1
|
Zhang Y, Ren Y, Zhou T, Qian Z, Bao Z. Vav family exchange factors: Potential regulator in atherosclerosis. Biochem Biophys Rep 2024; 40:101878. [PMID: 39649800 PMCID: PMC11625217 DOI: 10.1016/j.bbrep.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The Vav family of guanosine nucleotide exchange factors (GEFs) regulates the phosphorylation of tyrosinase, influencing various physiological and pathological processes by modulating the binding of Rho GTPases to GDP/GTP. Recent research has highlighted the critical role of Vav family activation in tumorigenesis, neurological disorders, immune-related dysfunctions, and other diseases. This review offers a comprehensive overview of the structure and function of Vav proteins and their significant impact on the pathophysiology of atherosclerosis. In addition, we pay attention to the development of diagnostic and therapeutic targets centered around Vav proteins.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Yongwei Ren
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Tao Zhou
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China
| | - Zhengyang Bao
- Department of Internal Medicine, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| |
Collapse
|
2
|
Gianni T, Campadelli-Fiume G. The epithelial αvβ3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components. PLoS Pathog 2014; 10:e1004477. [PMID: 25375272 PMCID: PMC4223072 DOI: 10.1371/journal.ppat.1004477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
TLR2 is a cell surface receptor which elicits an immediate response to a wide repertoire of bacteria and viruses. Its response is usually thought to be proinflammatory rather than an antiviral. In monocytic cells TLR2 cooperates with coreceptors, e.g. CD14, CD36 and αMβ2-integrin. In an earlier work we showed that αvβ3-integrin acts in concert with TLR2 to elicit an innate response to HSV, and to lipopolysaccharide. This response is characterized by production of IFN-α and -β, a specific set of cytokines, and NF-κB activation. We investigated the basis of the cooperation between αvβ3-integrin and TLR2. We report that β3-integrin participates by signaling through Y residues located in the C-tail, known to be involved in signaling activity. αvβ3-integrin boosts the MYD88-dependent TLR2 signaling and IRAK4 phosphorylation in 293T and in epithelial, keratinocytic and neuronal cell lines. The replication of ICP0minus HSV is greatly enhanced by DN versions of MYD88, of Akt – a hub of this pathway, or by β3integrin-silencing. αvβ3-integrin enables the recruitment of TLR2, MAL, MYD88 at lipid rafts, the platforms from where the signaling starts. The PAMP of the HSV-induced innate response is the gH/gL virion glycoprotein, which interacts with αvβ3-integrin and TLR2 independently one of the other, and cross-links the two receptors. Given the preferential distribution of αvβ3-integrin to epithelial cells, we propose that αvβ3-integrin serves as coreceptor of TLR2 in these cells. The results open the possibility that TLR2 makes use of coreceptors in a variety of cells to broaden its spectrum of activity and tissue specificity. In an earlier work we showed that a relevant contribution to the overall IFN-based antiviral response of the cell to herpes simplex virus is exerted by αvβ3-integrin which acts in concert with TLR2 in eliciting this response. Major characteristics of this branch of the innate response are the secretion of IFN-α and -β, of a specific set of cytokines, and the activation of NF-κB. The response is elicited also by LPS, indicating that the αvβ3-integrin TLR2 sentinels sense both bacteria and viruses. The IFN response is usually thought to be elicited by the endosomal and cytoplasmic sensors. Here we have investigated the basis of the αvβ3-integrin–TLR2 response, and found that αvβ3-integrin acts through its signaling C-tail, and boosts the MYD88- IRAK4-dependent TLR2 response. This is seen also in epithelial and neuronal cells which exemplify targets of HSV infection. Altogether, the results argue that αvβ3-integrin may serve as a coreceptor of TLR2 in epithelial cells. A point of novelty is that the TLR2 coreceptors known to date - CD14, CD36 and αMβ2-integrins - are typical of monocytic-derived cells (macrophages, DCs). To our knowledge a TLR2 coreceptor for epithelial cells was not known to date.
Collapse
Affiliation(s)
- Tatiana Gianni
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum–University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
3
|
Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, Weiss A, Griffiths GM. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 2014; 3:e01310. [PMID: 24596147 PMCID: PMC3936284 DOI: 10.7554/elife.01310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
T cell receptor (TCR) activation leads to a dramatic reorganisation of both membranes and receptors as the immunological synapse forms. Using a genetic model to rapidly inhibit Zap70 catalytic activity we examined synapse formation between cytotoxic T lymphocytes and their targets. In the absence of Zap70 catalytic activity Vav-1 activation occurs and synapse formation is arrested at a stage with actin and integrin rich interdigitations forming the interface between the two cells. The membranes at the synapse are unable to flatten to provide extended contact, and Lck does not cluster to form the central supramolecular activation cluster (cSMAC). Centrosome polarisation is initiated but aborts before reaching the synapse and the granules do not polarise. Our findings reveal distinct roles for Zap70 as a structural protein regulating integrin-mediated control of actin vs its catalytic activity that regulates TCR-mediated control of actin and membrane remodelling during formation of the immunological synapse. DOI: http://dx.doi.org/10.7554/eLife.01310.001.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Byron B Au-Yeung
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, United States
| | - Arthur Weiss
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Mondal S, Ghosh-Roy S, Loison F, Li Y, Jia Y, Harris C, Williams DA, Luo HR. PTEN negatively regulates engulfment of apoptotic cells by modulating activation of Rac GTPase. THE JOURNAL OF IMMUNOLOGY 2011; 187:5783-94. [PMID: 22043008 DOI: 10.4049/jimmunol.1100484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Efficient clearance of apoptotic cells by phagocytes (efferocytosis) is critical for normal tissue homeostasis and regulation of the immune system. Apoptotic cells are recognized by a vast repertoire of receptors on macrophage that lead to transient formation of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] and subsequent cytoskeletal reorganization necessary for engulfment. Certain PI3K isoforms are required for engulfment of apoptotic cells, but relatively little is known about the role of lipid phosphatases in this process. In this study, we report that the activity of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a phosphatidylinositol 3-phosphatase, is elevated upon efferocytosis. Depletion of PTEN in macrophage results in elevated PtdIns(3,4,5)P(3) production and enhanced phagocytic ability both in vivo and in vitro, whereas overexpression of wild-type PTEN abrogates this process. Loss of PTEN in macrophage leads to activation of the pleckstrin homology domain-containing guanine-nucleotide exchange factor Vav1 and subsequent activation of Rac1 GTPase, resulting in increased amounts of F-actin upon engulfment of apoptotic cells. PTEN disruption also leads to increased production of anti-inflammatory cytokine IL-10 and decreased production of proinflammatory IL-6 and TNF-α upon engulfment of apoptotic cells. These data suggest that PTEN exerts control over efferocytosis potentially by regulating PtdIns(3,4,5)P(3) levels that modulate Rac GTPase and F-actin reorganization through Vav1 exchange factor and enhancing apoptotic cell-induced anti-inflammatory response.
Collapse
Affiliation(s)
- Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Mersich AT, Miller MR, Chkourko H, Blystone SD. The formin FRL1 (FMNL1) is an essential component of macrophage podosomes. Cytoskeleton (Hoboken) 2010; 67:573-85. [PMID: 20617518 PMCID: PMC3289130 DOI: 10.1002/cm.20468] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/25/2010] [Indexed: 01/10/2023]
Abstract
Podosomes are highly dynamic actin-rich adhesion structures in cells of myeloid lineage and some transformed cells. Unlike transformed mesenchymal cell types, podosomes are the sole adhesion structure in macrophage and thus mediate all contact with adhesion substrate, including movement through complex tissues for immune surveillance. The existence of podosomes in inflammatory macrophages and transformed cell types suggest an important role in tissue invasion. The proteome, assembly, and maintenance of podosomes are emerging, but remain incompletely defined. Previously, we reported a formin homology sequence and actin assembly activity in association with macrophage beta-3 integrin. In this study we demonstrate by quantitative reverse transcriptase polymerase chain reaction and Western blotting that the formin FRL1 is specifically upregulated during monocyte differentiation to macrophages. We show that the formin FRL1 localizes to the actin-rich cores of primary macrophage podosomes. FRL1 co-precipitates with beta-3 integrin and both fixed and live cell fluorescence microscopy show that endogenous and overexpressed FRL1 selectively localize to macrophage podosomes. Targeted disruption of FRL1 by siRNA results in reduced cell adhesion and disruption of podosome dynamics. Our data suggest that FRL1 is responsible for modifying actin at the macrophage podosome and may be involved in actin cytoskeleton dynamics during adhesion and migration within tissues.
Collapse
Affiliation(s)
- Akos T Mersich
- Department of Cell and Development Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
6
|
Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, Plow EF, Ma YQ. Tyrosine phosphorylation of integrin beta3 regulates kindlin-2 binding and integrin activation. J Biol Chem 2010; 285:30370-4. [PMID: 20702409 DOI: 10.1074/jbc.c110.134247] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Kindlins are essential for integrin activation in cell systems and do so by working in a cooperative fashion with talin via their direct interaction with integrin β cytoplasmic tails (CTs). Kindlins interact with the membrane-distal NxxY motif, which is distinct from the talin-binding site within the membrane-proximal NxxY motif. The Tyr residues in both motifs can be phosphorylated, and it has been suggested that this modification of the membrane-proximal NxxY motif negatively regulates interaction with the talin head domain. However, the influence of Tyr phosphorylation of the membrane-distal NxxY motif on kindlin binding is unknown. Using mutational analyses and phosphorylated peptides, we show that phosphorylation of the membrane-distal NITY(759) motif in the β(3) CT disrupts kindlin-2 recognition. Phosphorylation of this membrane-distal Tyr also disables the ability of kindlin-2 to coactivate the integrin. In direct binding studies, peptides corresponding to the non-phosphorylated β(3) CT interacted well with kindlin-2, whereas the Tyr(759)-phosphorylated peptide failed to bind kindlin-2 with measurable affinity. These observations indicate that transitions between the phosphorylated and non-phosphorylated states of the integrin β(3) CT determine reactivity with kindlin-2 and govern the role of kindlin-2 in regulating integrin activation.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Moon MS, Gomez TM. Balanced Vav2 GEF activity regulates neurite outgrowth and branching in vitro and in vivo. Mol Cell Neurosci 2010; 44:118-28. [PMID: 20298788 PMCID: PMC2862809 DOI: 10.1016/j.mcn.2010.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 02/25/2010] [Accepted: 03/02/2010] [Indexed: 01/25/2023] Open
Abstract
We have investigated the role of Vav2, a reported Rac1/Cdc42 GEF, on the development of Xenopus spinal neurons in vitro and in vivo. Both gain and loss of Vav2 function inhibited the rate neurite extension on laminin (LN), while only GFP-Vav2 over-expression enhanced process formation and branching. Vav2 over-expression protected neurons from RhoA-mediated growth cone collapse, similar to constitutively active Rac1, suggesting that Vav2 activates Rac1 in spinal neurons. Enhanced branching on LN required both Vav2 GEF activity and N-terminal tyrosine residues, but protection from RhoA-mediated collapse only required GEF activity. Interestingly, wild-type spinal neurons exhibited increased branching on the cell adhesion molecule L1, which required Vav2 GEF function, but not N-terminal tyrosine residues. Finally, we find that Vav2 differentially affects the Rohon-Beard peripheral and central process extension but promotes neurite branching of commissural interneurons near the ventral midline. Together, we suggest that balanced Vav2 activity is necessary for optimal neurite outgrowth and promotes branching by targeting GEF activity to branch points.
Collapse
Affiliation(s)
- Myung-soon Moon
- Department of Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
8
|
Kuzelová K, Pluskalová M, Brodská B, Otevrelová P, Elknerová K, Grebenová D, Hrkal Z. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin. J Cell Biochem 2010; 109:184-95. [PMID: 19911379 DOI: 10.1002/jcb.22397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).
Collapse
Affiliation(s)
- Katerina Kuzelová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, Ginsberg MH, Campbell ID. Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem 2009; 284:36700-36710. [PMID: 19843520 PMCID: PMC2794784 DOI: 10.1074/jbc.m109.061275] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/09/2009] [Indexed: 01/04/2023] Open
Abstract
Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated (15)N-labeled beta3, beta1A, and beta7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of beta3, beta1A, and beta7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of beta integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| | - Jacob R Haling
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Camilla L Oxley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Massimiliano Memo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Kate L Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Chinten J Lim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| |
Collapse
|
10
|
Bhavsar PJ, Vigorito E, Turner M, Ridley AJ. Vav GEFs regulate macrophage morphology and adhesion-induced Rac and Rho activation. Exp Cell Res 2009; 315:3345-58. [PMID: 19715691 DOI: 10.1016/j.yexcr.2009.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/18/2022]
Abstract
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.
Collapse
Affiliation(s)
- Parag J Bhavsar
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London, UK
| | | | | | | |
Collapse
|
11
|
Spurrell DR, Luckashenak NA, Minney DC, Chaplin A, Penninger JM, Liwski RS, Clements JL, West KA. Vav1 regulates the migration and adhesion of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:310-8. [PMID: 19542442 DOI: 10.4049/jimmunol.0802096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) are the most potent APCs for activating naive T cells, a process facilitated by the ability of immature DCs to mature and home to lymph nodes after encountering an inflammatory stimulus. Proteins involved in cytoskeletal rearrangement play an important role in regulating the adherence and motility of DCs. Vav1, a guanine nucleotide exchange factor for Rho family GTPases, mediates cytoskeletal rearrangement in hematopoietic cells following integrin ligation. We show that Vav1 is not required for the normal maturation of DCs in vitro; however, it is critical for DC binding to fibronectin and regulates the distribution but not the formation of podosomes. We also found that DC Vav1 was an important component of a signaling pathway involving focal adhesion kinase, phospholipase C-gamma2, and ERK1/2 following integrin ligation. Surprisingly, Vav1(-/-) DCs had increased rates of migration in vivo compared with wild-type control DCs. In vitro findings show that the presence of adhesive substrates such as fibronectin resulted in inhibition of migration. However, there was less inhibition in the absence of Vav1. These findings suggest that DC migration is negatively regulated by adhesion and integrin-mediated signaling and that Vav1 has a central role in this process.
Collapse
Affiliation(s)
- David R Spurrell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gao C, Blystone SD. A Pyk2-Vav1 complex is recruited to beta3-adhesion sites to initiate Rho activation. Biochem J 2009; 420:49-56. [PMID: 19207108 DOI: 10.1042/bj20090037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integrin alphavbeta3-mediated adhesion of haemopoietic cells to vitronectin results in beta3 tyrosine phosphorylation and Rho activation which is necessary for adhesion. Previously, we have shown that the RhoGEF (Rho guanine-nucleotide-exchange factor) Vav1 could associate indirectly with alphavbeta3 during leucocyte adhesion to vitronectin. In the present study, we have identified the non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) as the adaptor protein that links Vav1 with alphavbeta3. The association of Pyk2 and Vav1 with beta3 relies on the presence of Tyr747 in beta3, the primary site of beta3 phosphorylation. However, association of Pyk2 with Vav1 is independent of beta3 tyrosine phosphorylation. Formation of a Pyk2-Vav1 complex occurs upon cell adhesion and Pro717 of Pyk2 plays a key role in Pyk2 interaction with Vav1. Utilizing purified recombinant proteins, we confirmed the direct interaction between Pyk2 and Vav1 In vitro. Cells transfected with GFP (green fluorescent protein)-Pyk2-P717A demonstrated severely suppressed cytoskeletal reorganization, impaired Vav1 recruitment, decreased Rho GTPase activation and loss of cell adhesion. Using siRNA (small interfering RNA) to specifically reduce Pyk2 levels in cells resulted in disrupted association between Vav1 and beta3 and impaired cell adhesion. These results indicate that Pyk2 is a critical signalling molecule downstream of beta3 integrin tyrosine phosphorylation and mediates Vav1 recruitment to accomplish actin reorganization necessary for adhesion.
Collapse
Affiliation(s)
- Chunlei Gao
- Department of Cell and Development Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
13
|
Abstract
Integrins are cell surface transmembrane receptors that recognize and bind to extracellular matrix proteins and counter receptors. Binding of activated integrins to their ligands induces a vast number of structural and signaling changes within the cell. Large, multimolecular complexes assemble onto the cytoplasmic tails of activated integrins to engage and organize the cytoskeleton, and activate signaling pathways that ultimately lead to changes in gene expression. Additionally, integrin-mediated signaling intersects with growth factor-mediated signaling through various levels of cross-talk. This review discusses recent work that has tremendously broadened our understanding of the complexity of integrin-mediated signaling.
Collapse
|
14
|
Oxley CL, Anthis NJ, Lowe ED, Vakonakis I, Campbell ID, Wegener KL. An integrin phosphorylation switch: the effect of beta3 integrin tail phosphorylation on Dok1 and talin binding. J Biol Chem 2007; 283:5420-6. [PMID: 18156175 DOI: 10.1074/jbc.m709435200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins play a fundamental role in cell migration and adhesion; knowledge of how they are regulated and controlled is vital for understanding these processes. Recent work showed that Dok1 negatively regulates integrin activation, presumably by competition with talin. To understand how this occurs, we used NMR spectroscopy and x-ray crystallography to investigate the molecular details of interactions with integrins. The binding affinities of beta3 integrin tails for the Dok1 and talin phosphotyrosine binding domains were quantified using 15N-1H hetero-nuclear single quantum correlation titrations, revealing that the unphosphorylated integrin tail binds more strongly to talin than Dok1. Chemical shift mapping showed that unlike talin, Dok1 exclusively interacts with the canonical NPXY motif of the beta3 integrin tail. Upon phosphorylation of Tyr 747 in the beta3 integrin tail, however, Dok1 then binds much more strongly than talin. Thus, we show that phosphorylation of Tyr 747 provides a switch for integrin ligand binding. This switch may represent an in vivo mechanism for control of integrin receptor activation. These results have implications for the control of integrin signaling by proteins containing phosphotyrosine binding domains.
Collapse
Affiliation(s)
- Camilla L Oxley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Pearce AC, McCarty OJT, Calaminus SDJ, Vigorito E, Turner M, Watson SP. Vav family proteins are required for optimal regulation of PLCgamma2 by integrin alphaIIbbeta3. Biochem J 2007; 401:753-61. [PMID: 17054426 PMCID: PMC1770845 DOI: 10.1042/bj20061508] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.
Collapse
Affiliation(s)
- Andrew C Pearce
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Schapira V, Lazer G, Katzav S. Osteopontin is an oncogenic Vav1- but not wild-type Vav1-responsive gene: implications for fibroblast transformation. Cancer Res 2006; 66:6183-91. [PMID: 16778192 DOI: 10.1158/0008-5472.can-05-3735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian wild-type Vav1 (wtVav1) encodes a specific GDP/GTP nucleotide exchange factor that is exclusively expressed in the hematopoietic system. Despite numerous studies, the mechanism underlying transformation of fibroblasts by oncogenic Vav1 (oncVav1) is not well defined. We identified osteopontin, a marker for tumor aggressiveness, as an oncVav1-inducible gene. Osteopontin is highly expressed in oncVav1-transformed NIH3T3 cells (NIH/oncVav1) but is barely detected in NIH3T3 expressing wtVav1 (NIH/wtVav1) even following epidermal growth factor stimulation, which normally induces osteopontin. Depleting oncVav1 in NIH/oncVav1 using small interfering RNA led to a considerable decrease in osteopontin, whereas reducing osteopontin expression did not affect oncVav1 expression, suggesting that oncVav1 operates upstream of osteopontin. Vav1-depleted NIH/oncVav1 cells, but not osteopontin-depleted NIH/oncVav1 cells, exhibited impaired extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase phosphorylation. Inhibition of ERK phosphorylation in NIH/oncVav1 cells led to a decrease in osteopontin expression, implying that the elevated osteopontin expression in these cells is dependent on ERK phosphorylation. Vav1-depleted or osteopontin-depleted NIH/oncVav1 cells lost their tumorigenic properties as judged by the soft agar and invasion assays, although loss of osteopontin expression had a less dramatic effect. Suppression of Vav1 expression in NIH/oncVav1 cells led to reversion to "normal" morphology, whereas when only osteopontin expression was diminished cells retained their transformed morphology. This work strongly supports a role for oncVav1 as a master oncogene and provides clues to the molecular mechanism underlying oncVav1 transformation.
Collapse
Affiliation(s)
- Vered Schapira
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
17
|
Cayrol C, Clerc P, Bertrand C, Gigoux V, Portolan G, Fourmy D, Dufresne M, Seva C. Cholecystokinin-2 receptor modulates cell adhesion through beta 1-integrin in human pancreatic cancer cells. Oncogene 2006; 25:4421-8. [PMID: 16547500 DOI: 10.1038/sj.onc.1209484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several lines of evidence suggest that gastrin and the CCK-2 receptor (CCK2R) could contribute to pancreatic carcinogenesis by modulating processes such as proliferation, cell adhesion or migration. In the current study, we used a 'cancer gene array' and identified beta1-integrin subunit as a new gastrin-regulated gene in human pancreatic cancer cells. We also demonstrated that Src family kinases and the phosphatidylinositol-3-kinase (PI-3-kinase) pathway play a crucial role in the expression of beta1-integrin induced by gastrin. Our results also showed that gastrin modulates cell-substrate adhesion via beta1-integrin. Indeed, using blocking anti-beta1-integrin monoclonal antibodies, we completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we observed that in response to gastrin, beta1-integrin is tyrosine phosphorylated by Src family kinases and associates with paxillin, a scaffold protein involved in focal adhesion and integrin signalling. This mechanism might be involved in gastrin-induced cell adhesion. Moreover, we showed in vivo that targeted CCK2R expression in the pancreas of Elas-CCK2 mice leads to the overexpression of beta1-integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.
Collapse
Affiliation(s)
- C Cayrol
- INSERM U 531, IFR 31, Institut Louis Bugnard, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Butler B, Gao C, Mersich AT, Blystone SD. Purified Integrin Adhesion Complexes Exhibit Actin-Polymerization Activity. Curr Biol 2006; 16:242-51. [PMID: 16461277 DOI: 10.1016/j.cub.2005.12.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cell adhesion and motility are accomplished through a functional linkage of the extracellular matrix with the actin cytoskeleton via adhesion complexes composed of integrin receptors and associated proteins. To determine whether this linkage is attained actively or passively, we isolated integrin complexes from nonadherent hematopoietic cells and determined their influence on the polymerization of actin. RESULTS We observed that alpha(V)beta3 complexes are capable of dramatically accelerating the rate of actin assembly, resulting in actin fibers tethered at their growing ends by clustered integrins. The ability to enhance actin polymerization was dependent upon Arg-Gly-Asp-ligand-induced beta3 tyrosine phosphorylation, agonist-induced cellular activation, sequestration of Diaphanous formins, and clustering of the receptor. CONCLUSIONS These results suggest that adhesion complexes actively promote actin assembly from their cytosolic face in order to establish a mechanical linkage with the extracellular matrix.
Collapse
Affiliation(s)
- Boyd Butler
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams St, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
19
|
Zhao H, Kitaura H, Sands MS, Ross FP, Teitelbaum SL, Novack DV. Critical role of beta3 integrin in experimental postmenopausal osteoporosis. J Bone Miner Res 2005; 20:2116-23. [PMID: 16294265 DOI: 10.1359/jbmr.050724] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/03/2005] [Accepted: 07/22/2005] [Indexed: 01/19/2023]
Abstract
UNLABELLED We show that mice lacking beta3 integrin are protected from OVX-induced bone loss. Using a lentiviral-based strategy to express beta3 mutants in beta3(-/-) mice, we also show that beta3(S752), but not beta3(Y747/Y759), is important for osteoclastic bone resorption in vivo. INTRODUCTION Mice lacking the beta3 integrin have dysfunctional osteoclasts and therefore accumulate bone mass with age. Thus, the alphavbeta3 integrin is a potential anti-osteoporosis target. Identifying components of the beta3 integrin that determine its function in vivo is essential for therapeutically exploiting the antiresorptive properties of alphavbeta3. MATERIALS AND METHODS We used DXA and histomorphometry to assess bone loss after ovariectomy in wildtype and beta3 integrin null mice. We used lentiviral vectors carrying various human beta3 (hbeta3) integrin constructs to transduce beta3(-/-) bone marrow and reconstituted lethally irradiated beta3(-/-) mice with the transduced marrow. The expressed constructs include the intact integrin and two mutants, namely hbeta3(Y747F/Y759F) and hbeta3(S752P), each of which induces the bleeding dyscrasia, Glanzmann's thrombasthenia, in humans. Two months after transplantation, the expression of hbeta3 was measured by flow cytometry of marrow-derived macrophages. Osteoclast differentiation and function were assessed ex vivo by TRACP and actin-ring staining, respectively. Reconstituted mice were ovariectomized, and bone loss was assessed by DXA, histomorphometry, and serum TRACP5b assay. RESULTS beta3(-/-) mice are protected from ovariectomy-induced bone loss, showing no difference in BMD compared with sham-operated controls. We successfully expressed hbeta3 integrins in beta3(-/-) hosts using lentiviral transduction of bone marrow. Two months after transplantation, 25-35% of marrow-derived macrophages expressed the hbeta3 constructs. Similar to its effect in vitro, hbeta3(WT) completely rescued the osteoclast and platelet phenotype of beta3(-/-) mice. Whereas platelet function remained deranged in beta3(-/-) mice overexpressing hbeta3(Y747F/Y759F), osteoclast function was fully restored. In contrast, beta3(-/-) mice expressing hbeta3(S752P) continued to exhibit prolonged bleeding times and dysfunctional osteoclasts in vitro and ex vivo. Most importantly, hbeta3(WT) and hbeta3(Y747F/Y759F) transplanted mice underwent equivalent ovariectomy-induced bone loss, whereas, like those bearing the control vector, hbeta3(S752P) transplanted mice were protected. CONCLUSIONS Functional beta3 integrin is required for ovariectomy-induced bone loss. beta3(S752), but not beta3(Y747/Y759), is critical for osteoclast function in vivo.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|