respect; (2) linkage disequilibrium structure in APOB is more complex than expected from HapMap data, because a minimal set of tag single nucleotide polymorphisms capturing the entire variation in APOB cannot be identified, and thus most polymorphisms must be evaluated separately in association studies; (3) APOB mutations and polymorphisms are associated with a range of apolipoprotein B and LDL cholesterol levels, although the magnitude of effect sizes of common polymorphisms are modest; (4) both mutations and polymorphisms are associated with LDL metabolism in vivo; (5) association of APOB mutations and polymorphisms with lipid and disease phenotype cannot be predicted in silico using evolutionary conservation or existing prediction programs; and finally, (6) except for the E4154K polymorphism that possibly predicts a reduction in risk of ischemic cerebrovascular disease and ischemic stroke, common APOB polymorphisms with modest effect sizes on lipid levels do not predict risk of ischemic heart disease, myocardial infarction, ischemic cerebrovascular disease, or ischemic stroke in the general population.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen Ø, Denmark.
| |
Collapse
|
11
|
Johnson LA, Altenburg MK, Walzem RL, Scanga LT, Maeda N. Absence of hyperlipidemia in LDL receptor-deficient mice having apolipoprotein B100 without the putative receptor-binding sequences. Arterioscler Thromb Vasc Biol 2008; 28:1745-52. [PMID: 18617647 DOI: 10.1161/atvbaha.108.169680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the effects of apoB100 structure, specifically a mutation in the LDLr binding region, on the production of LDL and development of atherosclerosis in vivo. METHODS AND RESULTS Ldlr(-/-)Apobec1(-/-) mice lacking the LDLR and apoB editing enzyme accumulated LDL in plasma and developed severe atherosclerosis when they had wild-type apoB100. In marked contrast, in Ldlr(-/-)Apobec1(-/-) mice carrying the Apob100-beta mutation, in the 2 putative LDLR-binding domains of apoB prevented both LDL accumulation and atherosclerosis. Intestinal absorption of lipids and triglyceride secretion from the liver were not affected. However, the VLDL particles with apoB100-beta were larger in volume by about 70%, and carried approximately four times as much apoE per particle. ApoB100-beta synthesis rate in the primary hepatocytes was normal, but its intracellular degradation was enhanced. Additionally, mutant apoB100 VLDL cleared from the circulation more quickly in vivo through apoE-LRP-mediated mechanism than VLDL with wild-type apoB100. In contrast, uptake of the 2 VLDL by macrophages were not different. CONCLUSIONS While conformational change to apoB100 during conversion of VLDL to LDL exposes LDLR binding domains and facilitates LDLR-mediated lipoprotein clearance, it may also inhibit LRP-mediated VLDL uptake and contribute to LDL accumulation in familial hypercholesterolemia.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | | | | | |
Collapse
|
12
|
Benn M, Stene MCA, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. J Clin Endocrinol Metab 2008; 93:1038-45. [PMID: 18160469 DOI: 10.1210/jc.2007-1365] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT We have previously shown that rare mutations in the apolipoprotein B gene (APOB) may result in not only severe hypercholesterolemia and ischemic heart disease but also hypocholesterolemia. Despite this, common single-nucleotide polymorphisms (SNPs) in APOB have not convincingly been demonstrated to affect low-density lipoprotein (LDL) cholesterol levels. OBJECTIVE We tested the hypothesis that nonsynonymous SNPs in three important functional domains of APOB and APOB tag SNPs predict levels of LDL cholesterol and apolipoprotein B and risk of ischemic heart disease. DESIGN This was a prospective study with 25 yr 100% follow up, The Copenhagen City Heart Study. SETTING The study was conducted in the Danish general population. PARTICIPANTS Participants included 9185 women and men aged 20-80+ yr. MAIN OUTCOME MEASURES Levels of LDL cholesterol and apolipoprotein B and risk of ischemic heart disease and myocardial infarction were measured. The hypothesis was formulated before genotyping. RESULTS We genotyped 9185 individuals for APOB T71I (minor allele frequency: 0.33), Ivs4+171c>a (0.14), A591V (0.47), Ivs18+379a>c (0.30), Ivs18+1708g>t (0.45), T2488Tc>t (0.48), P2712L (0.21), R3611Q (0.09), E4154K (0.17), and N4311S (0.21). SNPs were associated with increases (T71I, Ivs181708g>t, T2488Tc>t, R3611) or decreases (Ivs4+171c>a, A591V, Ivs18+379a>c, P2712L, E4154, N4311S) in LDL cholesterol from -4.7 to +8.2% (-0.28 to 0.30 mmol/liter; P<or=0.002), and corresponding effects on cholesterol and apolipoprotein B levels. However, as predicted from the magnitude of the observed LDL cholesterol effects, none of these SNPs predicted risk of ischemic heart disease prospectively in the general population, in a case-control study, or as haplotypes. CONCLUSIONS Multiple common and rare alleles in APOB contribute to plasma levels of LDL cholesterol in the general population, although the effects of common alleles and haplotypes are modest.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Benn M, Nordestgaard BG, Jensen JS, Tybjaerg-Hansen A. Polymorphisms in apolipoprotein B and risk of ischemic stroke. J Clin Endocrinol Metab 2007; 92:3611-7. [PMID: 17595251 DOI: 10.1210/jc.2007-0221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Apolipoprotein B levels associate with risk of ischemic stroke. APOB polymorphisms may influence levels of apolipoprotein B and low-density lipoprotein (LDL), but whether they associate with risk of ischemic stroke is unknown. OBJECTIVE We tested the hypothesis that the APOB T71I, A591V, P2712L, R3611Q, E4154K, and N4311S polymorphisms associate with risk of ischemic stroke in the general population and performed in vivo human LDL turnover studies of E4154K heterozygotes vs. K4154K homozygotes. DESIGN This was a prospective study (the Copenhagen City Heart Study) with 23-yr, 100% complete follow-up. SETTING The study was conducted with a Danish general population. PARTICIPANTS A total of 9157 women and men aged 20-80+ yr participated in the study. MAIN OUTCOME MEASURES Risk of ischemic cerebrovascular disease and ischemic stroke, apolipoprotein B and LDL levels, and LDL fractional catabolic rate were measured. The hypothesis was formulated before genotyping. RESULTS APOB K4154K homozygotes had an age-adjusted hazard ratio of 0.4 (95% confidence interval 0.2-0.9) for ischemic cerebrovascular disease and 0.2 (0.1-0.7) for ischemic stroke relative to E4154E homozygotes. Corresponding multifactorially adjusted hazard ratios were 0.5 (0.2-1.0) and 0.2 (0.1-0.8). Furthermore, E4154K heterozygotes and K4154K homozygotes had lower levels of apolipoprotein B and LDL cholesterol, compared with E4154E homozygotes. Finally, E4154K heterozygotes had an increased fractional catabolic rate of LDL relative to E4154E homozygotes. None of the other polymorphisms studied influenced risk of ischemic stroke. CONCLUSIONS APOB K4154K homozygosity predicts a 3- to 5-fold reduction in risk of ischemic cerebrovascular disease and ischemic stroke. This may be explained by lower plasma levels of apolipoprotein B and LDL cholesterol caused by an increased catabolism of LDL particles, although another yet-unknown mechanism is also possible.
Collapse
Affiliation(s)
- Marianne Benn
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|